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Abstract
The measurement of the transport of scalar quantities within flows is oftentimes laborious, difficult or even unfeasible. On 
the other hand, velocity measurement techniques are very advanced and give high-resolution, high-fidelity experimental 
data. Hence, we explore the capabilities of a deep learning model to predict the scalar quantity, in our case temperature, from 
measured velocity data. Our method is purely data-driven and based on the u-net architecture and, therefore, well-suited 
for planar experimental data. We demonstrate the applicability of the u-net on experimental temperature and velocity data, 
measured in large aspect ratio Rayleigh–Bénard convection at Pr = 7.1 and Ra = 2 × 105, 4 × 105, 7 × 105 . We conduct a 
hyper-parameter optimization and ablation study to ensure appropriate training convergence and test different architectural 
variations for the u-net. We test two application scenarios that are of interest to experimentalists. One, in which the u-net is 
trained with data of the same experimental run and one in which the u-net is trained on data of different Ra . Our analysis 
shows that the u-net can predict temperature fields similar to the measurement data and preserves typical spatial structure 
sizes. Moreover, the analysis of the heat transfer associated with the temperature showed good agreement when the u-net 
is trained with data of the same experimental run. The relative difference between measured and reconstructed local heat 
transfer of the system characterized by the Nusselt number Nu is between 0.3 and 14.1% depending on Ra . We conclude that 
deep learning has the potential to supplement measurements and can partially alleviate the expense of additional measure-
ment of the scalar quantity.

1 Introduction

In many cases, flows are associated with the transport of 
scalar quantities, e.g., concentration or temperature. One 
prominent example is thermal convection that drives many 
astrophysical and geophysical flows (Schumacher and 

Sreenivasan 2020; Guervilly et al. 2019; Marshall and Schott 
1999; Mapes and Houze 1993). Beyond that, thermal con-
vection plays an important role in various fields of engi-
neering, e.g., the cooling of electronic components (Bes-
saih and Kadja 2000) or inherent temperature-driven flows 
in large-scale thermal energy storages (Otto et al. 2023). 
While measuring the flow itself can oftentimes be challeng-
ing (Cierpka et al. 2019), the complexity increases further 
when the scalar is also measured, e.g., due to deterioration Philipp Teutsch and Theo Käufer have contributed equally to this 
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of the fluorescent dye (Sakakibara and Adrian 1999) and 
increased hardware requirements (Moller et  al. 2021). 
Meanwhile, optical velocity measurements techniques like 
particle image velocimetry (PIV) are well-established and 
sophisticated tools in experimental fluid mechanics (Kähler 
et al. 2016). Hence, novel methods that would assist with the 
scalar measurement are highly desirable.

Recently, machine learning and deep learning-based 
methods have emerged as well-suited tools in fluid mechan-
ics (Ling et al. 2016; Mendez et al. 2023; Brunton et al. 
2020; Brunton and Kutz 2022; Raissi et al. 2019; Liu et al. 
2020; Yu et al. 2023) with and increasing number of applica-
tions in flow measurement techniques (Rabault et al. 2017; 
König et al. 2020; Moller et al. 2020; Sachs et al. 2023), 
data reduction (Mendez 2022), forecast (Ghazijahani et al. 
2022; Heyder and Schumacher 2021; Pandey et al. 2022) and 
super-resolution (Fukami et al. 2021; Gao et al. 2021). Deep 
neural networks turned out to be a powerful tool, and effort 
is spent to make their predictions consistent with physical 
laws by incorporating the governing equations, making them 
“physics-informed” (Raissi et al. 2020; Cai et al. 2021a, b). 
In many cases, solving the governing equations requires 
knowledge of all gradients, hence demanding fully volumet-
ric measurements and knowledge of the thermal boundary 

