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Abstract
Reversible computation has attracted increasing interest in recent years. In this 
paper, we show how to model reversibility in concurrent computation as realised 
abstractly in terms of event structures. Two different forms of event structures are 
considered, namely event structures defined by causation and prevention relations 
and event structures given by an enabling relation with prevention. We then show 
how to reverse the two kinds of event structures, and discuss causal as well as out-
of-causal order reversibility.

Keywords Reversible computation · Configuration system · Reversible asymmetric 
event structure · Enabling with prevention relation

Introduction

Reversing computation of concurrent and distributed systems has many novel and 
promising applications and, since it is a relatively new area of research, it has as 
many technical and conceptual challenges. Several different styles of undoing of 
computation have been identified recently. Backtracking and reversing of compu-
tation that preserves causal order were considered in, for example, [7, 8, 12, 13, 
24, 25, 28] with applications including recovery-oriented systems and revers-
ible debugging. Reversing out-of-causal order, however, which is a very common 
mode of operation in biochemical systems, has not been studied very widely. The 
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first study of out-of-causal order reversibility was carried out by Phillips et al. [34] 
where an extension of the process calculus CCSK [28, 29], a reversible version of 
Milner’s CCS, with the execution control operator was proposed. This was followed 
by a study of a form of reversible event structure [35] based on a generalisation 
of Winskel’s enabling relation  [38]. Phillips and Ulidowski proposed then in [31, 
32] reversible event structures that focused on analysing conflict and causation as 
first-class notions in the setting of reversible computation. Both forms of reversible 
event structures were studied further in [36]. Subsequently, Aubert and Cristescu 
modelled a subcalculus of RCCS [10, 11], another reversible extension of Milner’s 
CCS, in configuration structures [1]. Then Graversen, Phillips and Yoshida studied 
categories of reversible event structures in [16], including those mentioned above. 
Moreover, they developed a category of reversible bundle event structures in [17], 
and used the causal subcategory to model CCSK. They modified CCSK to con-
trol the reversibility with a rollback primitive, and gave semantics of CCSK with 
rollback by exploiting the capacity for non-causal reversibility of reversible bun-
dle event structures. Join inverse categories were developed by Kaarsgaard et al. to 
model reversible recursion in reversible functional programming in [21].

The last decade has produced a good understanding of how causal reversibility 
can be described in the settings of operational semantics and process calculi, and 
how to model reversibility logically and in terms of behavioural equivalences. 
Research on reversing process calculi can be traced back perhaps to Berry and 
Boudol’s Chemical Abstract Machine [6]. Danos and Krivine developed RCCS, a 
reversible version of CCS, in [10, 11], and Phillips and Ulidowski proposed a gen-
eral method for reversing process calculi in [28, 29]. The reversible flowchart com-
putation model developed by Yokoyama et al. [40] showed how to reverse low-level 
machine code for microprocessors as well as high-level block-structured languages. 
Reversible structures that compute forwards and backwards asynchronously were 
developed by Cardelli and Laneve  [7]. Mechanisms for controlling reversibility 
based on a rollback construct were devised by Lanese et  al.  [23] for a reversible 
higher order � calculus [24]. An alternative mechanism based on the execution con-
trol operator was proposed in [34]. A mechanism for triggering reversal of actions 
inspired by covalent bonding in chemistry was developed by Kuhn and Ulidowski 
in [22]. Cristescu et al. gave a compositional semantics for the reversible pi-calcu-
lus [8], and further developed rigid families, a causal model based on configura-
tion structures, for the reversible pi-calculus [9]. Event Identifier Logic (EIL), which 
extends Hennessy–Milner logic [18] with reverse modalities, was introduced in 
[33]. EIL corresponds to hereditary history-preserving bisimulation equivalence [5] 
within a particular true-concurrency model of stable configuration structures [14]. 
Moreover, natural sublogics of EIL correspond to coarser equivalences, several of 
them defined in terms of reversible events, sets of concurrent reversible events or 
pomsets of reversible events. These equivalences and other behavioural equivalences 
based in the reversible setting were studied for the first time in [30].

The aim of the paper is to explain how to model reversibility in concurrent com-
putation as realised abstractly in terms of event structures. We adopt a descriptive 
and fairly informal style of presentation, with many examples and directions for fur-
ther reading. In the next section, we introduce the notions of events, configurations, 
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computation and configuration systems followed by which we present two differ-
ent forms of event structures and show how to extend them with reversibility. We 
explain that Reversible Asymmetric Event Structures (RAESs) are easier to work 
with and are suitable for the modelling of many reversible systems which reverse 
either causally or out-of-causal order. We show that a version of the Reverse Dia-
mond property holds for causal RAESs. However, not all concurrent systems can be 
modelled with RAESs, so we propose more expressive Reversible Event Structures 
(RESs). We prove that RAESs can be encoded into RESs. Since the sets of events 
computed by RESs can grow non-monotonically we define configurations of RESs 
as limits of infinite sequences of sets of events. We show that such configurations 
correspond to the traditional configurations when there are no reversible events. 
Moreover, we prove that the enabling relations of RESs are powerful enough that we 
do not need the traditional notion of the consistency relation. Numerous examples 
are used to illustrate our approach.

For the convenience of the reader we provide in the conclusion a table of all rela-
tions on events we use in this paper.

Events and Configurations

The behaviour of concurrent systems is represented abstractly by event structures 
where units of behaviour are modelled by events. We aim to cover many different 
systems, so the events will represent a wide range of activities such as, for example, 
receiving or sending a message, assigning a value to a variable, or creating a bond 
between two chemical compound. Events have names, denoted here abstractly as 
a, b, c, d, e, f, and no two different events share the same name. A concurrent sys-
tem or process is then modelled as an event structure which is a set of events and 
a number of relations on events such as, for example, causality and conflict. Event 
structures were defined by Winskel [38] following earlier work by Nielsen, Plotkin 
and Winskel [26]. They were developed further in [15, 37, 39].

There are a number of ways to relate events. For example, an event a causes an 
event b, so when they both happen we know that a happened before b. Events can be 
independent from each other, or some events may be in conflict with other events. An 
alternative way to define how events relate to each other is via an enabling relation. In 
this paper, we shall present event structures defined by a number of relations, such as 
causality and precedence, as well as event structures given by an enabling relation.

Event structures compute or execute by either performing events or undoing pre-
viously performed events, thus moving from one state to another state. A state is a 
set of events called a configuration that have occurred and have not been undone yet. 
The act of moving from a configuration to another configuration is a computation 
step and is represented by a transition relation C �→ C′ . It means that configuration 
C evolves to configuration C′ by doing and/or undoing some events. A sequence of 
computation steps is called an execution, or a computation.
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Example 1 Consider a situation where two events a and b are to take place. Initially, 
no event has occurred yet. This is represented by the empty configuration ∅ . Then 
the event a takes place, resulting in configuration {a} , and finally the event b occurs 
producing {a, b} . This computation is represented by � �→ {a} �→ {a, b} . Events can 
also be undone (reversed). We shall use the notation a and b to denote actions of 
undoing executed events a and b, respectively. We also call a and b reverse a and 
reverse b events, respectively. More generally, we take the view that undoing an 
event e means that e is removed from the current configuration, and it is as if e had 
never occurred. That is apart possibly from indirect effects, such as e having caused 
another event f before e was reversed. If e is putting a coin into a vending machine, 
then undoing e is withdrawing that coin. Returning to our example, performing b in 
{a, b} regresses the computation to {a} : this is often written as {a, b}⤏{a} instead 
of {a, b} �→ {a} to indicate that a is undone and to match the notation used in our 
figures.

The computation of event structures, where we can also undo performed events, 
can be represented by a configuration system. Configuration systems are closely 
related to configuration structures, which have a notion of configuration and a 
notion of concurrent or step transition. These were introduced by van Glabbeek 
and Goltz in [14] and were later extended by van Glabbeek and Plotkin in [15].

Definition 1 Let (E) denote the powerset of a set E. A configuration structure is 
a pair  = (E,�) where E is a set of events and � ⊆ (E) is a set of configurations. 
For configurations X, Y, we let X �→ Y  if X ⊆ Y  and for every Z, if X ⊆ Z ⊆ Y  then Z 
is a configuration.

