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Abstract This paper presents a method for content change detection in multidi-

mensional video signals. Video frames are represented as tensors of order consistent

with signal dimensions. The method operates on unprocessed signals and no special

feature extraction is assumed. The dynamic tensor analysis method is used to build a

tensor model from the stream. Each new datum in the stream is then compared to

the model with the proposed concept drift detector. If it fits, then a model is updated.

Otherwise, a model is rebuilt, starting from that datum, and the signal shot is

recorded. The proposed fast tensor decomposition algorithm allows efficient oper-

ation compared to the standard tensor decomposition method. Experimental results

show many useful properties of the method, as well as its potential further exten-

sions and applications.

Keywords Video shot detection � Anomaly detection � Tensor decomposition �
Tensor frames � Dynamic tensor analysis

Introduction

Enormously increasing amounts of visual information raise the needs for the

development of automatic data analysis methods. Among these, special attention is

paid to the video summarization methods. Their goal is to give a user a short and

useful visual abstract of the entire video sequence. This can be further used to
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improve efficacy of video cataloging, indexing, archiving, information search, data

compression, to name a few [47]. These methods, in turn, rely on efficient

algorithms of boundary detection in the visual streams. Basically, the summariza-

tion methods are divided into static and dynamic ones [33, 35]. In the former, a set

of consecutive frames with sufficiently coherent contents is represented by a single

representative frame, called a key frame. On the other hand, a dynamic

summarization, also called a video skim, relies on selecting the most relevant

small fractions of the video sequences [19]. This allows for better representation of

the concise portions of the video, thanks to inclusion of visual and audio tracks. A

key step in these methods is to track a video stream and recognize regions of

sufficiently abrupt change in the visual content. However, such generally stated task

is subjective and depends on specific video content which manifests with different

segmentations done in human-made experiments. For the purpose of automatic

video summarization, a significant research is conducted toward the development of

methods for computation of sufficiently discriminative features [20, 45]. In this

spirit, majority of the methods first employ extraction of specific features, which are

then used for video clusterization and classification.

Our proposed approach to video analysis significantly differs from the feature-

based methods. Most of all we treat the frames holistically as 2D or 3D tensors—

therefore, we call them tensor frames. This way, considering time dimension, the

whole video can be represented as a 4D tensor. Such a framework allows easy

extensions to higher dimensions, if necessary. Further on, we do not extract any

features from the frames which is a common practice in majority of the video

summarization methods proposed in the literature. In addition, in many of the

available works on video segmentation, temporal analysis is not fully exploited.

However, this is a very important factor, since the consecutive frames show high

correlation throughout a scene. On the other hand, our framework allows for a

uniform approach to video structure analysis, both in spatial and temporal

dimensions. Our method relies on the tensor stream processing concept proposed

by Sun et al. [44]. However, in our approach, this method was improved to allow for

efficient processing of the video streams, as will also be discussed. To the best of

our knowledge, the tensor stream tensor analysis method has not been used in the

problem of video summarization. Our contribution is as follows:

• the original tensor framework for video shot detection based on the tensor model

and its continuous build-and-update mechanism;

• novel concept of drift detectors in tensor video streams based on statistical

analysis of the differences of the tensor-frame projections onto the model;

• fast tensor subspace computation with the modified fixed-point eigenvalue

method, endowed with a mechanism of dominant rank determination and re-

initialization from previous eigenvectors.

As mentioned, the proposed method can operate with any dimensional signals,

such as monochrome and color videos, as presented in the experimental section of

this paper. No feature extraction is necessary and the signal is treated ‘‘as is’’.

Therefore, the method can work with frames of any dimension and content, such as

312 New Gener. Comput. (2017) 35:311–340

123



hyperspectral or compressed signals, etc. However, due to the so-called ‘‘curse of

dimensionality’’ when going into higher dimensions, we face the problem of high

memory and computational requirements [4, 55]. In addition, if statistical properties

of the processed signal are known, then feature-based methods can perform better

taking advantage of the expert knowledge. Nonetheless, the proposed framework

can also accept features and signal as its input, as will be discussed.

The rest of this paper is organized as follows. Section 2 outlines the basic

concepts related to video signal representation and analysis, as well as presents

related works in the area of the video segmentation, tensor processing, and data

streams. A short overview on tensors and their decomposition is presented in Sect.

3. The main concepts of the proposed method are presented in Sect. 4. Specifically,

system architecture and basic concepts of tensor stream analysis are presented in

Sect. 4.1, and a modified best rank-(R1, R2, …, RP) tensor decomposition for stream

tensors is discussed in Sect. 4.2. Efficient computation of the dominating tensor

subspace is outlined in Sect. 4.3. Computation of the proposed drift detection in

video tensor streams is presented in Sect. 4.4. Finally, the video tensor stream model

build-and-update scheme is presented in Sect. 4.5. Experimental results are

presented in Sect. 5, while conclusions are presented in Sect. 6.

Overview of Video Signal Representation and Analysis

This section contains a brief introduction to the video representation and signal

analysis methods for the purpose of scene shot detection and video summarization.

Video Structure and Analysis

A video is a multidimensional digital signal organized as a stream of still images,

called frames, as depicted in Fig. 1. These may be monochrome or color images.

Visual signals are accompanied by the audio signal, which is not considered in this

work, though. As will be further discussed, frames as well as videos can be

interpreted as tensors. In this framework, a monochrome frame is represented as a

2D tensor, a color frame as a 3D tensor, and so on. Thus, these are called tensor

frames. Content of frames changes in time-giving impression of smooth motion to

the observer. On the other hand, consecutive frames that contain similar content are

grouped together and form the so-called shots. Finally, a set of consecutive shots

with semantically similar content is called a scene. These are visualized in Fig. 1.

There can be different types of content change in video signals. These can be

grouped as follows:

• Hard cuts—an abrupt change of a content;

• Soft cuts—a gradual change of a content.