conditions, which still remain the exception (Schiepel et al. 
2021; Kashanj and Nobes 2023). Therefore, a purely data-
driven model that processes far more common planar data as 
input would be of great use. In this manuscript, we present 
a u-net-based model (cp. Figure 2) which is well-suited to 
process multidimensional data in different fields (Jansson 
et al. 2017; Zhang et al. 2018; Fonda et al. 2019; Schon-
feld et al. 2020) and thus provides a profound studied and 
versatile basis. The objective of the u-net is to predict the 
temperature field T̃  for the given velocity fields ux , uy and uz , 
as conceptualized in Fig. 1. The u-net is trained and tested 
with experimental temperature and velocity data obtained 
from joined stereoscopic particle image velocimetry and 
particle image velocimetry measurements (PIT) in the hori-
zontal mid-plane of a large aspect ratio Rayleigh–Bénard 
convection (RBC) experiment. The Rayleigh–Bénard setup 
is a well-studied, simplified model experiment for natural 
convection and hence ideal to evaluate the u-net perfor-
mance (Ahlers et al. 2009; Chillà and Schumacher 2012). 
RBC usually consists of fluid confined by adiabatic side 
walls, which is heated from below and cooled from above. 
The resulting dynamical system is governed by the Ray-
leigh number Ra = g�ΔTH3

∕(��) and the Prandtl number 
Pr = �∕� which are defined by acceleration due to gravity 
g, the thermal expansion coefficient � , the temperature dif-
ference between heating and cooling plate ΔT  , the domain 
height H, the kinematic viscosity � and the thermal diffusiv-
ity � of the fluid. Additionally, the aspect ratio Γ = W∕H as 
the ratio of domain width W and height H and the container’s 
shape affects the flow (Shishkina 2021; Ahlers et al. 2022). 
In the present large aspect ratio experiment, so-called tur-
bulent superstructures emerge (Pandey et al. 2018; Stevens 
Richard et al. 2018; Moller et al. 2022; Käufer et al. 2023).

The remainder of the paper is structured as follows. Sec-
tion 2 describes the architecture of the u-net together with 
applied modifications. In Sect. 3, we introduce the data sets 
as well as the experiment and methods used for their gen-
eration. Thereupon, in Sect. 4, we discuss the results of the 
hyper-parameter study and define two real-world application 
scenarios in Sect. 5. We subsequently analyze and interpret 
the prediction of both scenarios in Sect. 6 and conclude with 
a summary and future research perspectives in Sect. 7.

2  Deep learning model architecture

The u-net proposed by Ronneberger et al. (2015) is an 
autoencoder-like architecture that consists of two parts, 
the encoder and the decoder. Depending on the task, the 
encoder consists of one or multiple fully connected or 
convolutional layers (LeCun et al. 1989) where each layer 
provides fewer output values (neurons) than the previous. 
The decoder is typically constructed as an inverted version 

Fig. 1  Conceptual sketch of our goal to predict the temperature by 
using three velocity components in the horizontal mid-plane of a 
large aspect ratio RBC experiment

Fig. 2  Basic u-net architecture (based on Ronneberger et al. (2015))
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of the encoder; thus, the layers inflate their input instead 
of reducing it. Ronneberger et  al. originally proposed 
u-net for biomedical image segmentation. Its architecture 
is enriched with additional residual connections that give 
the decoder additional vision on the different encoder layer 
outputs. In contrast to conventional residuals, here, the 
parallel branches are not added together but are appended 
along the channel dimension. The residuals clearly nullify 
the original autoencoder idea since the decoder is not able 
to expand the data solely from its reduced representation. 
However, this does not affect its applicability for non-
reconstruction tasks. This can be tasks where the model 
performs a local feature extraction instead.

There are already several studies based on u-net, some 
of which propose improved and more complex u-net archi-
tectures (Çiçek et al. 2016; Zhou et al. 2019; Oktay et al. 
2018; Wang et al. 2019; Alom et al. 2019; Zhang et al. 
2020; Huang et al. 2020). A detailed overview of u-net and 
its variants is given by Siddique et al. (2021). Most appli-
cations here are still related to medical image segmenta-
tion/processing. Apart from that, the u-net was success-
fully utilized in other scientific fields like the analysis of 
turbulent Rayleigh–Bénard convection (Fonda et al. 2019; 
Wang et al. 2020; Esmaeilzadeh et al. 2020; Pandey et al. 
2020). With each encoder layer, the model captures more 
abstract visual features of the input snapshot and passes 
them directly to the decoder using residual connections. 
This way, the decoder has access to features of different 
level of detail when step-wise constructing the output sca-
lar. Therefore, we choose to use u-net as the basis for our 
deep learning experiments.