Let X and Y be configurations. Since all the events in Y⧵X are independent, they 
can happen concurrently as a single step. We sometimes write X

A
������→ Y  instead of 

X �→ Y  where A = Y⧵X . If Y = X ∪ {a} then X �→ Y  . This may no longer hold when 
we reverse events. Consider E = {a, b} where a causes b, so that b cannot occur 
unless a has occurred previously. Then {b} is not a possible configuration using for-
wards computation. However, if a is reversible, we can do a, written as � �→ {a} , 
then we can follow with b, written as {a} �→ {a, b} , and finally we reverse a, namely 
{a, b}⤏{b} , and thus we reach {b} . Thus, both ∅ and {b} are configurations, but we 
do not have �

b
�����→ {b}.

The first definition of configuration systems suitable for reversing events was 
given in [31]. We let A,B,X, Y , Z,… range over sets of events. If an event e is revers-
ible, we have a corresponding reverse event e . We write B for {e ∶ e ∈ B} . Not all 
events need to be reversible, so we define the set F ⊆ E of reversible events, and we 
insist that F ∩ E = �.

Definition 2 A configuration system is a quadruple  = (E,F,𝖢, �→) where E is a 
set of events, F ⊆ E are the reversible events, � ⊆ (E) is the set of configurations 
and → ⊆ 𝖢 × (E ∪ F) × 𝖢 is a labelled transition relation such that if X

A∪B

���������������→ Y  
then:
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– A ∩ X = � and B ⊆ X ∩ F and Y = (X⧵B) ∪ A;

– X
A�∪B�

��������������������→ Z
(A�A�)∪(B�B�)
���������������������������������������������������→ Y  (where Z = (X⧵B�) ∪ A� ∈ � ) for every A′ ⊆ A and 

B′ ⊆ B.

We say that A ∪ B is enabled at X if there is Y such that X
A∪B

���������������→ Y  . A transition 
X

A∪B

���������������→ Y  is mixed if both A and B are non-empty. If B = � we say the transition is 
forwards, and if A = � the transition is reverse.

In this paper, we do not discuss mixed transitions in great depth; they are treated 
fully in [32]. Most of our examples concern transitions where A or B (in B ) are sin-
gleton sets and where the other set is empty. As a result, the transitions denote either 
performing an event or undoing an event.

We also define reachable configurations. Let  = (E,F,𝖢, �→) be a con-
figuration system. We say that configuration X is a reachable configuration if 
�

A1∪B1

����������������������→ ⋯
An∪Bn

����������������������→ X . We recall that we have Ai ⊆ E and Bi ⊆ F for each i = 1,… , n 
by Definition 2.

Reversible Event Structures with Causality and Precedence

In this section, we discuss event structures where the causation, concurrency and 
precedence relations on events determine how they compute.

To explore different forms of relations between events and how this impacts on 
performing and undoing of events, we shall mostly consider small event structures. 
The basis for our main examples is a setting with only three events a, b and c. Even 
in such a simple setting we will be able to represent the most important styles of 
executing events forwards and in reverse. The events a, b, c are depicted by the three 
dimensions of the cube in Fig. 1. Any of the four edges of any dimension denotes 
an occurrence of an appropriate event. The bottom-left vertex represents the empty 
configuration ∅ (the origin of computation). The top-right vertex represents the con-
figuration where all the events have taken place, namely {a, b, c} . If there are no 
constraints on the events they can happen in any order, which is represented by tak-
ing the edges, starting from the origin of the cube, in any order. If events happen 
simultaneously then we take the appropriate diagonals. We do not display transitions 
of simultaneous events in our figures.

Causality is a binary irreflexive relation on events. It specifies which events 
(directly) cause other events. We write a ≺ b to mean that the event a causes the 

Fig. 1  A cube of three events a, 
b and c 

a
b

c
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event b, so b cannot happen before a has taken place. If a ≺ b and b ≺ c and a ≺ c , 
so that ≺ is transitive, then we know that an execution of that event structure con-
tains a if it contains b, and both a and b have occurred if c has happened. The maxi-
mal execution is � → {a} → {a, b} → {a, b, c} . This is depicted in the left cube in 
Fig. 2 by the sequence of thick arrows. An alternative way to represent an execu-
tion is with a sequence of events that take place in the execution. For example, the 
sequence abc is the execution of the system with a ≺ b , b ≺ c and a ≺ c . We can 
also write �

a
�����→ {a}

b
�����→ {a, b}

c
�����→ {a, b, c} where we label transitions with the events 

that happen.
The cube on the right in Fig. 2 shows all possible executions when a, b and c 

are independent, except for those executions that involve steps (sets of simultaneous 
events) which we do not display for clarity. If events are not related by causality or 
other relations, then they are independent. Independent events can take place in any 
order; hence, six complete executions abc, acb, bac, bca, cab and cba are depicted 
in Fig. 2. Each square of thick arrows represents graphically the independence of the 
events. When the events can happen in any order we call them concurrent events. 
We also have step transitions here, for example, � → {a, b, c} and {a} → {a, b, c} 
but they are not displayed in Fig. 2. Finally, there are several mixed transitions here, 
for example, performing b and undoing a from {a} is represented by {a} → {b} , or 

{a}
b,a

�����������→ {b}.
If a ≺ b and a ≺ c , meaning that a causes both b and c, and if b, c are independ-

ent, then there are only two complete executions: abc and acb. Correspondingly, 
a ≺ c and b ≺ c (namely, c is caused by both a and b) produce executions abc and 
bac.

We have illustrated so far how causality and independence (concurrency) affects 
the execution. Another important relation on events is the conflict relation [38]: if a 
and b are in conflict, written as a ♯ b , then once either a or b occurs in a computation 
the other event cannot occur afterwards in the same computation. We shall consider 
carefully precedence, a form of asymmetric conflict discussed in detail in [2]. The 
notation a ⊲ b , read as event a precedes event b, means that if both a and b have 
occurred then a has occurred first. Consequently, if only b occurred then a can no 
longer happen in the same computation; if it could it would not precede b. The prec-
edence relation has a dual interpretation. We shall use ⊳ , the symmetric version of 
the symbol ⊲ , and write b ⊳ a , which is read as b prevents a and means that if b is 
present in a configuration and a is not, then a can no longer occur. We have a ⊲ b if 
and only if b ⊳ a . Moreover, a ⊲ b and b ⊲ a if and only if a ♯ b.

Fig. 2  Left cube: event a causes 
event b, which causes in turn 
event c. Right cube: events a, b 
and c are independent, so can 
happen in any order

aa
b b

c
c



287New Generation Computing (2018) 36:281–306 

123

If, additionally, a ≺ c , then we have two complete executions ac and b depicted 
by the left cube in Fig. 3. If we only have events a and c, and we have a ⊲ c then ac 
and c are the only complete executions, which can be seen in the right cube in Fig. 3.

There are other forms of execution of the three events a, b, c which cannot be 
achieved by any combination of the causation, concurrency and precedence rela-
tions: we discuss this in the next section.

We are now ready to describe three forms of undoing events. We shall use our sim-
ple event structures to illustrate these forms. Backtracking is when events are undone 
in the inverse order they occurred. The event structure a ≺ b ≺ c which has reached 
the configuration {a, b, c} can backtrack by undoing c first, then undoing b and, 
lastly, undoing a. The left cube in Fig. 4 shows the system backtracking c and then b 
(dashed arrows pointing in the opposite direction) from {a, b, c} , which is written as 
{a, b, c}⤏{a, b}⤏{a}.

Consider the event structure a ≺ b and a ≺ c . Here a occurs first and then b,  c 
can occur independently. Once we have reached the configuration {a, b, c} we cannot 
deduce which of b and c occurred last by just inspecting the configuration. Since the 
events are independent, the order of performing or undoing them does not matter. This 
form of reversing is causal reversing [10, 24, 29], also called causal-consistent revers-
ing. Causal reversing is undoing of computation where

– events that cause other events can only be undone after the caused events are 
undone first, and

– independent events can be undone in any order irrespective of the order they 
have actually occurred.

We note that backtracking is a form of causal reversing. There are, however, numer-
ous examples of undoing events apparently out-of-causal order. For example, this form 
of doing and undoing events plays a vital rôle in the mechanisms driving biochemical 
reactions as is argued in [22, 27].