The latter can further divided into the following categories:

• Fade-in/out—a new scene gradually appears/disappears from the current image;

• Dissolve—a current shot fades out, whereas the incoming one fades in.
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Figure 2 presents two different types of exemplary shots excerpted from the

videos from the Open-Video database [21]. The first one, presented on top of Fig. 2,

is a hard shot in the Drift Ice sequence. On the other hand, the bottom row in Fig. 2

depicts a soft shot from The Great Web of Water video.

Detection of different types of shots is a special case of the concept drift

detection in streams of data [17, 28, 41]. In the case of video signals, analyzed in

this paper, detection of different types of shots requires development of special

methods which account for different statistical properties of the video signals. This

problem, as well as the proposed solutions, is discussed in further sections of this

paper.

Related Works

As already mentioned, due to large social expectations, video analysis and

especially video summarization gain high attention in research community.

Fig. 1 Structure of a video stream with shown frames, shots, and scenes. Each frame is represented as a
2D or 3D tensor frame for monochrome and color versions, respectively

Fig. 2 Examples of different shots in video signals. Top a hard shot in the Drift Ice sequence (frames
752–756). Bottom a soft shot from The Great Web of Water (odd frames 931–939). The images from the
open-video site [21]
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Recently, many automatic systems for video segmentation have been proposed. A

prevailing majority of them relies on specific feature extraction and further

clusterization and classification [10, 40, 54]. A survey of video indexing, including

methods of temporal video segmentation and keyframe detection, is contained in the

paper by Asghar et al. [1]. Description of the main tasks in video abstraction is

provided in the paper by Truong and Venkatesh [45]. On the other hand, Fu et al.

present an overview of the multiview video summarization methods [15]. Valdes

and Martinez discuss on efficient video summarization and retrieval tools [47]. A

recent survey of video scene detection methods is provided in the paper by Fabro

and Böszörmenyi [14]. They classify the video segmentation methods into seven

groups, depending on the low-level features used for the segmentation. In result, the

visual-based, audio-based, text-based, audio–visual, visual–textual, audio–textual,

and hybrid segmentations can be listed. An overview of papers, presenting more

specific methods, is as follows.

Lee et al. propose a unified scheme of shot boundary and anchor shot detection in

news videos [33]. Their method relies on a singular value decomposition and the so-

called Kernel-ART method. The anchor shot detection is based on the skin color

detector, face detector, and support vector data descriptions with non-negative

matrix factorization. However, their method is limited to the videos containing

specific scenes, persons, etc. On the other hand, DeMenthon et al. presented a

simple system of video summarization by curve simplification [37]. In their

approach, a video sequence is represented as a trajectory curve in a high-

dimensional feature space. It is then analyzed thanks to the proposed binary curve-

splitting algorithm. This way, partitioned video is represented with a tree-like

structure. However, the method relies on feature extraction from the video. These

are DC coefficients used in the MPEG-coding standard. The other method of video

summarization was proposed by Mundur et al. [38]. In their method, keyframe-

based video summarization is computed with the Delaunay clustering [29]. In the

STIMO system proposed by Furini, a method for moving video storyboard for the

web scenario is proposed [16]. Their method is optimized for Web operation to

produce on-the-fly video storyboards. The method is based on a fast-clustering

algorithm that selects the most representative video content using color distribution

in the HSV color space, computed on a frame-by-frame basis.

A method, called VSUMM, is proposed in the paper by de Avila et al. [2]. Their

approach is based on computation of color histograms from frames acquired from a

video stream one per second, then clustered with the k-means method. Further on,

for each cluster, a frame closest to the cluster center is chosen as the so-called

keyframe that represents a given slice of a video. De Avila et al. also developed a

method of video static summaries evaluation which is used in further works for

comparison. A significant contribution of their work is that all of the user

annotations used in their experiments were also made available from the Web, what

greatly facilitates further comparative evaluations [22]. In addition, in this paper, we

refer to their data and provide comparative results, as will be discussed.

Color histogram for video summarization is also used in the method proposed by

Cayllahua-Cahuina et al. [7]. In their method, at first, a 3D histogram of

16 9 16 9 16 bins is calculated directly in the RGB color space. This way,
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obtained vectors of 4096 elements are further processed with the PCA method for

compression. In the next step, the two clustering algorithms are employed. The first

Fuzzy-ART is responsible for determination of a number of clusters, while the

second Fuzzy C-Means perform frame clustering based on the color histogram

features. However, reported results indicate that using only color information is not

enough to obtain the satisfactory results [7].

In the paper by Medentzidou and Kotropoulos, a video summarization method

based on shot boundary detection with penalized contrast is proposed [36]. This

method also relies on color analysis, using the HSV color space, however. The mean

of the hue component is proposed as a way of change detection. Then, video

segments are extracted to capture video content. These are then described with a

linear model with the addition of noise. As reported, the method obtains results

comparable to other methods, such as [2].

The other video summarization method, called VSCAN, was proposed by

Mahmoud et al. [35]. Their method is based on a modified density-based spatial

clustering of applications with noise-clustering method (DBSCAN), which is used

to video summarization from color and texture features of each frame.

In our framework, we utilize tensor analysis. In the next section, we provide a

brief introduction to this domain, introducing notation and concepts necessary for

the understanding of the presented method. In the first row, the papers by de

Lathauwer et al. can be recommended [30–32]. Tensors and their decompositions

are also described in the papers by Kolda [27], Kolda and Bader [26], and also in the

books, for example, by Cichocki [6], or the one by Cyganek [10].

In this paper, we also rely on the concepts of the data stream analysis, concept

drift detection, as well as data classification in data streams. Recently, these gained

much attention among researchers. This new domain of data processing is analyzed,

for instance, in the book by Gama [17] or in the papers by Krawczyk et al. [28] or

Woźniak et al. [53], to name a few. The two domains—that is,streams of tensor

data—were pioneered by the works by Sun et al. [43, 44], as will be further

discussed.