Figure  2 shows the basic u-net architecture (Ron-
neberger et al. 2015). It consist of three different types 
of building blocks convolutional, max-pooling and up-
convolution layers. An encoder layer is a sequence of 3 
convolutional layers with an increasing number of 3 × 3 
filters with a rectified linear unit (ReLU) activation. Here, 
the path splits, and one branch forms a skip connection 
to the decoder and the other goes through a max-pooling 
layer following the U-shape. A corresponding decoder 
block concatenates data directly from the encoder via the 
skip connection with data from the previous layer that is 
passed through an up-convolution which is composed of 
an up-sampling layer and a convolutional layer with 2 × 2 
filters. The concatenated data goes through a sequence 
of three convolutional layers with a decreasing number 
of 3 × 3 filters and ReLU activation. The final output is 
passed through an additional 1 × 1 convolutional layer. 
Further details regarding the architecture can be found in 
the original publication by Ronneberger et al. (2015).

For our study, we utilize the u-net architecture as model 
backbone but altered and added concepts that we deemed 
more appropriate for the problem of temperature field 

prediction. These concepts are batch normalization, sub-
pixel convolutions instead of up-sampling layers and sev-
eral alternative ReLU-like activations. We discuss each 
concept in more detail below.

2.1  Activation function

The original u-net architecture uses ReLU activation after its 
convolutional layers (except the output layer). Although the 
ReLU (Eq. 10) activation function, which was first proposed 
by Nair and Hinton (2010), is still widely and successfully 
applied, more sophisticated successors were proposed in 
recent years. A well-known downside of the original ReLU 
is the “dying ReLU” problem. This problem appears when 
the model enters a state (weight configuration) where all 
inputs of the ReLU are non-positive and thus produce zero 
gradients. Leaky ReLU is a variant that ensures nonzero 
gradients in the whole domain, which often makes it the 
superior choice (Xu et al. 2020). Clevert et al. (2015) pro-
posed the exponential linear unit (ELU). ELU allows nega-
tive activations and moves their mean toward zero, which 
alleviates the bias shift effect and speeds up training. A 
similar improvement inspired by the ideas of ReLU, dropout 
(Hinton et al. 2012) and Krueger et al. (2016) is the Gauss-
ian error linear unit (GELU) activation. It uses the cumula-
tive normal distribution function to imitate the stochastic 
effect of dropout and zoneout depending on the input o by 
applying the Gaussian cumulative distribution function Φ 
and have shown to improve classification results for MNIST 
and CIFAR-10/100 by the inventors (Hendrycks and Gimpel 
2016). Along with the introduction of self-normalizing neu-
ral networks (SNNs) came another ReLU-like activation 
function scaled exponential linear unit (SELU) (Klambauer 
et al. 2017). The authors proved the self-normalizing prop-
erties of SELU for �01 ≈ 1.0507 and �01 ≈ 1.6733 , which 
stabilize training of deeper neural networks. They show that 
SELU preserves approximately zero mean and unit variance 
through multiple layers.

All these variants were proposed to improve training 
behavior and their utilization can have regularizing and sta-
bilizing effects or improve training speed and the overall 
prediction performance of the model. However, their actual 
usefulness cannot be taken for granted for any case. Hence, 
we test different activation functions for our setup to elabo-
rate which one is most suitable for our needs.

In the supplementary material, Fig. 18 displays the above 
activation functions.

2.2  Batch normalization

Batch normalization layers (Ioffe and Szegedy 2015) are 
typically added before the layer activation (e.g., ReLU) to 
process each batch of inputs o as follows:
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where �o and �o are the mean and standard deviation of the 
moving average batch, respectively. � is added for numerical 
stability and � and � are trainable shift and scale parameters. 
Batch normalization ensures that the input o is scaled and 
shifted to have � mean and � variance, thereby helping the 
model to reduce the internal covariate shift of layer inputs, 
increasing training speed and preventing exploding gradi-
ents for deeper networks and larger learning rates, resulting 
in overall better model performance (Santurkar et al. 2018; 
Bjorck et al. 2018).