Example 2 We now consider the behaviour shown in the right cube of Fig. 4. Events 
a,  b and c can be interpreted as chemical reactions (or bonds) between catalysts 

Fig. 3  Left cube: events a and b 
are in conflict, with a causing c. 
Right cube: a precedes c 

aa
b

c
c

c

Fig. 4  Left cube: backtracking 
of events a, b and c. Right cube: 
a catalytic reaction is an exam-
ple of the out-of-causal order 
reversibility

aa

b b
c

c
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and other molecules. Initially, event a causes event b. Once we have b, a is not 
needed so it is undone. Finally, c occurs due to b being present and then c cannot 
be undone. Once c has occurred then b is undone. One can think of the event a 
as the catalyst of reaction b, and b as the catalyst of reaction c. The computation 
is � → {a} → {a, b} ⤏ {b} → {b, c} ⤏ {c} . Note that we undo a, the cause of b, 
before we undo b. Overall, we can reach {c} from ∅ via a combination of forwards 
and reverse moves but we cannot reach {c} by executing forwards only.

To model appropriately different styles of undoing events we extended the causa-
tion and precedence relations in [31, 32] to specify additionally how undoing of events 
is related to performing events. Recall that a, b, c denote undoing of a, b, c. We have 
now the causation relation ≺ with pairs x ≺ y , meaning that the event y can be undone 
if y has occurred and x has occurred and has not been undone yet. For example, a ≺ a 
means that a can be undone if it has occurred. Correspondingly, our precedence rela-
tion ⊲ can now have also pairs x ⊲ y to represent that x cannot be undone if y is present.

Definition 3 A reversible asymmetric event structure (RAES) is a quadruple 
 = (E,F,≺,⊲) where E is a set of events and F ⊆ E are those events of E which are 
reversible, and for any a, b, c, e ∈ E and � ∈ E ∪ F:

1. ⊲ ⊆ (E ∪ F) × E is the precedence relation (with a ⊲ b if and only if b ⊳ a ), which 
is irreflexive;

2. ≺ ⊆ E × (E ∪ F) is the direct causation relation, which is irreflexive and well-
founded, and such that{e ∈ E ∶ e ≺ 𝛼} is finite and ⊲ is acyclic on {e ∈ E ∶ e ≺ 𝛼};

3. a ≺ a for all a ∈ F;
4. if a ≺ 𝛼 then not a ⊳ 𝛼;
5. a ≺≺ b implies a ⊲ b , where sustained direct causation a ≺≺ b means that a ≺ b 

and if a ∈ F then b ⊳ a;
6. ≺≺ is transitive;
7. if a ♯ c and a ≺≺ b then b ♯ c , where ♯ is defined to be ⊲ ∩ ⊳.

Well-foundedness of ≺ means that there are no infinite descending sequences 
with respect to ≺ . We say that ⊲ is acyclic on a set S if the transitive closure of ⊲ on 
S is irreflexive.

We now look more closely at the notions of causation and sustained direct causa-
tion, and at conflict inheritance introduced in Definition 3.

Causation can be explained in two different ways. Event a causes event b, written 
as a ≺ b , means either

1. in any execution (computation), if b occurs then a occurs earlier, or
2. if b is enabled at configuration X then we must have a ∈ X.

The two views are equivalent for the forwards-only computation when there is no 
reversing. Consider the events a, b and c with a ≺ b ≺ c . Taking view (1) above we 
deduce that a ≺ c . View (2) also allows us to work out that a ≺ c : this is because 
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in the forwards-only computation configurations X are left-closed, namely for each 
e ∈ X the set of events that cause e is a subset of X. Thus, causation is transitive 
when only computing forwards no matter which view is adopted.

In the setting where computation can be reversed view (2) of causation is 
simpler and we adopt it here. If all reversing is causal, meaning that we reverse 
events only after all the events they caused were reversed first, then all configu-
rations are left-closed. So it is natural to require ≺ to be transitive. If, however, 
reversing is out-of-causal order, which leads to non-left-closed configurations 
(such as {b} , {b, c} and {c} in Examples  2 and 7), it is no longer reasonable to 
insist on ≺ being transitive. If a ≺ b ≺ c , as in Examples  2 and 7, then a may 
be reversed after b occurs, and before c occurs. As a result, it is appropriate to 
use a weaker notion of non-transitive direct causation in RAESs (see condition 2 
in Definition  3). Moreover, we have introduced the concept of sustained direct 
causation (condition 5 in Definition 3), where a ≺≺ b means that a causes b and 
a cannot reverse until b reverses. This is the analogue of standard causation for 
forwards computation and we, therefore, take sustained causation to be transitive 
(condition 6 in Definition 3).

Next we comment on conflict inheritance in the reversible setting. Originally, 
conflict inheritance was defined in [38] as if a ≺ b and a ♯ c then b ♯ c . If a ≺ b 
and a ♯ c and a is reversible, then we can undo a in {a, b} to reach {b} . Since a is 
not present in {b} there is nothing to prevent c from occurring. This gives us the 
configuration {b, c} , which means that b and c are not in conflict. Hence, we do 
not have conflict inheritance with respect to ≺ in RAESs. However, we still have 
conflict inheritance with respect to sustained causation a ≺≺ b as required by con-
dition 7 in Definition 3.

We now give a definition of the mixed transition relations for RAESs.

Definition 4 Let  = (E,F,≺,⊲) be an RAES. We define the associated configura-
tion system C() = (E,F,𝖢, �→) as follows. Let � consist of those X ⊆ E such that ⊲ 
is well-founded on X. For X ∈ � and A ⊆ E , B ⊆ F , we define X

A∪B

���������������→ Y  if and only 
if X, Y ∈ � and Y = (X⧵B) ∪ A and A ∪ B is enabled at X, which is

– A ∩ X = � , B ⊆ X;
– for every a ∈ A , if c ≺ a then c ∈ X⧵B;
– for every a ∈ A , if c ⊳ a then c ∉ X ∪ A;
– for every b ∈ B , if d ≺ b then d ∈ X⧵(B⧵{b});
– for every b ∈ B , if d ⊳ b then d ∉ X ∪ A.

We have introduced informally backtracking, causal reversing and out-of-
causal order reversing. Next we discuss these styles of undoing of events in more 
detail and show how to model them in RAESs.

Example 3 Consider the behaviour shown in the left cube of Fig. 4. The forwards 
computation is specified by a ≺ b ≺ c and a ≺ c . To ensure that the events can 
be undone we insist that x ≺ x for all x ∈ {a, b, c} . Note that the lack of y ≺ x for 
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all y ≠ x ensures that the events can be undone freely after they have taken place 
because there are no further prerequisites for undoing them. Finally, if we add a ⊲ b, 
and b ⊲ c , then we can achieve undoing of events in the backtracking order repre-
sented in Fig. 4. Note that only c can be undone initially in {a, b, c} because a ⊲ b 
and b ⊲ c and the presence of b, c prevents undoing of a, b respectively.

In many computing situations, for example, in reversible debugging of con-
current programs, one does not need to undo computation in the backtracking 
order. We can undo independent events in any order provided that when an event 
is undone we have first undone all the events caused by the event. To achieve such 
a style of reversing we need to impose certain conditions on RAESs. Consider 
first the following condition:

1. causes can be only undone if their effects are not present, namely x ≺ y implies 
x ⊲ y for all x ∈ F, y ∈ E.

The RAESs that satisfy condition (1) are called cause-respecting.

Example 4 Consider the system a ≺ b , a ≺ c . To obtain cause-respecting revers-
ibility we extend ≺ and ⊲ as follows: a ≺ a, b ≺ b, c ≺ c and a ⊲ b, a ⊲ c . Once 
{a, b, c} is reached, b,  c can be undone in any order. The conditions a ⊲ b, a ⊲ c 
ensure that a can only be undone when b,  c are not present, meaning after b,  c 
have been reversed. Hence, the reverse executions are {a, b, c}⤏{a, b}⤏{a} and 
{a, b, c}⤏{a, c}⤏{a} , and clearly {a}⤏�.

A consequence of condition (1) is that reversing is cause-respecting in the sense 
that when we can undo an event e in a configuration X, it means that the events 
caused by e (the effects of e), if any, are not present in X:

Proposition 1 Let  be a cause-respecting RAES, and let X be a configuration of  . 
Then if X

B

������→ Y  and e ∈ B , x ∈ X then e ⊀ x.