Introduction to Tensors and Their Decompositions

In this section, we present the basics of visual signal representations with tensors, as

well as signal analysis based on tensor decompositions. Especially, tensor

decompositions gained much attention, since they lead to discovery of latent

factors, multidimensional data classification [9, 42] as well as for data compression

[52]. Among many, the most prominent is the higher order singular value

decomposition (HOSVD), canonical decomposition (Candecomp/Parafac)

[25, 26, 51], as well as the Tucker [46] and the best rank- (R1, R2,…, RP)

decomposition [10, 11, 30, 32]. The method presented in this paper relies on the

latter one, so its details as well as its computational aspects are discussed in further

sections of this paper.
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Signal Processing with Tensors

Multidimensional measurements and signals are frequently encountered in science

and industry. Examples are multimedia, video surveillance, hyperspectral images,

sensor networks, to name a few. However, their processing with the standard vector-

based methods is usually not sufficient due to the loss of important information

contained in internal structure and relations among data. Thus, for analysis and

processing, more appropriate are methods that directly account for data dimen-

sionality. In this respect, it was shown that tensor-based methods frequently offer

many benefits, such as in the case of the tensorfaces, as well as view synthesis

proposed by Vasilescu and Terzopoulos [48–50], or data dimensionality reduction

by Wang and Ahuja [51, 52], handwritten digits recognition proposed by Savas and

Eldén [42] or road signs recognition by Cyganek [9], to name a few. In this section,

we present a brief introduction to the tensor analysis necessary for understanding of

further parts of this paper. However, this short introduction by no means excerpts

the subject. Further information can be found in many publications, such as, for

instance, [5, 10, 11, 24, 25, 32, 48].

Let us now define a P-dimensional tensor as follows1:

A 2 <N1�N2�...NP ; ð1Þ

with each kth dimension denoted by Nk and for 1 B kBP. Regardless of its physical

meaning, a tensor can also be interpreted as a multidimensional cube of real-valued

data, in which each dimension corresponds to a different component or measure-

ment of the input data domain [10].

Based on the above definition, let us denote a jth vector (called a fiber) of a Pth-

order tensor A which is obtained by an exclusive change of one index nj

(1 B nj B Nj) while keeping all other indices fixed. A similar and very important

concept is a tensor flattening (also called – matricization [25]). For a Pth-order

tensor A, its jth flattening is defined as the following matrix:

A jð Þ 2 <Nj� N1N2...Nj�1Njþ1...NPð Þ: ð2Þ

A jth flattening is obtained from A after selecting a jth dimension, which

becomes a row index of A(j), whereas a product of all the rest indices constitutes a

column index of A(j). Columns of A(j) are called jth fibers of A, and they span a jth

tensor subspace.

A kth modal product T 9 kM of a tensor T 2 <N1�N2�...NP and a matrix M 2
<Q�Nk is a tensor S 2 <N1�N2�...Nk�1�Q�Nkþ1�...NP , whose elements are expressed as

follows:

Sn1n2...nk�1qnkþ1...nP ¼ T �k Mð Þn1n2...nk�1qnkþ1...nP
¼

XNk

nk¼1

tn1n2...nk�1nknkþ1...nPmqnk : ð3Þ

1 Tensors are denoted with the calligraphic letters, vectors and matrices are in bold face.
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That is, Eq. (3) is an extension of the ‘‘classical’’ matrix multiplication, in which

the product involves multiplication of elements of the kth fibers of the tensor T and

consecutive rows of the matrix M. As a result, the jth dimension of T is changed to

Q [10, 30].

On the other hand and contrary to the well-known matrix algebra, there is no

single definition of a rank of a tensor. There are at least three different concepts of a

tensor rank from which the so-called rth rank will be used throughout this paper: An

rth rank of a tensor A is a dimension of the vector space spanned by the columns of

the rth flattening A(r) of this tensor.

The Best Rank-(R1, R2, …, RP) Tensor Decompositions

There are many types of tensor decompositions which aim at representing a tensor

as a product of other tensors. These components frequently need to fulfill specific

conditions such as orthogonality or sparsity. The goals can be manifold, such as to

reveal latent components of an input tensor, to span orthogonal tensor subspaces, or

for data reduction, to name a few [5, 6, 10, 24, 30]. The first decomposition method

was proposed by Tucker in the mid-60s to analysis of psychometric data [46].

Recent 20 years benefited in the development of many new tensor decomposition

methods, though [5, 6, 10, 26, 27]. Among them, usually, the following three are

highlighted: the higher order singular value decomposition (HOSVD) [8, 9], the

Candecomp/Parafac (CP) [25], as well as the best rank-(R1, R2,…, RP) decompo-

sition [32]. These extend the concept introduced by Tucker, as will be discussed.

A Tucker decomposition of the tensor T 2 <N1�N2�...�NP is an approximating

tensor ~T given as follows [46]:

~T ¼ Z �1 S1 �2 S2. . .�P SP; ð4Þ

and minimizing the following function:

H Tð Þ ¼ T � ~T
�� ��2

F
; ð5Þ

where Z stands for a core tensor and Si 2 <Ni�Ri stand for the mode matrices.

After some basic algebraic operations, from (4), the following formula for the

core tensor is obtained:

Z ¼ ~T �1 ST
1 �2 ST

2 . . .�P ST
P: ð6Þ

Now, inserting (6) to (4) and then to (5) yields

H Tð Þ ¼ T � T
YP

k¼1

�k SkS
T
k

� �
�����

�����

2

F

: ð7Þ

In other words, the Tucker decomposition given in (7) reads that a tensor T is

approximated by its projection onto the space spanned by the matrices Sk. Thus, the

whole task is to compute the series of Sk mode matrices. However, in many
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applications, it is beneficial to request in (4) orthogonality or specific ranks of Sk. If

such a constraint is assumed, then the Tucker decomposition (4) leads to the best

rank-(R1, R2,…, RP) decomposition, defined as follows [32].

The best rank-(R1, R2,…, RP) approximation of a tensor T 2 <N1�N2�...�NP is a

tensor ~T of ranks in each of its modes rank1
~T ¼ R1, rank2

~T ¼ R2,…,

rankP ~T ¼ RP, respectively, which minimizes the function (7).