2.3  Sub‑pixel convolution

Shi et al. (2016) proposed sub-pixel convolutions instead of 
conventional bi-linear or bi-cubic up-sampling to improve 
the reconstruction and super-resolution (SR) quality of deep 
neural networks. They were frequently used for state-of-the-
art deep learning approaches to perform image super-reso-
lution tasks (Wang et al. 2020). The sub-pixel layer consists 
of two operations. To scale two-dimensional input feature 
maps cin by a factor r a sub-pixel layer first applies a convo-
lution operation with cout = r2cin filters. After that, a pixel-
shuffle operation is applied. It re-arranges the output feature 
maps of the convolution in a deterministic way, as shown 
in Fig. 3. The number of feature maps can also be referred 
to as the number of channels, e.g., an RGB image as input 
means three input channels, where each channel provides 
the information for either red, green or blue. The figure dis-
plays an exemplary application of a sup-pixel convolution. 
On the left side, the low-resolution (LR) layer input is shown 
with only a single channel. Four convolutional filters are 
applied, and their outputs are shown in the middle of the 
figure. Finally, in the outer right area, the re-arranged convo-
lution outputs that form the super-resolution (SR) version of 

(1)
ô = 𝛾

o − 𝜇o√
𝜎2
o
+ 𝜖

+ 𝛽,
the layer input can be seen. Here, the small squares stand for 
pixels and their colors indicate the corresponding convolu-
tional filter. During the re-arrangement, the most upper-left 
pixel of each filter’s output are combined to form the four 
most upper-left pixels of the SR output. The same pattern 
applies to all other pixel positions. This behavior persists 
during inference as well as during training, such that the 
convolutional filters are trained best to predict their specific 
sub-pixel value. Instead of RGB pixels, our data consists of 
the different velocity components and temperature, which 
are also spatially dependent. This makes our data likewise 
suitable to be processed by super-resolution layers.

3  Experiment

The training, testing, and validation data used in this paper 
were obtained from experiments in a cuboid aspect ratio 
Γ = 25 RBC cell with a lateral size W = 700 mm and a 
height H = 28 mm. A schematic view of the experiment is 
shown in Fig. 4.

The working fluid inside the cell is water at a mean tem-
perature Tref ≈ 19.5

◦

C , which has a Prandtl number Pr=7.1 
The fluid is confined by glass sidewalls, an aluminum heating 
plate at the bottom and a cooling plate assembly made from 
glass at the top. The cooling plate assembly consists of two 
horizontally oriented, slightly separated glass sheets. This 
arrangement allows the adjustment of the cooling plate’s 
temperature by cooling water while maintaining optical 
transparency. The temperature of both plates can be precisely 
and independently controlled by adjusting the temperature 
of the through-flowing water. The transparent cooling plate 
enables the application of optical measurement techniques 
for spatially and temporally resolved velocity and tempera-
ture measurements of a large part of the flow domain, which 
otherwise would not be possible due to the small height of 
the experiment. To visualize the flow, polymer-encapsulated 
thermochromic liquid crystals (TLCs) are added to the fluid. 
When illuminated by a continuous wavelength spectrum, 
the color of light reflected by the particles is temperature-
dependent, which is leveraged to estimate the temperature 