Proof Let X
B

������→ Y  , e ∈ B , and assume for contradiction e ≺ x for some x ∈ X . The 
condition for cause-respecting RAESs requires x ⊳ e when e ≺ x . Since X

B

������→ Y  and 
x ⊳ e we get x ∉ X by Definition 4: contradiction.   □

It is shown in [32] that a configuration in a cause-respecting RAES is forwards 
reachable if it is reachable.

When we can undo a and we can also undo b in a configuration, then one may 
ask if the two events can be undone in sequence, and if the order in which they are 
undone matters. The corresponding questions are answered in positive for processes 
in reversible process calculi such as CCSK [28, 29]. If we can reverse actions a and 
b in a process P, written as P

a

�����→ P′ and P
b

�����→ P′′ , then we can reverse the actions in 
sequence and the order of reversing the action does not matter: P′′

a

�����→ Q and P′
b

�����→ Q 
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for some process Q. This is called the Reverse Diamond (RD) property [29]. RD, 
however, is not valid for cause-respecting RAESs.

Example 5 Consider an RAES with two events e and f, with e ≺ f  and with empty 
prevention. The events are reversible, so we have e ≺ e and f ≺ f  . Clearly the RAES 

is cause-respecting. We have {e, f }
e

�����→ {f } and {e, f }
f

�����→ {e} . We can undo e in {e} but 
we are unable to undo f in {f } because e, one of its causes, is not present.

For RD to hold in an RAES we need to strengthen the cause-respecting condition 
further. Consider the following two global conditions:

2. events can only be undone once they occur, and the only cause to undo an event 
is the event itself, namely x ≺ y if and only if x = y for all x ∈ E, y ∈ F,

3. causes can be undone precisely when their effects are not present, namely x ≺ y 
if and only if x ⊲ y for all x ∈ F, y ∈ E.

Note that (3) is a strengthened version of (1). The RAESs that satisfy these two 
conditions are called causal and are studied further in [32]. We have RD for causal 
RAESs:

Proposition 2 Let  be a causal RAES and X be a configuration of  . If X
e

�����→ X′ 

and X
f

�����→ X′′ , then X′′
e

�����→ Y  and X′
f

�����→ Y  for some Y.

Proof Assume X
e

�����→ X′ and X
f

�����→ X′′ . Hence, e, f ∈ X , and X� = X⧵{e} and 
X�� = X⧵{f } . We show X′

f

�����→ Y  for some Y. First, by condition (2) the only cause of 

f  is f itself, and f ∈ X� . Second, X
f

�����→ X′′ implies that no event in X prevents f  , 

hence no event in X′ prevents f  . So, by Definition  4, X′
f

�����→ Y  where 
Y = X�⧵{f } = X⧵{e, f } . Similarly, we show X′′

e

�����→ Y  .   □

The work on reversing asymmetric event structures in [31, 32] led to several 
interesting results concerning reachable configurations. For example, we have given 
conditions under which finite and reachable configurations are guaranteed to be 
reachable without intermediate infinite configurations. Our work has been continued 
in [17] where a causal version of reversible bundle event structures is used to give 
denotational semantics to CCSK [29]. Interestingly, it is shown there that a non-
causal form of such reversible bundle event structures is needed to model appropri-
ately an extension of CCSK with a rollback operator.

Example 6 Consider two small programs � = �; � = � and � = � + � that are exe-
cuted in parallel on shared memory, where initially the values of the variables are 
X = Y = 0 . There is a race between � = � and � = � + � to update the value of X. 
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To reverse an execution of this parallel program correctly (to return to the initial 
state of memory) we need to store all the intermediate values of X, Y that are over-
written during the execution, and we need to record the order in which the racing 
assignments � = � and � = � + � execute [19, 20]. There are two sets of execution 
sequences that produce two distinct final states of memory:

– � = �, � = �, � = � + � and � = �, � = � + �, � = � produce X = 6 and Y = 7 , 
and

– � = � + �, � = �, � = � results in X = 5 and Y = 7.

We model executions of this parallel program with an RAES as follows. Our events 
are the assignments annotated with the values they overwrite in the shared memory, 
for example X = 5(0) represents overwriting 0 with 5 for X and saving 0. Hence, we 
have five events

The causation represented by the program order in � = �;� = � gives us 
X = 5(0) ≺ Y = 7(0) and X = 5(1) ≺ Y = 7(0) . If X = 5(0) happens first then 
X = X + 1(5) will eventually follow. So we add X = 5(0) ≺ X = X + 1(5) . Corre-
spondingly, we add X = X + 1(0) ≺ X = 5(1) . Clearly the racing events X = 5(0) 
and X = X + 1(0) cannot happen in the same execution, so we insist that they are in 
conflict: X = 5(0) ♯ X = X + 1(0).

Next we define how events are undone. We require that e ≺ e for each of our five 
events. It is reasonable to expect that the inverse program order is preserved when 
reversing, so we have X = 5(0) ⊲ Y = 7(0) and X = 5(1) ⊲ Y = 7(0) . This means 

that we cannot undo X = 5(0) or X = 5(1) if the event Y = 7(0) is still present. Also, 
we insist that X = 5(0) ⊲ X = X + 1(5) and X = X + 1(0) ⊲ X = 5(1) to ensure that 
the racing events are backtracked. Note that, with this definition of ⊲ , our direct 
causation is a sustained causation (condition 5 of Definition 4). Hence, the reversing 
is cause-respecting and there is conflict inheritance with respect to ≺ , implying, for 
example, X = X + 1(0) ♯ X = X + 1(5) . We easily check that there are two maximal 
configurations

We can undo X = X + 1(5) and Y = 7(0) in any order in the first configuration before 
we undo X = 5(0) . Thus, we revert at the end to the initial values of X,  Y. How-
ever, we must backtrack the events in the second configuration to arrive at X, Y = 0 
and to preserve program order: we undo Y = 7(0) first, then X = 5(1) and finally 
X = X + 1(0).

Finally, we model the out-of-causal order reversing in Example 2.

Example 7 We have a ≺ b ≺ c but no a ≺ c (so ≺ is not transitive) and a ≺ a, b ≺ b 
(there is no c ≺ c since c is irreversible). That a, b are undone only when b, c are 
present is ensured by b ≺ a, c ≺ b , respectively. To stop reversing b immediately 

X = 5(0), X = 5(1), X = X + 1(0), X = X + 1(5), and Y = 7(0).

{X = 5(0), X = X + 1(5), Y = 7(0)} and {X = X + 1(0), X = 5(1), Y = 7(0)}.
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after it occurs we add b ⊲ a . And, a ⊲ b, a ⊲ c prevent a from re-occurring when b 
or c are present, and c ⊲ a prevents c from occurring when a is present. Hence, a ♯ c . 
As a result, there is a single execution � → {a} → {a, b} ⤏ {b} → {b, c} ⤏ {c}.

Reversible Event Structures with Enablings

There are executions of events a, b, c which cannot be modelled appropriately by 
any combination of causation, precedence and concurrency. Consider an event 
that is caused by a disjunction of events: for example, c is caused by a or b. This 
form of causation is called disjunctive causation. If no other relation holds of 
a, b, c, then there is an execution where only a occurs before c, there is another 
execution where only b occurs prior to c, and there are two further executions 
where both a and b precede c. The complete executions are acb,  bca,  abc and 
bac and they are depicted in the left cube in Fig. 5. This event structure can be 
defined using the enabling relation from [26, 38] or with our own enabling with 
prevention relation, as we shall see below.

Another example of a relation on events that cannot be expressed in terms of 
causality, precedence and concurrency is a resolvable conflict. Consider a tem-
porary conflict between a and b which becomes resolved once another event  c 
occurs. This is represented in the right cube in Fig. 5 by acb, bca, cab and cba. 
Such event structure cannot be expressed with the traditional enabling relation; 
instead a more general enabling relation from [15] or our enabling with preven-
tion relation (as in Definition 8) is necessary.