The best rank-(R1, R2,…, RP) tensor decomposition is visualized in Fig. 3,

whereas Algorithm 1 presents the basic steps of its computation. It solves the linear

optimization problem by means of the Higher Order Orthogonal Iteration (HOOI)

method [3, 26, 32]. It does optimization of only one matrix Si in (4) per iteration

while keeping all the other fixed. In the next iteration, the matrix Si?1 is chosen and

the procedure continues until convergence conditions are met. Description of this

algorithm with analysis of the computational complexity and its C?? implemen-

tation can be found in the literature [10].

In Algorithm 1, the function fds(S,R,T) denotes the fast dominating subspace

computation. It serves computation of the R left leading eigenvectors of the matrix

S, with the initial values taken from the matrix T. For this purpose, the classical

SVD Jacobi-based algorithm can be used. However, in this work, we propose to use

a much faster fixed-point algorithm with further modifications, as discussed in Sect.

4.3. This is a key modification to the best rank-(R1, R2,…, RP) algorithm which

allows for more efficient processing of the video streams.

However, in the presented system, the dynamic tensor analysis will be used

which aims at processing a series of tensors, to build their representing model. For

this purpose, Algorithm 1 needs to be extended, as will be discussed.

Fig. 3 Visualization of the best rank-(R1, R2, …, RP) tensor decomposition
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Tensor Model and Inferring Method for Video Data Stream Analysis

Presented video shot detection method employs the stream and dynamic tensor

analysis methods proposed by Sun et al. [43, 44]. However, we introduced a number

of modifications to allow its efficient operation on video streams of different
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dimensions, as well as a new method of construction of a tensor model specific to

the video signals. In this section, we describe the basic ideas behind the tensor

stream processing framework, as well as our proposed features which allow efficient

video shot detection in various types of video streams.

System Architecture and Basic Concepts of the Tensor Stream Analysis

In the proposed system, a stream of input tensor data of the same order P is

assumed. As already mentioned, in this version, we do not assume any feature

extraction from the input tensors. This means that any type of signal can be applied

to the presented algorithms. Thus, the method works fine with both the monochrome

as well as color video streams. This makes the proposed method versatile.

Nevertheless, if there is additional knowledge of a signal type, then methods that

compute specific features can be more discriminative but only for this specific type

of a signal. This happens with color histograms, frequently used in video shot

detection [2, 7, 35]. Such methods will not work with monochrome or hyperspectral

images, though. Thus, in our framework, features can also be included in the input

tensors to make the signals more discriminative, but this possibility is left for further

research. To proceed, we introduce a number of definition after the work of Sun

et al. [44]: a sequence of tensors is a series of m tenors Ai, where 1 B i B m, each of

Fig. 4 Architecture of the system for processing a stream of tensor data. In the input stream, a window of
fixed size W is selected. From this, a tensor model is built with a modified best rank-(R1, R2, …, RP)
tensor decomposition. The other tensors in the stream are checked to fit to the model. If a concept drift is
detected at a given time stamp, then a new model is built from a next tensor window W, starting from that
time stamp. Otherwise, a model is only updated
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Pth-order A 2 <N1�N2�...NP , and assuming that m is constant. A stream of tensors is a

sequence of m tensors, where m is a natural value increasing with time.

Our proposed system operates as follows. From the input stream of tensor data, a

window of consecutive frame tensors of size W is selected. All of them are used to

build a best rank-(R1, R2,…, RP) tensor model, as described in Algorithm 1.

However, the main modification of this model, which we incorporate after the work

by Sun et al., consists of computing a covariance matrix out of all flattened versions

of the tensors from the selected window W. This way, for each of the P flattenings, a

single covariance matrix is created from all tensors in the input window. Thus, such

a covariance matrix conveys statistical information on all of the input tensors in a

given flattening mode. The next computational perk of this approach is that the

covariance matrix is a positive definite one for which a more effective eigenvalue

decomposition method could be applied, as will be discussed. It is worth noticing

that such an approach differs from the building and decomposing of a new large

tensor composed of all tensors from the window stream after adding a new

dimension NP?1 of value W. Details of the modified best rank-(R1, R2,…, RP)

decomposition, as well as of the model build-and-update procedures from the

streams of tensor data are presented in the next section.

Figure 4 shows architecture of the system for processing a stream of tensor data.

As already mentioned, in the input stream, a window of fixed size W is selected.

From this, a tensor model is built with a modified best rank-(R1, R2,…, RP) tensor

decomposition. The other tensors in the stream are checked if they fit to the model

form the latest window W based on a special fitness function, as will be discussed. If

a concept drift in the stream is detected, then a new model is built from a next tensor

window W at the given time stamp. Otherwise, the model needs only to be updated

to account for the new tensor. This is the model adaptation mechanism. Both the

model build-and-update algorithms are described in the next sections.

A Modified Best Rank-(R1, R2,…, RP) Tensor Decomposition for Stream
Tensors

Algorithm 2 presents the best rank-(R1, R2,…, RP) tensor decomposition algorithm

modified for processing of a stream of tensor data.
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When compared to Algorithm 1, the new steps are (14) and (15) which serve

computations of the covariance matrices from each tensor in the input window

W and at each of the P flattening modes. In step (16), the fast dominating subspace

is computed with the fds (Ck
(t?1), Rk, Sk

(t)) function. Its details are described in the

next step. Nevertheless, it is worth noticing that in each iteration, it starts with an

initial value of Sk
(t) computed in the previous step, thus speeding up the convergence,

as was verified experimentally. Only the first iteration starts with a random
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initialization. It is important to notice that the two loops in Algorithm 2 determine

the speed of a model build and, in consequence, computation of the whole method.

As already mentioned, after building the model from the input tensor stream, the

incoming tensor data are checked to fit that model. Therefore, a suitable fitness

function needs to be developed. This, in the context of video stream analysis, will be

discussed in the next section. If a new tensor does not fit to the model, it needs to be

rebuilt from scratch, starting at the position in the stream of a just checked tensor.

On the other hand, if it fits, then the model also needs to be rebuilt to account for this

new tensor and to adjust to the changes in the stream. However, despite the speed-up

of the model build procedure presented in Algorithm 2 its continuous re-

computation at each tensor in the stream is computationally not tractable.