Fig. 3  Operation of a sub-pixel layer that takes a single low-resolu-
tion (LR) input feature map (just cin = 1 channel), with width w and 
height h, and creates a corresponding (super-resolution) SR output 
feature map with scaling factor r Fig. 4  Sketch of the experiment and the measurement arrangement
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of the fluid by particle image thermometry (PIT) (Dabiri 
2009). Beyond the temperature, the color is also influenced 
by other factors, most importantly the observation angle � , 
which is the angle between illumination and observation, 
and the illumination spectrum (Moller et al. 2019). During 
the experiments, a slice of approximately 3 mm thickness 
around the horizontal mid-plane was illuminated by a cus-
tom white light LED array with integrated light sheet optics. 
The flow in the measurement plane was then observed by 
two monochrome cameras under an oblique viewing angle of 
≈ 55◦ , which recorded the data used for the stereoscopic PIV 
processing (Prasad 2000; Raffel et al. 2018). An additional 
color camera was positioned with an observation angle � 
≈ 65◦ , which was used to capture the particle color for the 
subsequent PIT analysis. The observation angle of � ≈ 65◦ 
was chosen as a trade-off to achieve a large field of view 
with high sensitivity in the desired temperature range. For 
this study, a processing scheme based on the local calibra-
tion curves of the hue was used. Therefore, the color images 
were sliced into interrogation windows, and the color values 
were averaged within the windows and then transformed into 
the hue, saturation, and value (HSV) color space. Since the 
hue is sufficient to describe the color change, saturation and 
value are neglected. During the calibration, a known tem-
perature was adjusted in the domain, and color images were 
recorded for several temperature steps across the tempera-
ture range of the experiment. Thereby the relation between 
the temperature and the hue was obtained for each inter-
rogation window individually. This local calibration effec-
tively eliminates the influence of the observation angle on 
the reflected color. During the processing of the convection 
data, the hue calibration curves were then used to derive the 
temperatures from the measured hue values. Further details 
on the technique can be found in Moller et al. (2019, 2020).

Utilizing the aforementioned experiment and methods, 
three data sets at different Ra ∈ {2 × 105, 4 × 105, 7 × 105} 
of spatially and temporally resolved, simultaneously meas-
ured planar temperature and velocity data were obtained. 
The data sets consist of long-time data of all three velocity 
components u = (ux, uy, uz) and the temperature T to catch 
the reorganization of the superstructures (Moller et  al. 
2022). Since the focus of the experimental setup is set on 
the investigation of the large-scale structures, neither the 
Batchelor scale nor the Kolmogorov scale are resolved. For 
the highest Rayleigh number, the Kolmogorov scale and the 
Batchelor scale are estimated to be 1.8 and 0.7 mm, which is 
smaller than the interrogation window size of 3.2 mm. Due 
to the otherwise enormous amount of data, a special record-
ing scheme, visualized in Fig. 5, was applied.

Instead of continuously recording, the data were recorded 
in bursts of 200 corresponding to at least 44 free-fall times tf 

(Eq. 2) seconds with gaps of approximately 1000 s or at least 
221 tf in between. Hence, the data provide sufficient variety 
within the burst and between the bursts to be used as training 
data. From each burst, 200 snapshots were obtained. For each 
data set, a total of 19 bursts were recorded and processed, total-
ing a number of 5700 snapshots. The initial processing of the 
data were performed on different grids, which were slightly 
coarser for Ra ∈ {2 × 105, 4 × 105} . To train the u-net, the 
data were interpolated on a common grid, resulting in a slight 
up-sampling for the lower two Ra . For the analysis, the data 
were transferred into their non-dimensional representation 
denoted by ∼ according to

(2)t̃ = t∕tf =
t√

H∕𝛼g(Th − Tc)
,

(3)T̃ =

T − Tc

Th − Tc
,

(4)ũ = (ũx, ũy, ũz) =
u√

H𝛼g(Th − Tc)
,

Fig. 5  Structure of the data sets and bursts

Table 1  Overview of the data sets at different Rayleigh numbers Ra 
and the most important parameters. Data adapted from Moller (2022)

Th and Tc denote the heating and cooling plate temperatures, x̃ × ỹ the 
size of the measurement plane in multiples of the cell height H, tf the 
free-fall time in seconds, and ttotal the total measurement duration in 
free-fall times

Ra Th (°C) Tc (°C) x̃ × ỹ tf   (s) t̃ total

2 × 105 19.78 19.08 16.1 × 16.6 4.51 5.39 × 103

4 × 105 20.22 18.76 16.1 × 16.6 3.12 7.79 × 103

7 × 105 20.87 18.43 16.1 × 16.6 2.40 1.01 × 104
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The most important parameters of the experimental run are 
shown in Table 1; further details can be found in Moller 
(2022) and Käufer et al. (2023).