Definition 5 An event structure is a triple  = (E,���,⊢) where E is the set of 
events, ��� ⊆ fin(E) is the consistency relation, which is non-empty and satisfies 
the property Y ⊆ X ∈ ��� implies Y ∈ ��� (downwards closure), and ⊢ ⊆ ��� × E 
is the enabling relation which satisfies the weakening condition X ⊢ e and 
X ⊆ Y ∈ ��� implies Y ⊢ e for all e ∈ E.

We omit brackets for singleton sets X in expressions X ⊢ e where convenient. 
Informally, configurations are the sets of events that have occurred (in accordance 
with ��� and ⊢ ). More formally,

Definition 6 Let  = (E,���,⊢) be an event structure. The set S() of configura-
tions of  consists of X ⊆ E which are

Fig. 5  Left cube (disjunctive 
causation): either a or b causes 
c. Right cube (resolvable con-
flict): an initial conflict between 
a and b is resolved by occur-
rence of event c aa

bb

c c
c



294 New Generation Computing (2018) 36:281–306

123

– consistent: every finite subset of X is in ���;
– secured: for all e ∈ X there is a sequence of events e0,… , en ∈ X such that en = e 

and for all i ≤ n , {e0,… , ei−1} ⊢ ei.

We shall call the sequence (or the set) e0,… , en the securing sequence (or the set) 
for e.

We now present several examples of event structures with enablings and their 
corresponding configurations.

Consider the events a, b with all subsets of {a, b} in ��� , and the enabling rela-
tion ∅ ⊢ a , a ⊢ b . We notice that {a} is a configuration because {a} ∈ ��� and a 
is enabled without any preconditions: ∅ ⊢ a . Once a takes place, b can happen 
because {a, b} ∈ ��� and b is enabled by the already performed a: a ⊢ b . We can 
say here that a causes b and b cannot take place before a happens first.

Some events can be in conflict and as a result they cannot happen in the same 
computation. Consider the events a and b, with ∅ ⊢ a and a ⊢ b , and the event c 
which is in conflict with a. This is represented by {a, c} ∉ ��� and, by the down-
wards closure property, {a, b, c} ∉ ��� . The enabling relation is ∅ ⊢ a , a ⊢ b and 
∅ ⊢ c . We obtain the following configurations: ∅ , {a}, {a, b} and {c} representing 
that either a or c can happen first, but once one of a and c has taken place the 
other cannot happen; see the left cube in Fig. 6.

Some events are independent of each other. Consider the events a,  b and c, 
which are not in conflict, and the enablings ∅ ⊢ a , a ⊢ b and ∅ ⊢ c . Since a and 
c are not in conflict, ∅ ⊢ a , ∅ ⊢ c imply that a,  c can happen independently (in 
any order). Moreover, b and c are independent and can happen in any order (pro-
vided that b always follows a). The resulting configurations ∅ , {a}, {a, b} , {c} , 
{a, c}, {a, b, c} are given in the right cube in Fig. 6.

Example 8 We now show how to define the disjunctive causation event structure 
from Fig. 5. Let all subsets of {a, b, c} be in ��� . If we set the enabling relation to be 
∅ ⊢ a , ∅ ⊢ b , and a ⊢ c with b ⊢ c , then we can deduce that {c} is not a configura-
tion since we do not have ∅ ⊢ c . All other subsets of {a, b, c} are configurations.

The next definition is equivalent to Definition 6; it will be easier to generalise 
to the reversible setting. It is partly inspired by the step-wise securings of  [15, 
Definition 3.5].

Definition 7 Let  = (E,���,⊢) be an event structure. A set X ⊆ E is a configura-
tion of  if there is an infinite sequence X0,… with X =

⋃∞

n=0
Xn , X0 = � , Xn ⊆ Xn+1 

Fig. 6  Left cube: events a and 
c are in conflict. Right cube: 
events a and c are concurrent. In 
both cubes a causes b 

aa

b b

cc
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and Xn consistent (all n ∈ ℕ ), where for every n ∈ ℕ , and every e ∈ Xn+1⧵Xn , there 
is X′ ⊆fin Xn such that X′ ⊢ e.

Proposition 3 Let  = (E,���,⊢) be an event structure and let X ⊆ E . Then X is a 
configuration according to Definition 6 if and only if X is a configuration according 
to Definition 7.

Proof Assume X is a configuration according to Definition 6. For each n ∈ ℕ , let 
Xn = {e ∈ X ∶ e has a securing sequence of length ≤ n} . Then clearly X =

⋃∞

n=0
Xn , 

X0 = � and Xn ⊆ Xn+1 (all n ∈ ℕ ). Also each Xn is consistent, since X is consist-
ent. Suppose e ∈ Xn+1⧵Xn . Then e has a securing sequence e0,… , en = e of length 
n + 1 . So for all i ≤ n , {e0,… , ei−1} ⊢ ei . It follows that ei has a securing sequence 
e0,… , ei of length i + 1 for i < n . Hence, X� = {e0,… , en−1} ⊆fin Xn . Also X′ ⊢ e . 
Hence, X is a configuration according to Definition 7.

Assume X =
⋃∞

n=0
Xn is a configuration according to Definition 7. Then X is con-

sistent, since each Xn is consistent. We show by induction on n that each event in Xn 
has a securing sequence. This is clearly true for n = 0 . Suppose that each event in 
Xn has a securing sequence. Let e ∈ Xn+1⧵Xn . Then we have X′ ⊢ e with X′ ⊆fin Xn . 
Let X� = {e1,… , ek} . By induction hypothesis there are securing sequences 
ei
0
,… , ei

ni
= ei for i = 1,… , k . Then e1

0
,… , e1

n1
,… , ek

0
,… , ek

nk
, e is a securing 

sequence for e. Hence, each event in Xn+1 has a securing sequence. We have shown 
that X is a configuration according to Definition 6.   □

We are now ready to introduce reversing of events via the enabling relation. 
As before assume E is a set of events. We define the corresponding set of undone 
events (strictly speaking, events that are to be undone) to be E = {e ∶ e ∈ E} . To 
abbreviate presentation of enablings we let e∗ be either e or e for e ∈ E . We often 
use the notation X + e∗ to denote either X ∪ {e} or X⧵{e} , respectively. We shall 
use expressions of the form X ⦸ Y  in X ⦸ Y ⊢ e∗ below, where X and Y are sets 
of events, to specify that the events in X enable e∗ and, at the same time, the 
events in Y prevent e∗ . We require that X ∩ Y = � and e ∉ Y  . Also, if e∗ = e , then 
we require that e ∈ X . Reversible event structures were first introduced in [35]:

Definition 8 A reversible event structure (RES for short) is a triple  = (E,���,⊢) 
where E and ��� are as before and ⊢ ⊆ ��� × (E) × (E ∪ E) is the enabling with 
prevention relation. We write a typical element of ⊢ as X ⦸ Y ⊢ e∗ and insist that it 
satisfies

1. if X ⦸ Y ⊢ e∗ then X ∩ Y = � and e ∉ Y;
2. if X ⦸ Y ⊢ e then e ∈ X;
3. weakening:    if X ⦸ Y ⊢ e∗ and X ⊆ X� ∈ ��� then X� ⦸ Y ⊢ e∗ , provided 

X� ∩ Y = �.
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When Y = � we shall write X ⦸ Y ⊢ e∗ as X ⊢ e∗ , and we call the relation ⊢ 
simply enabling. We omit brackets for singleton sets in expressions X ⦸ Y ⊢ e∗ 
where convenient.

Our enabling with prevention relation ⊢ extends the enabling relation in [38] in 
two directions. First, we permit reversing of events as e∗ in X ⦸ Y ⊢ e∗ can be e . 
Second, it allows us to specify some of the events that prevent e∗ (here those in Y) in 
addition to the events that enable e∗ (those in X). For example, {a}⦸ {b} ⊢ a says 
that a can be undone in a configuration which contains a and provided that b is not a 
member of that configuration.

To illustrate the usefulness of the new enabling with prevention relation, we 
define an RES for resolvable conflict in Fig. 5.

Example 9 We let ��� be ({a, b, c}) . The enabling with prevention relation is given 
by ∅ ⊢ c , ∅⦸ b ⊢ a and ∅⦸ a ⊢ b . This means that initially either a or b can occur 
if the other event has not occurred yet. We also have c ⊢ a and c ⊢ b , which implies 
that both a and b can happen after c.