Therefore, instead, a mode update procedure is employed, as proposed by Sun

et al. [43]. It simply relies on an update of the covariance matrices in (15) in

Algorithm 2 in each of the flattening modes with the new tensor data. Such a

procedure is well known in the statistics and relies on the following computation:

Ctþ1
k ¼ aCt

k þ Stþ1
k Stþ1T

k ; ð20Þ

where a is a forgetting factor of a previous model, and Sk
(t?1) is a kth mode matrix of

a new (updating) tensor at a time step t?1. Summing up, the described method

assumes model build from which only the covariance mode matrices need to be

stored. Thus, the input tensors from the window W are not accessed anymore which

results in significant memory savings. Then, on a new tensor, if decided to update

the model, for each of the flattening modes, the proper covariance matrices of a

model are updated in accordance with (20). Finally, fds (Ck
(t?1), Rk, Sk

(t)) from the

step (16) in Algorithm 2, needs to be computed, but only once. However, it should

be pointed out that the covariance matrix update rule (15), as well as (20), holds

under assumption of the same mean value among data. If this is not true, then to

keep the model accurate enough, also the mean updating component should be

added to the aforementioned equations [34]. Nevertheless, we also follow this

simplifying assumption and use the updating model (20). This is justified by the fact

that we are interested in detecting signal changes which, if happen, usually also lead

to a change of the mean values in data. In such a case, the model will not hold

anymore which will trigger its rebuild process, as discussed in Sect. 4.5, and the shot

will be detected.

Efficient Computation of the Dominating Tensor Subspace

Application of the tensor decomposition to analysis of tensor streams, such as video

signals, would be very limited or even useless if cannot be efficiently computed. In

this respect, the best would be to have a real-time response or at least an answer in a

user acceptable time, which certainly is a subjective notion. To be more concrete,

we measure processing time in terms of the input (tensor) frame processing.

However, efficiency means also computational stability, as will be discussed.
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As already mentioned, thanks to the formulation of computation steps in

Algorithm 2 with only the positive real symmetric matrices, it is possible to employ

a faster algorithm than the SVD decomposition of matrices for a general case. For

this purpose, in our system, the so-called fixed-point eigen decomposition algorithm

is used for computation of the fds function from the step (16) in Algorithm 2. This

method was first proposed to be used in tensor decomposition by Muti and

Bourennane [39]. Then, it was also used for computation of the HOSVD tensor

decomposition in the work by Cyganek and Woźniak [12]. Algorithm 3 shows the

key steps of this method.

However, after longer use of this algorithm for different tensor decompositions,

we noticed its problems with its numerical stability. Under closer examination, it
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appeared that the problem is usually caused by the multiplication step (21) in

Algorithm 3, especially if elements of the input matrix C have magnitudes few order

of magnitude higher than values of the vector ek. Therefore, our proposition is to

add an additional normalization step (22) just after the multiplication (21) and

before the Gram–Schmidt orthogonalization step (23). Our experiments showed that

the proposed modification improved the numerical stability of the whole procedure

with insignificant additional computations.

The next modification proposed in this paper is an automatic mechanism of

evaluating the number of important eigenvalues kimp, which is determined

dynamically during the run of the algorithm. The main idea consists in checking

a ratio of logarithms of the eigenvalues, corresponding to the consecutive

eigenvectors, respectively. If this ratio exceeds a preset threshold, in our

experiments set to 1.5, then the procedure is stopped. In practice, this simple rule

allows for significant computational savings.

The next simple modification is initialization of the starting values of the

eigenvectors with these values computed in the previous iteration, rather than

initialization with random values, as presented in (16). This relies on a simple

observation that the computed eigenvectors do not lie far from each other between

consecutive iterations. Therefore, such initialization, usually, leads to the faster

convergence than when started from the randomly chosen initial values. Random

initialization is applied only at the first run.

Concept Drift Detection in Video Tensor Streams

The goal of the concept drift detection is to discover conditions in which a data

model is not sufficient to well represent content of the current data stream. This

usually happens due to changes of the statistical properties of the data stream caused

by external factors. The concept drift detection in different streams belongs to a

dynamical research area [17, 18, 28]. In the case of video streams, a concept drift

usually corresponds to content change in video signal due to a hard or soft shots, as

already discussed.

In the proposed system, the data model is obtained with the best rank-(R1,

R2,…,RP) tensor decomposition, as already described. The model is stored as a

series of matrices Sk and the variance matrices Ck. Then, a model fit measure for a

new tensor X is indirectly obtained from the error value (7). However, we need to

develop a measure of checking if a new tensor X fits to the model.

The simplest way to build a fitness algorithm is first, to check consistency of a

model and then relate the model consistency to the fit measure of an unknown tensor

data X . This can be done by computing all values of H(T i) in (7), for all T i

belonging to the window W. Then, their mean and standard deviation can be used to

describe the model [43]. These are simply given as follows:

�H ¼ 1

#W

Xw

i¼1

Hi; ð26Þ

and
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r2 ¼ 1

#W � 1

Xw

i¼1

Hi � �Hð Þ2
; ð27Þ

where #W denotes a number of tensors in the window W. Finally, a new tensor, X ,

can be checked to fit to the model by a simple ± 3r rule as follows:

HX � �H
�� ��\ 3 r: ð28Þ

However, after examining this simple model on a number of video streams, we

noticed that, instead of the absolute error values H, better results are obtained if the

differences DH of H are used. The error function difference is defined simply as

DHi � Hi�1 �Hi: ð29Þ

Finally, the fitness measure has to be further modified to account for the series of

tensor frames which change insignificantly or do not change at all. This happens, for

instance, for the series of frames from a video with no content change. In such cases,

the r parameter tends toward 0, and in a result, even not significant change in a new

frame would not fulfill in accordance with (28), and in a consequence, the entirely

new model rebuild process would be launched, which is not justified and

computational costly. Thus, to account for such situations, our fitness measure is

expressed as follows:

DHX � �HD

�� ��\ a rD þ b; ð30Þ

where �HD and rD are the mean and standard deviation computed from the differ-

ences of consecutive fit values in (29), respectively, a is multiplicative factor (set in

our experiments to the range 1.5–3.7), and b is an additive constant (in our

experiments set to 0.2–2.5).