4  Model training and optimization

For our network training procedure, we split the data into a 
training, a validation and a test subset. We split the dataset 
between the bursts to avoid highly similar snapshots in dif-
ferent subsets. Thus, the snapshots of any burst are all within 
the same subset. Similar to the representation of a color 
image, we consider each snapshot as a two-dimensional 
tensor of size 295 × 287 and four channels that contain the 
velocity and temperature. We consider the velocity fields ũ 
as input and the temperature field T̃ in the remaining channel 
as the target or ground truth for our model. We want to point 
out that ground truth refers to the measured temperature, 
which itself differs from the exact fluid temperature due to 
measurement uncertainties. The training was structured into 
epochs, and each epoch into steps. Within each epoch, the 
model sees each training snapshot exactly once. The number 
of epochs is determined by early stopping (Prechelt 2012). 
Thus, we watch the validation loss and stop the training 
when it did not improve for 10 patience epochs. This is a 
best practice value high enough to ensure the convergence 
of the model while keeping the training duration reasonable. 
If the number of patience epochs is chosen too small, it may 
result in an under-fitting of the model. The processing of one 
batch within an epoch is followed by a stochastic gradient 
descent back-propagation step to adjust the model weights. 
Other hyper-parameters are the learning rate � and the chan-
nel factor � . The latter is bound to the model architecture 
and determines the number of channels used in each layer. 
Therefore, the l-th encoder layer has c(l)

e
= �2l−1 channels. 

Due to u-net’s symmetric architecture, the l-th decoder layer 
has c(l)

d
= �2L−l channels, where L is the number of encoder 

respectively decoder layers. During the hyper-parameter tun-
ing of � and � , we use a fixed batch size of 64 snapshots to 
ensure a stable and efficient training behavior. A too small 
batch size leads to increased training duration and less gen-
eral validity of each gradient descent step. A too large batch 
size may exceed the memory limits. It is important to note 
that the hyper-parameter tuning in Sect. 4.1 is only valid for 
this batch size.

For transparency and reproducibility, we provide configu-
rations for � and � for all tests. Since we train our model 
to solve a regression task, we use the mean squared error 
(MSE) (6) as loss function for all trained models. The MSE 
of a single dimensionless temperature snapshot T̃GT and its 

(5)x̃ = (x̃, ỹ, z̃) =
x

H
.

prediction T̃P with d = ‖T̃GT‖ = ‖T̂P‖ values each is formal-
ized as:

In the consideration of validation losses as in Fig. 7, we 
report the average MSE across all validation snapshots. We 
performed all experiments on an NVIDIA A40 GPU with 
40GB VRAM.

4.1  Hyper‑parameter optimization

Before we begin to train our model, we structure the data 
as sketched in Fig. 6. We shuffle the whole dataset B on 
burst level. Then, we divide it into a training set Btrain , a 
validation set Bvalid and a testing set Btest . These sub-
sets hold btrain ∶= ‖Btrain‖ = 15 bursts for training and 
bvalid ∶= ‖Bvalid‖ = btest ∶= ‖Btest‖ = 2 bursts for validation 
and test phase respectively, which leaves us with an approxi-
mate 80 : 10 : 10 split. We refer to this training scenario as 
P0.

Before moving on to more complex scenarios, 
we determine appropriate values for � and � . There-
fore, we perform a full grid search for these hyper-
parameters with a basic u-net model and P0 con-
ditions (see Fig.  6) with Ra = 2 × 105 . We test all 
combinations of � ∈ {0.01, 0.005, 0.001, 0.0005, 0.00001} 
and � ∈ {8, 12, 16, 24, 32, 48, 64} . Each combination is repli-
cated 5 times with a different random seed s ∈ {0, 1, 2, 3, 4} . 

(6)MSE(T̃GT, T̃P) =
1

d

d∑

i=1

(T̃GT,i − T̃P,i)
2.

Fig. 6  Data bursts split into subsets for the P0 scenario

Fig. 7  Mean of the validation MSEs for all tested �-�-combinations 
as heat map
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Figure 7 provides the MSE averaged over all replications of 
each tested hyper-parameter combination. It indicates that 
the predictions tend to worsen for increasing � and � . It also 
appears that smaller � ≤ 8 are more robust against larger � . It 
also seems that for learning rates � ≤ 0.0001 , it is beneficial 
to increase the channel factor. Though, the performance gain 
is rather small, given the memory effort. Therefore, we set 
our limit to the capacity of a single GPU. For our setup, this 
is the case for a � = 64 . Here, we receive the most promising 
validation MSE for � = 48 and a learning rate of � = 0.0005.