Next, we represent the out-of-causal order RAES in Example 7 as an RES.

Example 10 The sets in ��� of the RES are the members of ({a, b, c}) except for 
{a, c} and {a, b, c} since a ♯ c . Initially, the event a occurs. Since we do not want a 
to reoccur later in computation when b or c are present we use �⦸ {b, c} ⊢ a to 
achieve this. The enabling a ⊢ b ensures that a causes b, and b⦸ a ⊢ c ensures that 
b causes c but only when a is not present. Finally, {a, b} ⊢ a and {b, c} ⊢ b ensure 
that the catalysts a and b are reversed at the appropriate time.

Examples 7 and 10 suggest that it should be possible to represent an arbitrary 
RAES as a special form of RES as we stated in [36] (explored in the categorical 
setting in [16]). Given an RAES if Xa = {e ∣ e ≺ a} and Ya = {f ∣ a ⊲ f } , then the 
enabling with prevention rule Xa ⦸ Ya ⊢ a captures the idea that a can occur if all 
events in Xa have occurred (and are present) and if no events from Ya are present. A 
corresponding conversion can be defined for e in terms of events that cause it and 
prevent it, giving us the following mapping from RAESs to RESs.

Definition 9 Let  = (E,F,≺,⊲) be an RAES. We define ��� as the set of subsets 
X in E on which ⊲ is well-founded, and ⊢ as follows, where e, f ∈ E:

– X ⦸ Y ⊢ a if a ∈ E, {e ∣ e ≺ a} = X ∈ ��� and Y = {f ∣ a ⊲ f };
– X ⦸ Y ⊢ a if a ∈ F, {e ∣ e ≺ a} = X ∈ ��� and Y = {f ∣ a ⊲ f }.
– if X ⦸ Y ⊢ e∗ and X ⊆ X� ∈ ��� then X� ⦸ Y ⊢ e∗ , provided X� ∩ Y = �.

Proposition 4 Let  = (E,F,≺,⊲) be an RAES. Then  = (E,���,⊢) , where ��� 
and ⊢ are as in Definition 9, is an RES.
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Proof If ⊲ is well founded on X then ⊲ is well founded on Y ⊆ X . Hence, the set of 
all X ⊆ E on which ⊲ is well founded satisfies the property of the consistency rela-
tion. Next, we show that the conditions for ⊢ in Definition 8 hold too. Condition 4 in 
Definition 3 implies that X ∩ Y = � . Also, not e∗ ⊲ e , for all e, since ⊲ is irreflexive, 
hence e∗ ∉ Y  and (X ∪ {e}) ∩ Y = � . We have a ≺ a , for all a ∈ F by condition 3 
in Definition 8, and so a ∈ X for each X ⦸ Y ⊢ a . Finally, the weakening condition 
holds.   □

If we apply the mapping from Definition  9 to the RAES from Example  7 
we obtain the RES in Example  10 except that the enabling with prevention 
{b, c}⦸ a ⊢ b replaces {b, c} ⊢ b , and the other enablings are the same. Since a ♯ c 
the effect of the two enablings is the same.

Since disjunctive causation in Fig. 5 cannot be expressed in RAESs but, as we 
have seen in Example 8, can be defined by an RES, RESs are strictly more expres-
sive than RAESs.

Example 11 Consider a simple RES with one event e and the enabling ∅ ⊢ e . The 
sets ∅ and {e} are configurations. Next we add the second enabling e ⊢ e as this 
allows us to reverse from {e} to ∅ . The sets ∅ and {e} are reachable from ∅ by per-
forming and reversing e any number of times. We easily check that ∅ and {e} are 
configurations according to Definition  11 below. Interestingly, there is an infinite 
computation sequence �, {e}, �, {e},…

The example shows that configurations can grow and shrink as reversible compu-
tation progresses. Also, sets of events may grow non-monotonically as, for example, 
in the computation represented by this sequence:

We note that after the initial three events are done we reach the configuration 
{a0, b, a1} . When b is undone the resulting configuration is smaller: {a0, a1} . Then, 
when we do a2, b and a3 , the resulting configuration grows again before becom-
ing smaller again (by undoing b), and so on. Hence, we shall use limits of infinite 
sequences of subsets of E to define configurations as in [35]. Recall that S ⊆ ℕ is 
cofinite provided ℕ⧵S is finite.

Definition 10 Let X0,… be an infinite sequence of subsets of E. We say that 
X = limn→∞ Xn if for every e ∈ E:

1. {n ∈ ℕ ∶ e ∈ Xn} is either finite or cofinite;
2. e ∈ X if and only if {n ∶ e ∈ Xn} is cofinite.

We note that a sequence of sets does not necessarily have a limit. The sequence 
�, {e}, �, {e},… in Example 11 has no limit, since e belongs to infinitely many sets 
and does not belong to infinitely many sets.

a0, b, a1, b, a2, b, a3, b, a4,…
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Next we state the definition of a configuration for an RES [35]. As a notational 
convention we write e ∈ A⧵B to mean e ∈ B⧵A.

Definition 11 Let  = (E,���,⊢) be an RES. A set X ⊆ E is a configuration of 
 if there is an infinite sequence X0,… with X = limn→∞ Xn , X0 = � and Xn ∪ Xn+1 
consistent (all n ∈ ℕ ), where for every n ∈ ℕ , and every e∗ ∈ Xn+1⧵Xn , there is an 
enabling with prevention rule X� ⦸ Y � ⊢ e∗ such that:

1. X′ ⊆fin Xn and X� + e∗ ⊆ Xn+1;
2. Y � ∩ (Xn ∪ Xn+1) = �.

We require Xn ∪ Xn+1 to be consistent, as configurations can only be extended 
safely in a consistent way. However, there is no requirement that Xi ∪ Xj is consist-
ent if j > i + 1 because events in Xi which are inconsistent with Xj can be reversed 
in constructing Xi+1,… ,Xj−1 . Also, we note that the Xi s in the above definition 
can grow smaller as well as bigger as computation progresses. Moreover, a finite 
sequence X0,… ,Xn , where Xn = X , that satisfies the conditions of Definition 11 is 
sufficient for X to be a configuration. The sequence �, {e} in Example  11 can be 
extended to an infinite sequence and, since the conditions of Definition 11 are satis-
fied, its limit {e} is a configuration.

We give an example where we get an infinite configuration as a limit of a non-
monotonically increasing sequence.

Example 12 Let  = (E,���,⊢) where E = {ai ∶ i ∈ ℕ} ∪ {bj ∶ j ∈ ℕ} and ��� 
consists of the sets {ai, b0,… , bj} for any i, j ∈ ℕ , as well all the deducible subsets. 
The enablings are as follows, for all i ∈ ℕ:

Informally, ai is the catalyst of bi , for all i, so once bi occurs ai can be undone.
The only possible computation of  is a0, b0, a0, a1, b1, a1,… It produces the fol-

lowing sequence of sets of events, where the sets grow non-monotonically:

Each of the sets is a configuration and this sequence has  as limit the infinite set 
{bj ∶ j ∈ ℕ} , so {bj ∶ j ∈ ℕ} is also a configuration. Note that each ai appears finitely 
often in the sequence, namely twice, while each bj appears cofinitely often.

Having defined our configurations we go back to Example  9. The set {a, b} is 
consistent (according to ��� ) but it is not a configuration according to Definition 11. 
Consider �, {a}, {a, b} and b: there is no enabling with prevention X′ ⦸ Y ′ ⊢ b 

� ⊢ a0 ai ⊢ bi {ai, bi} ⊢ a
i

bi ⊢ ai+1

�,

{a0}, {a0, b0}, {b0},

{b0, a1}, {b0, a1, b1}, {b0, b1},

{b0, b1, a2}, {b0, b1, a2, b2}, {b0, b1, b2},

…
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such that X� ⊆fin {a} and Y � ∩ {a, b} = � . Correspondingly for the sequence 
�, {b}, {a, b} and a. Hence, {a, b} is not a configuration.