Video Tensor Stream Model Build-and-Update Scheme

All of the aforementioned mechanisms are assembled here into a complete tensor-

based method for efficient video stream analysis. Algorithm 4 shows our proposed

tensor model build and concept drift detection mechanisms for video stream

analysis.

It is worth noticing that the initial rank values R1, R2,…,RP are the maximal

possible ranks that are considered when building the model. However, real ranks are

determined based on the already described automatic rank assessment mechanism

and, in practice, are usually much smaller than the conservatively assumed initial

ranks. In our experiments, these are set as a percentage of the dimensions of the

tensor frames. For instance, these are R1 = 0.25N1, R2 = 0.25N2, and R3 = N3,

where N1 and N2 stand for the column and row dimensions, whereas N3 for the color

one, respectively.

The next stabilizing mechanism introduced in our system is a counter of

consecutive frames that do not fit the current tensor model. If the model is not

fulfilled for all consecutive G frames, then only the total model rebuild procedure is
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launched. This saves from costly model rebuild procedure in case of spurious

frames, e.g., caused by mechanical deterioration of the celluloid film material,

scratches, noise, etc. In our system, G was in the ranges 1–7.

Last but not least, problem is how to update the parameters (26)–(28) when

updating the model with a new tensor frame. In this case, the mean and the standard

deviations are recomputed after obliterating a value of the first tensor from the

previous model W. Thus, for efficient computation, all H(T i) need to be stored for

each ith tensor of the model. Upon model update with a T i?1 tensor, also its new

value H(T i?1) is computed and added to the stored series. Finally, the mean and

standard deviation are recomputed in accordance with (26)–(28), all for differences

of error functions (29), as already discussed.

Experimental Results

The method was implemented in C?? in the Microsoft Visual 2015 IDE. The

DeRecLib library was used for tensor processing and basic decompositions [10, 13].

The experiments were run on a computer equipped with the Intel� Xeon� E-1545
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processor operating at 2.9 GHz, with 64 GB RAM, and 64-bit version of Windows

10.

For evaluation, we used the VSUMM database and provided therein summa-

rization of different videos [2, 22]. Such an approach has been undertaken by many

researchers and allows qualitative evaluation and comparison among a group of

video summarization methods. This database contains 50 videos from the Open-

Video Project [21]. The videos are stored in the MPEG-1 format with 30 fps and

resolution 352 9 240 pixels, color and sound, with duration in the range of

1–4 min. They are classified into different genres, such as documentary,

educational, ephemeral, historical, and lecture.

The key control parameters of the proposed method are contained in Table 1.

These are described and discussed in the previous sections. There are also some

auxiliary parameters, such as a maximum number of iterations in tmax in Algorithm

2 or the orthogonality threshold e in Algorithm 3, but results are not very sensitive to

a particular choice of their values. These, once set as already described, remained

fixed in all experiments.

From the parameters collected in Table 1, the most sensitive is the values a and

b of the tensor frame fit measure in (30), as well as the model window size W and

the model forgetting factor a in (20). On the other hand, the assumed ranks

constitute only the initial values for the tensor best rank-(R1, R2,…, RP)

decomposition, since the real number of important factors is computed in each

decomposition based on the eigenvalue ratio method, as described in Sect. 4.3.

For the qualitative evaluation of performance of the method, we incorporated the

methodology, as well as ground truth user summaries, in the VSUMM method,

proposed by de Avila et al. [2, 22], as well as the VSCAN method presented in the

work of Mahmoud et al. [23, 35]. In the former approach, the Comparison of User

Summaries (CUS) measure is evaluated. It consists of comparing two sets of the

keyframes, one build manually by a user (a ground truth) and the second obtained

with a tested method. Certainly, this requires a method of comparing two frames, as

well as a threshold to determine if the frames are, or are not, similar. For this

purpose, de Avila et al. propose two parameters: CUSA = nAU/nU and

Table 1 Key control parameters of the presented method

Parameter Description Values used in the

experiments

W Size of the tensor-frame window used to build a model (step 4

in Algorithm 2)

3–55

a A model forgetting factor in (20) 0.6–1.0

a, b Tensor-frame fit measure (30) a in 1.5–3.7

b in 0.2–2.5

G Number of consecutive frames to launch rebuild of the tensor

model (31)

1–11

R1, R2, …,

RP

Assumed ranks of the mode matrices (Algorithm 2) 5–75% of each dimension

of the tensor frame
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CUSE = *nAU/nU, where nAU denotes a number of matching keyframes from the

automatic summary (AS) and the user-annotated summary, *nAU is the complement

of this set (i.e., the frames that were not matched), whereas nU is a total number of

keyframes from the user summary only (US). However, as presented by Mahmoud

et al., more informative parameters are precision P and recall R, since they also

convey information on the keyframes present in AS and not present in US or vice

versa. As a trade-off of the two, the so-called F measure is used [20, 35, 45]. Thus,

in our experiments, we used the measures defined as follows:

P ¼ nAU

nA
; R ¼ nAU

nU
; F ¼ 2

PR

Pþ R
; ð32Þ

where nAU denotes a number of keyframes from the automatic summary that match

the ones from the user’s summary, and nA is a number of total keyframes from the

automatic summary only while nU from the user’s summary.

As already mentioned, the comparisons are done between the found shots and the

user-annotated ones from the VSUMM database. Figure 5 shows an example of the

user summary obtained for the Drift Ice as a Geologic Agent, segment 8 in the

VSUMM repository. However, for different users, their summaries also differ in a

number of selected keyframes, as well as particular frames chosen for this purpose

[2].