For the ablation study, we want to add the different archi-
tectural variations described in Sect. 2 separately to the 
model architecture and observe the effect on performance. 
Table 2 shows the different architecture configurations and 
the resulting mean absolute error (MAE) (7) that is calcu-
lated as follows:

The smallest and therefore best MAE result is printed in 
bold. As mentioned above, we run each experiment with 
five different initializations. Therefore, the reported MAE is 
actually the average of these runs together with the standard 
deviation. Due to the preprocessing of our data, the target 
temperature values lie within 0 and 1. We ensure the same 
limits for the predicted temperature with a sigmoid activa-
tion at the last decoder layer. This is due to the fact that 
the sigmoid activation also projects to the interval [0, 1]. 
A ReLU-like activation, as used for the other layers, would 
allow unbounded positive output values, which is not desir-
able for our task. It also implies that the MAE is within the 
same limits and is given in arbitrary units (AU). The ablation 
study shows that only the batch normalization improves the 
performance of the base model. Hence, we add batch nor-
malization layers to all our subsequent models. These also 
increase the resilience of our model against larger learning 
rates and thus allow for faster training convergence. In addi-
tion, the dependence on the random seed is less prominent 
(as indicated by the low standard deviation) which is impor-
tant if the model will be applied for other tasks in the future.

(7)MAE(T̃GT, T̃P) =
1

d

d�

i=1

‖T̃GT,i − T̃P,i‖.

5  Application scenarios

So far, we shuffled our data before splitting. This, how-
ever, does not resample many possible applications. Since 
the u-net is trained on the measurement data, these must be 
either generated during the experimental run in temporal 
succession, e.g., at the beginning or taken from a different 
run. Hence, we consider two different scenarios. First, we 
investigate the neural network’s performance when trained 
on the data of the same experimental run, one model for 
each Ra. We call this scenario P1. This scenario could help 
to further expand the accessible measurement time when the 
measurement of the scalar quantity is not possible anymore. 
For example, due to the degeneration of the tracer or dye 
to visualize the scalar quantity due to photobleaching for 
LIF (Sakakibara and Adrian 1999) or luminescent two-color 
tracer particle measurements (Massing et al. 2016) limits the 
time in which scalar measurements can be performed while 
velocity measurements are still viable. Another reason could 
be the increased computer memory requirements for the sca-
lar measurement, e.g., the combination of two-color LIF and 
planar time-series PIV increases the amount of data by 200 % 
compared to simple PIV setup (Sakakibara and Adrian 1999).

For this scenario, it is essential to know how much train-
ing data are needed for reliable results, or in other words, for 
how long simultaneous scalar and velocity measurements are 
required until the u-net can replace the scalar measurements. 
Therefore, we systematically investigated the influence of 
Btrain on the loss, as conceptualized in Fig. 8. It shows out of 
which bursts the training Btrain (pink), validation Bvalid (pur-
ple) and test subset Btrain (blue) are composed for different 
amounts of training data btrain in scenario P1. Here, Bvalid and 
Btest are fixed and consist of burst 1 and 2 respectively burst 
18 and 19 in all P1 experiments.

The first P1 results are presented in Fig. 9, which shows 
the MAE on the test subset for different btrain . We observe 
that the MAE decreases for increased btrain . However, consid-
ering the value of the MAE, the improvement of additional 
training data is limited, especially when three or more bursts 
are used for training. Hence, we considered btrain = 3 , which 

Table 2  Results of the ablation study

Up-sampling Activation Batch-norm MAE [AU]: � ± �

Nearest ReLU No 0.06676 ± 0.00166

Nearest leaky ReLU No 0.08064 ± 0.01382

Nearest ELU No 0.07316 ± 0.00917

Nearest GELU No 0.08911 ± 0.01113

Nearest SELU No 0.08191 ± 0.01331

Sub-pixel ReLU No 0.07228 ± 0.00923

Nearest ReLU Yes 0.06320 ± 0.00044

Fig. 8  Data bursts split into subsets to produce results for different 
btrain in the P1 scenario
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corresponds to a measurement time of approximately an hour, 
as an appropriate trade-off between the u-net performance 
and effort on generating the training data for further experi-
ments. At first glance, it seems surprising that MAE for a fixed 
Btrain decreases with increasing Ra considering that the flow 
becomes increasingly turbulent but likewise the free-fall time 
tf as the characteristic time scale of the flow decreases. Hence, 
a burst at higher Ra contains more temporal information. Fur-
thermore, the turbulent superstructures that are characteristic 
of the flow are more distinct for lower Ra (Käufer et al. 2023).