We can now show that RESs are a generalisation of traditional event structures 
in [38] by taking enablings with prevention X ⦸ ∅ ⊢ e . Then our configurations 
are just the traditional configurations. This is a consequence of the following 
observation. Consider consistent sets of events Xn for all n ∈ ℕ . If Xn ⊆ Xn+1 for 
all n ∈ ℕ , then limn→∞ Xn exists and is 

⋃∞

n=0
Xn . A finite sequence X0,… ,Xn can 

be extended to an infinite sequence by letting Xm = Xn for all m > n ; the extended 
sequence has the limit Xn . In Example 11 the sequence �, {e} can be extended to 
an infinite sequence �, {e}, {e},… and has the limit {e}.

Proposition 5 Suppose  = (E,���,⊢) is an event structure. Then 
 � = (E,���,⊢�) is a reversible event structure, where we define X ⦸ ∅ ⊢′ e if and 
only if X ⊢ e , and there are no reverse enablings with prevention X ⦸ Y ⊢′ e . More-
over, X is a configuration of  according to Definition 7 if and only if X is a configu-
ration of  ′ according to Definition 11.

Proof Assume X is a configuration of  according to Definition 7. There is an infinite 
sequence X0,… with Xn ⊆ Xn+1 and Xn consistent for all n ∈ ℕ . Hence, limn→∞ Xn 
exists and is 

⋃∞

n=0
Xn . Since Xn ⊆ Xn+1 we have that Xn ∪ Xn+1 are consistent for all 

n. Clearly X′ ⊢ e if and only if X′ ⊢′ e , with their conditions satisfied. Hence, X is a 
configuration of  ′ according to Definition 11.

Assume X is a configuration of  ′ according to Definition 11. Since we do not 
reverse events in  ′ the members of the infinite sequence are not decreasing in size. 
So Xn ⊆ Xn+1 and since all Xn ∪ Xn+1 are consistent each Xn is consistent. Since 
limn→∞ Xn exists it equals 

⋃∞

n=0
Xn . Also, X′ ⊢ e if and only if X′ ⊢′ e with their side 

conditions. Hence, X is a configuration of  according to Definition 7.   □

We can also show that our enabling with prevention rules are powerful enough 
that we no longer need the consistency relation.

Proposition 6 Let  = (E,���,⊢) be an RES. Define ���� = fin(E) and define ⊢′ 
by X ⦸ (Y ∪ (E⧵Z)) ⊢� e∗ whenever X, Y, Z are such that X ⦸ Y ⊢ e∗ , Z is consistent 
with respect to ��� and X + e∗ ⊆ Z . Then  � = (E,����,⊢�) is an RES, and X is a 
configuration of  if and only if X is a configuration of  ′.

Proof Let  = (E,���,⊢) and  � = (E,����,⊢�) be as stated. It is straightforward to 
check that  ′ is an RES.

Assume that X is a configuration of  with X = limn→∞ Xn . We show that X is 
a configuration of  ′ , also with X = limn→∞ Xn . It is clear that each Xn ∪ Xn+1 is 
���′-consistent. Take e∗ ∈ Xn+1⧵Xn . Then there is a rule X� ⦸ Y � ⊢ e∗ such that 
X′ ⊆fin Xn and X� + e∗ ⊆ Xn+1 with Y � ∩ Xn = Y � ∩ Xn+1 = � . Let Z = Xn ∪ Xn+1 . 
Then Z is ���-consistent. Also X� + e∗ ⊆ Z . Hence, X� ⦸ (Y � ∪ (E⧵Z)) ⊢� e∗ . 
Clearly (E⧵Z) ∩ (Xn ∪ Xn+1) = � . It follows that (Y � ∪ (E⧵Z)) ∩ (Xn ∪ Xn+1) = � , and 
we have completed checking that X is a configuration of  ′.
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Assume that X is a configuration of  ′ with X = limn→∞ Xn . We show that X 
is a configuration of  , also with X = limn→∞ Xn . First, we show by induction on 
n that Xn ∪ Xn+1 is ���-consistent. For the base case we note that X0 = � is ���
-consistent. We can assume inductively that Xn is ���-consistent. If Xn+1 = Xn 
then plainly Xn ∪ Xn+1 is ���-consistent. So assume that Xn+1 ≠ Xn . Then there is 
e∗ ∈ Xn+1⧵Xn , with X� ⦸ Y � ⊢� e∗ . Then Y � = Y ∪ (E⧵Z) where Z is ���-consist-
ent. But Y � ∩ (Xn+1 ∪ Xn) = � . Hence, (E⧵Z) ∩ (Xn+1 ∪ Xn) = � . This means that 
Xn+1 ∪ Xn ⊆ Z . So Xn+1 ∪ Xn is ���-consistent.

Now take any e∗ ∈ Xn+1⧵Xn with X� ⦸ Y � ⊢� e∗ . Then there is Y ⊆ Y ′ such that 
X� ⦸ Y ⊢ e∗ . Since Y � ∩ (Xn+1 ∪ Xn) = � , also Y ∩ (Xn+1 ∪ Xn) = � . It follows that X 
is a configuration of  .   □

In the light of Proposition 6, we could dispense with ��� altogether in the setting 
of RESs. However, we allow ��� as sometimes it may be natural or convenient to 
identify certain configurations as being consistent or inconsistent, before defining 
enabling rules in detail.

Example 13 Let E = {a, b, c} , ��� = {{a, c}, {b, c}} plus deducible subsets, and 
∅ ⊢ a , ∅ ⊢ b , a ⊢ c , b ⊢ c . Then  = (E,���,⊢) is a (reversible) event structure 
where either a or b causes c, and {a, b} is inconsistent. We can use the procedure 
of Proposition  6 to convert  into  � = (E,����,⊢�) where ���� = fin(E) and 
∅⦸ b ⊢′ a , �⦸ {b, c} ⊢� a , ∅⦸ a ⊢′ b , �⦸ {a, c} ⊢� b , a⦸ b ⊢′ c , b⦸ a ⊢′ c . 
The configurations are ∅ , {a} , {b} , {a, c} , {b, c} for both  and  ′ . However, in  ′ 
there are two extra consistent sets {a, b} and {a, b, c}.

The converted RES in Example 13 can be optimised by removing �⦸ {b, c} ⊢� a 
and �⦸ {a, c} ⊢� b , since they are implied in some sense by ∅⦸ b ⊢′ a and 
∅⦸ a ⊢′ b , respectively.

Definition 12 Let  = (E,fin(E),⊢) be an RES. We say that enabling with preven-
tion rule X ⦸ Y ⊢ e∗ is removable if,

1. there is no X′ ⊊ X such that X� ⦸ Y ⊢ e∗ (X is minimal);
2. there is Y ′ ⊊ Y  such that X ⦸ Y � ⊢ e∗ (Y is not minimal).

Proposition 7 Let  = (E,fin(E),⊢) be an RES and let X� ⦸ Y ⊢ e∗ be removable. 
Let  � = (E,fin(E),⊢

�) be obtained from  by removing X� ⦸ Y ⊢ e∗ . Then  ′ is an 
RES, and X is a configuration of  if and only if X is a configuration of  ′.

Proof To see that  ′ is an RES, it is enough to note that the weakening condition is 
preserved by removal, since we removed X� ⦸ Y ⊢ e∗ where X′ is minimal.

If X is a configuration of  ′ then it is clearly a configuration of .
Assume that X is a configuration of  with X = limn→∞ Xn . We show that if 

the sequence X0,… ,Xn,… can be derived using ⊢ then it can be derived with ⊢′ . 
Consider Xn , Xn+1 , and let e∗ ∈ Xn+1⧵Xn be derived by the rule X� ⦸ Y ⊢ e∗ . If 
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X� ⦸ Y ⊢ e∗ was removed, then there is X� ⦸ Z ⊢ e∗ a rule of ⊢ such that Z ⊊ Y  
(this implies X� ⦸ Z ⊢ e∗ ∈ ⊢� ). We have Y ∩ (Xn ∪ Xn+1) = � by Definition  11. 
Hence, Z ∩ (Xn ∪ Xn+1) = � , and so we can use X� ⦸ Z ⊢ e∗ ∈ ⊢� to compute e∗ . If 
X� ⦸ Y ⊢ e∗ was not removed, then X� ⦸ Y ⊢ e∗ is a rule of ⊢′ and so can be used to 
derive e∗ . Hence, X is a configuration of  ′ .   □

In the case of finite RESs we can iterate the removal procedure until no further 
rules are removable.