Figure 6 depicts shots found by our method in the Drift Ice as a Geologic Agent,

segment 8 test video. In this case, the color video was converted to monochrome for

speed-up. The model windows was set to W = 11, the model check parameters (a,

b) = (3.0, 2.0), and G = 3 (Table 1). However, during the experiments, we

observed that it is possible to select hard shots from all of the detected shots by a

simple thresholding, since for these types of shots, the fitness function is much

larger. It is due to a measure of differences instead of absolute values of the fitness

of the frames to the model. In Fig. 6, hard cuts detected with this method are shown

in red, while the model fit values are in black. Comparing the user summary from

Fig. 5 with the detected shots, shown in Fig. 7 and in the plot in Fig. 6, we easily

obtain that P = 9/13&0.69, R = 9/10 = 0.9, what yields F = 0.78 for this case.

What we have noticed is that the results depend on the chosen model window

size W, but its value is not critical. That is, for many videos, good results are

obtained for W in a certain range, such as 7–15 in this case, rather than for a

particular value. This happens, because the model is continuously updated in

accordance with the procedure, as described in Algorithm 4. In addition, a choice of

Fig. 5 Example of the user summary created for the Drift Ice as a Geologic Agent, segment 8 in the
VSUMM repository
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the parameter G, controlling the series of consecutive ‘‘not-fit’’ frames, is not a

critical one. We set this value to 3 to avoid shot detection on some spurious but

single frames. Such situation are usually due to some deterioration of a particular

frame, e.g., due to scratches or dust if it was stored on the celluloid film tape, etc.

Figure 8 depicts frame shots in larger context, as detected in the experiment

which results are shown in Fig. 6.

However, the results depend much on the parameters a and b of the fit function

(30). Especially, this choice determines how many soft shots will be detected. For

example, in the experiment which results are shown in Fig. 6, these were set to (a,

Fig. 6 Video shots found by our method in the Drift Ice as a Geologic Agent, segment 8 test video. Used
parameters: monochrome video, W = 11, (a, b) = (3.0, 2.0), G = 3 (see Table 1). Hard cuts denoted in
red. Model fit value shown in black

Fig. 7 Keyframes of the strong shots found by the proposed method in the Drift Ice as a Geologic Agent,
segment 8 test video [21]. These are indicated by the red bars in Fig. 6
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b) = (3.0, 2.0) which rather excludes some of the fade-in and fade-out types of

shots.

Figure 9 shows results of two experiments on the monochrome and color

versions of the Drift Ice as a Geologic Agent, segment 8 test video. However, in this

case, we set the parameters (a, b) to (3.0, 2.0). This resulted in detection of more

frames that did not fit to the local tensor model, and these were reported as detected

shots.

Choice of the window size W used to build a tensor model in some degree

depends on the content of the video. However, in our experiments, it was possible to

select a range of values 7–25 which produced acceptable results. When compared

performance of the method in respect to window size W, we noticed that short

windows, of W in the range 3–6, result in detection of many soft shots, even if such

are caused by small change in the consecutive frames. Figure 10 shows shot

detection results for W = 5 and all other parameters exactly the same as in the

experiment, as shown in Fig. 9b. On the other hand, long windows of W in the range

over 30, which correspond to the video time laps over 1 s, result in soft shots to be

omitted by the model. This happens due to the model rebuild procedure (20) which

makes it updated with each new frame which fitted to that model. This procedure

relies on the model forgetting parameter a set in our experiments in the range

0.6–1.0.

Figure 11 shows detected video shots found by our method in the Ice Wallaw test

video. Used parameters are: monochrome video, W = 7, G = 7, (a, b) = (3.7, 0.2).

Detected shots are shown with green bars. Among these, red bars denote strong

shots.

Figure 12 shows video shots found in the Exotic Terrane (segment 04) test video.

In both cases, the same model window is used of W = 11. However, the top

experiment was set for detection of exclusively hard shots by setting the parameters

Fig. 8 Examples of the detected shots computed by the proposed method and shown in Figs. 6 and 7
(from top): frames 602–608, 1155–1161, 2660–2666, and 2954–2960
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(a, b) = (3.0, 2.0). On the other hand, the lower plot corresponds to settings (a,

b) = (3.7, 0.2) which also allow for detection of soft shots.

As already mentioned, the method was tested with the user-annotated database of

the VSUMM method by de Avila et al. [2, 22], and compared to the results obtained

with other methods such as OV [37], DT [38], STIMO [16], as well as VSCAN by

Mahmoud et al. [35]. Table 2 contains averaged F values of the obtained results of

these methods and the tensor method proposed in this paper. The former was

obtained from the webpage [23]. For both the color and monochrome videos,

Fig. 9 Video shots found by our method in the Drift Ice as a Geologic Agent, segment 8 test video. Used
parameters: W = 11, (a, b) = (3.7, 0.8). Top monochrome video, bottom color video
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respectively, the same parameters were used as follows: W = 13, a = 2.0, b = 1.0

a = 0.97, and G = 9, and the initial rank values were R1 = 0.1, R2 = 0.1, and

R3 = 1.0 (only for color) times each dimension of each tensor frame. Thus, for a

frame of 352 9 240 9 3, this sets the initial maximal ranks to 35 9 24 9 3,

Fig. 10 Video shots found by our method in the Drift Ice as a Geologic Agent, segment 8 test video.
Used parameters: color video, W = 5, (a, b) = (3.7, 0.8)

Fig. 11 Video shots found by our method in the Ice Wallaw test video. Used parameters: monochrome
video, W = 7, G = 7, (a, b) = (3.7, 0.2). Detected shots shown with green bars. Among these, red bars
denote strong shots
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respectively. However, as already mentioned, these are then adapted in the runtime

to the current signal conditions based on the automatic rank selection method.

Detailed values obtained for each of the test frames, for both the color and

monochrome versions, are available from the Internet.2

We see that the proposed method performs comparatively or better than other

methods, except for the VSCAN. It can be considered as good results taking into

consideration that the method does not compute any specific features. The

2 http://home.agh.edu.pl/*cyganek/TensorVideoNGC2017.mht.