We are now ready to define a transition relation between configurations of an 
RES. A simple transition relation for RESs, where we move between configura-
tions by performing a single event or by reversing a single event, was given in 
[36]. It is now generalised to a multiple-event mixed transition relation, building 
on our Definitions 1 and 3 and in [16], as follows:

Definition 13 Let  = (E,���,⊢) be an RES. Given configurations X, Y of  and 
the sets of events A, B of E we let X

A∪B

���������������→ Y  if

– Y = (X⧵B) ∪ A , X ∩ A = � , B ⊆ X , and X ∪ A is a configuration;
– for all e ∈ A we have X′ ⦸ Z ⊢ e for some X′, Z such that X′ ⊆fin X⧵B and 

Z ∩ (X ∪ A) = �;
– for all e ∈ B we have X′ ⦸ Z ⊢ e for some X′, Z such that X� ⊆fin X⧵(B⧵{e}) 

and Z ∩ (X ∪ A) = �.

Having given the transition relation, we can now define a configuration sys-
tem for an RES. Assuming an RES  = (E,���,⊢) , the associated configura-
tion system C() is (E,E,𝖢, �→) where � is the set of configurations for  as in 
Definition 11.

Example 14 Consider two RESs P and M which have two events a, b each where all 
subsets of {a, b} are in ��� . The enabling rules for P are simply ∅ ⊢ a and ∅ ⊢ b , 
meaning that a and b are concurrent. The configurations of P are �, {a}, {b} and 
{a, b} with all obvious transitions between them, including �

{a,b}
������������������→ {a, b} , which 

could be verified by Definition 13.
The RES M is exactly as P except that the enablings with prevention rules are 

∅⦸ b ⊢ a , ∅⦸ a ⊢ b , and a ⊢ b and b ⊢ a . We deduce that its configurations 
are the same as those of P: �, {a}, {b} and {a, b} . Moreover, the transitions of M 
are the same as those of P except that we do not have �

{a,b}
������������������→ {a, b} ! According 

to Definition 13 although ∅⦸ Z ⊢ a , with Z = {b} , we fail to have Z ∩ {a, b} = � . 
We conclude that a and b can occur independently of each other but only in mutual 
exclusion. We recall that mutual exclusion cannot be modelled by traditional event 
structures [38]; it requires more general enabling rules of the form X ⊢ Y  , where 
X ∩ Y ≠ � , as can be seen in [15]. This shows the usefulness of enablings with pre-
vention in representing mutual exclusion.
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We now show how to represent different forms of undoing of events in RESs. 
Consider events a and b with ∅ ⊢ a and a ⊢ b . We have that a causes b so if we 
wish to achieve causal reversing we need to add the following to the definition 
of ⊢ : b ⊢ b and a⦸ b ⊢ a . The configuration {a, b} can regress to {a} by undo-
ing b as allowed by b ⊢ b . But it cannot regress to {b} because a⦸ b ⊢ a can 
only be applied in a configuration that contains a and does not contain b. This is 
represented in Fig. 7(i). If undoing events in the same order as they occurred is 
required, which is an example of the out-of-causal order reversibility, we instead 
add to the definition of ⊢ the following: a ⊢ a and b⦸ a ⊢ b . This means that a 
can be reversed in any configuration that contains a (with or without b), and b can 
be reversed only when a is not present. Since a causes b, this means that b can be 
reversed only when a is reversed. This is represented in Fig. 7(ii) where reverse 
transitions are indicated by dashed lines. Finally, if we would like instead that a 
and b are reversed in any order, then we would extend the enabling relation sim-
ply with b ⊢ b and a ⊢ a . This is shown in Fig. 7(iii).

Example 15 We now show how to control reversing with a trigger event ���� . A pro-
cess performs events a1,… , an successively as in, for example, a long running trans-
action. The trigger event ���� can happen at any stage and when it occurs the process 
reverses to the start, at which point ���� is also reversed, and the process can start 
afresh. The enabling with prevention relation is given below.

�⦸ ���� ⊢ a1
ai ⦸ ���� ⊢ ai+1 (i = 1,… , n − 1)

� ⊢ ����

an, ���� ⊢ a
n

ai, ����⦸ ai+1 ⊢ a
i

(i = 1,… , n − 1)

����⦸ a1 ⊢ ����

(i) (ii) (iii)

aaa
b

b

b

Fig. 7  Left cube: causal reversibility. Middle cube: out-of-causal order reversibility. Right cube: any 
order reversibility

∅ {a1} {a1, a2}

{a1, a2, trig}{a1, trig}{trig}

Fig. 8  Configurations and transitions in Example 15
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See Fig. 8 for the case where n = 2.
The next example is inspired by the mechanism of protein bonding in the ERK 

signalling pathway [34].

Example 16 We describe bonding and unbonding that takes place along a section 
of the ERK signalling pathway. The molecule A receives a signal P at the top of the 
pathway by bonding to it. This we represent by P ⋅ A . The molecule P ⋅ A travels then 
towards the middle of the pathway where it combines with B, producing P ⋅ A ⋅ B 
where A is bonded to both P and B but where P and B are not directly bonded. A 
bond between P and B is then created, which is denoted by the over-bracket joining 
P and B in  Next, the bond between P and A is dissolved thus, in a sense, 
passing the signal P to B. Once the bond between A and B is broken B is able to pass 
P towards the bottom of the ERK pathway. The creation of bonds is represented 
informally by the following chemical equations 

and the breaking of the bonds is given, again informally, by these equations 

The events are pa, ab and bp and they represent the bonds P ⋅ A , A ⋅ B and B ⋅ P , 
respectively. The set ��� is ({pa, ab, bp}) . We use the following enabling rules to 
model the creation of bonds:

and the enabling with prevention rules to define when bonds are broken

Note how the operator ⦸ is used in the last two rules to enforce the order of undoing 
of pa, ab and bp.

The configurations are �, {pa}, {pa, ab}, {pa, ab, bp}, {ab, bp}, {bp} , and the 
creation and dissolving of the bonds happens in the following order: pa, ab,  bp, 
pa, ab, bp . We observe that pa causes ab which causes bp, and that the bonds are 
reversed out-of-causal order. We note that pa can happen again in {ab, bp} and in 
{bp} due to ∅ ⊢ pa . However, ab cannot happen in {bp} as it requires pa to be pre-
sent (due to the enabling pa ⊢ ab).

� ⊢ pa pa ⊢ ab {pa, ab} ⊢ bp

{pa, ab, bp} ⊢ pa {ab, bp}⦸ pa ⊢ ab bp⦸ {pa, ab} ⊢ bp.
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Conclusions

We have shown how to model reversible concurrent computation by means of two dif-
ferent reversible event structures, namely event structures defined by the causation and 
prevention relations and event structures given by an enabling with prevention relation. 
Table 1 lists all the relations on events that we have used, their notation and the place of 
definition. We have discussed in this paper both causal reversibility as well as out-of-
causal order reversibility.

It would be interesting to investigate the expressiveness of event structures defined 
by our enabling relation with prevention for forwards-only computation, and to com-
pare such event structures with other forms of event structures. The event structures 
of van Glabbeek and Plotkin [15], which are more general than those in [38, 39] and 
which correspond to safe Petri nets and propositional theories, are of particular interest. 
They are defined by enabling rules of the form X ⊢ Y where X, Y are sets of events. 
However, there is an incompatibility between our definitions and those in [15], espe-
cially regarding the rôle of the consistency relation and the notion of configuration, 
meaning that a common setting needs to be developed first before potential encodings 
are explored, which goes beyond the scope of this paper.

Concluding, we have shown how to model reversibility in concurrent computation 
as realised by two different forms of event structures, namely event structures defined 
in terms of the causation and precedence relations and event structures defined by the 
enabling relation with prevention. We have discussed and given examples of causal 
reversibility as well as of out-of-causal order reversibility.
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Table 1  Relations on events, 
their notation and place of 
definition

Relation Notation Place of definition

Causation a ≺ b [38]
Direct causation a ≺ b Definition 3
Sustained causation a ≺≺ b Definition 3
Conflict a ♯ b [38]
Precedence a ⊲ b Definition 3
Prevention a ⊳ b Definition 3
Enabling X ⊢ e [38], Definition 5
Enabling with prevention X ⦸ Y ⊢ e Definition 8
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