Fig. 12 Video shots found by our method in the Exotic Terrane (segment 04) test video. Used
parameters: W = 11, (a, b) = (3.0, 2.0)—top, (a, b) = (3.7, 0.2)—bottom. Top monochrome video,
bottom color video
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experiments showed that a difference between the color and monochrome video is

about 0.03. After closer analysis, we noticed that using color leads to removal of

some of the false positives. Nevertheless, the difference in accuracy between the

color and monochrome versions is not too big, which can be explained by a small

value of the color dimension, that is three, as well as by a correlation between the

color channels. On the other hand, VSUMM and VSCAN rely on color histograms.

This means that the proposed method can work with the monochrome videos,

whereas the former cannot. In addition, the proposed method can almost

automatically accommodate another dimensions, such as in the case of multiview

or hyperspectral streams. When analyzing results of operation of the proposed

method on various test video streams, we observed that frequently, it tends to detect

more shots than in the user-annotated surveys used for methods evaluation (false

positives). This depends strongly on the chosen parameters, especially the ones

controlling the frame fitness measure, as was discussed. Nevertheless, detected shots

can also be considered as valid, since usually, there is a noticeable change of frame

contents, as can be observed. However, such operation results in high recall

parameter but rather poor precision at the same time, what explains results, as

presented in Table 2.

The average execution times are presented in Table 3. These were measured over

all run tests for monochrome, as well as color video streams. As can be seen, the

change from the 2D tensor for the monochrome case, to the 3D for color, changes

around five time longer execution time. In this case, there are three time larger data

streams. However, the real reason is a significant change in computation of the

tensor model in computation of the Kronecker product in (14). Examining this

formula, we notice that the number of the multiplied matrices is P-1. This means

that for the 2D tensors, there is nothing to multiply and the matrix is returned

untouched, whereas for 3D tensors, the product needs to be computed and returned.

We will investigate further this problem to achieve a speed-up.

Table 2 Mean F values for different methods. Last column shows average results obtained with the

presented method for the color and monochrome videos, respectively

Method OV

[37]

DT

[38]

STIMO

[16]

VSUMM

[2]

VSCAN

[35]

Tensor (this

paper)

F-measure color

video

0.67 0.61 0.65 0.72 0.77 0.73

F-measure

monochrome

– – – – – 0.70

Table 3 Average execution time for the monochrome 2D-tensor and color 3D-tensor streams

Monochrome video

(2D) 352 9 240

Color video (3D)

352 9 240

Frames 1948 1948

15.6 3.2
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Finally, we measured time speed-up caused by application of the faster method

for computation of the dominating tensor subspaces, as discussed in Sect. 4.3.

Figure 13 shows comparison of execution time for the standard SVD method,

compared to the modified fixed-point algorithm used in the proposed framework. In

this experiment, four groups of 3D tensors were first created, each of dimensions

3 9 128 (nos. 1, 5, and 9), 3 9 256 (nos. 2, 6, 10), 3 9 384 (nos. 3, 7, 11), as well

as 3 9 512 (nos. 4, 8, and 12). Then, 12 streams were created, starting from 1 tensor

up to 12 in the stream. Time measurements in our software framework are depicted

in Fig. 13. From this, it is evident that especially for larger tensors and longer

streams, the speed-up ratio reaches five times in benefit of the proposed method.

It is worth noticing that in time-demanding applications, the method can be

further speeded up by processing each nth frame from the stream. Such strategy is

used in some of the reported methods. However, in the presented framework, we did

not use this option and all the tests were run with no frame decimation.

Conclusions

In this paper, the tensor-based method for video stream analysis and concept drift

detection is presented. The method builds a tensor model from a number of frames

from the input stream. The model is then continuously updated by the frames in the

stream if they fit to the model based on the proposed fitness function. However, if

for a number of consecutive frames in the stream, the fitness function indicates their

high deviation from the model, the model is rebuilt starting from the current

position. We proposed an efficient model construction method which is based on the

best rank-(R1, R2,…, RP) tensor decomposition for processing of streams of tensor

data.

Fig. 13 Comparison of execution times for the standard SVD vs. fixed-point computation of the
eigenvalues for different groups of test tensor streams
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The method was built and tested in the framework of video stream processing for

detection of the video shots. The main benefit of using the tensor representation and

decomposition is their natural ability to account for many internal dimensions of the

frames constituting a video stream as well as its ability to operate with original

signals with no necessity of feature detection. This can be beneficial in the case of

multidimensional signals or measurements coming in a stream and for which their

statistical properties are not known a priori. Nevertheless, features can be easily

incorporated as the next dimensions of the input tensors. However, each additional

dimension incurs a polynomial grow of the computational complexity, as well as

memory consumption. The analysis of tensors joining signal and/or additional signal

features is left for further research.

The method was adjusted to work with color and monochrome videos by

designing a specific concept drift detector. The method was then tested on the Open-

Video database with monochrome and color versions of the test videos. For both

types, the achieved accuracy can be compared favorably with majority of the video

keyframe detection methods, especially designed to process exclusively color

videos. Hence, the proposed tensor method has the ability to work with any type of

video signals, such as the monochrome, color, hyperspectral, etc. with no a priori

assumption on specific statistical properties of signals. On the other hand, we

noticed relatively poor recognition of specific types of the soft temporal signal

changes. This happens because if a change is not sufficiently abrupt to cause model

rebuild, the adaptively progressing model gets gradually adapted to the slow/soft

signal changes. However, these can be monitored by, e.g., higher standard deviation

of the fit measure, although its level depends on the signal type. In addition, a better

concept drift detector method can be designed which is also left for future research.

Nevertheless, the method requires significant memory and computational

resources. To improve its performance, the fast method of dominant tensor

subspace construction is proposed. Thanks to this, a significant speed-up ratio was

obtained when compared to the standard eigen problem solution based on the SVD

decomposition. The tensor subspace method was further modified, as proposed in

this paper, to increase its numerical stability and to allow for automatic

determination of the dominating eigenvalues.

Further research will be oriented toward improvement of accuracy and speed of

the proposed method, possibly by developing more efficient model fitness functions,

as well as by development of parallel tensor decomposition methods.
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