Considering these results is insufficient to ensure that 
the u-net generalizes well. It additionally requires testing 
whether the neural network learns the characteristics of the 
flow and does not rely upon temporal information. There-
fore, we systematically investigate the effect of temporal 
distance, measured in the number of bursts Δb between the 
last training burst and the first testing burst. We refer to these 
bursts as ΔB as shown in Fig. 10.

To analyze the effect, we plotted the MAE in dependence 
of Δb in Fig. 11.

The plot shows some fluctuations, but overall, no sys-
tematic dependence of the MAE on ΔB for any Ra, which 
indicates that our deep learning model does not rely on tem-
poral similarities between testing and training data which 
decreases with increasing ΔB.

In a nutshell, our systematic investigation showed that 
the u-net requires relatively little training data and produces 
time-independent predictions.

The second scenario we consider is training the u-net 
on data from a different experimental run with a slightly 
different Ra, which we call scenario P2 . When previously 
obtained data from similar experimental conditions are 
available, new measurements of the scalar quantity are 
not feasible anymore. For this scenario, we train the u-net 
on data of two Rayleigh numbers and apply the model on 
data of the remaining Ra experiment as sketched in Fig. 12, 
which means for one case interpolation and extrapolation 
for the others.

In total, 30 bursts of two different Ra are used for training. 
Since the training and prediction are performed on different 
experimental runs, the data are time-independent by default.

6  Results

In Sects. 4 and 5, we showed that the u-net can predict tem-
perature from velocity data after an initial training phase 
and identified a channel factor � = 48 and a learning rate 

Fig. 9  MAE for different btrain in the P1 scenario

Fig. 10  Data bursts split into subsets to produce results for different 
Δb = ‖ΔB‖ in the P1 scenario

Fig. 11  MAE for different Δb and fix btrain = 3

Fig. 12  Data bursts split into subsets for the P2 scenario



Experiments in Fluids (2023) 64:191 

1 3

Page 9 of 18 191

� = 0.0005 as optimal hyper-parameter. We defined two dif-
ferent scenarios P1 and P2 as potential use cases and deter-
mined three bursts of training data as optimum between 
model performance and data generation effort. To fully 
evaluate the u-net’s performance on the given task, a rigor-
ous physical interpretation and comparison of the results is 
required. The subsequent analysis is performed only on the 
test data, which the u-net has never seen during training.

6.1  Temperature prediction

We start by comparing the MAEs (reported in Kelvin and 
arbitrary unit) of the final trained model u-net for scenario 
P1 (Table 3) and P2 (Table 4) and of a respective naive 
approach that simply shifts and scales the vertical velocity 
field to approximate temperature. This way, the predicted 
temperature field is composed as T̃naive = 𝜎T

ũz−𝜇z

𝜎z
+ T̃mean . 

Here, �z and �z are the average vertical velocity and its stand-
ard deviation, while �T corresponds to the standard deviation 
of the temperature. T̃mean = 0.5 denotes the mean tempera-
ture in the horizontal mid-plane which would emerge under 
the idealized Boussinesq assumption.

While a fluid mechanical interpretation of the MAE is 
not straightforward, it nevertheless is a clear indicator of 
the model’s performance. In Tables 3 and 4, the MAE is 
reported for the dimensionless temperature fields and lies 
within 0 to 1, just as in Table 2.

When comparing the different MAE values, we clearly see 
that the u-net in any scenario outperforms the naive approach 
by an order of magnitude in MAE, demonstrating the use-
fulness of the u-net. Furthermore, the u-net trained in the P1 
scenario achieves better prediction results compared to the 
u-net trained in the P2 scenario. This is expected since the 
training data in the P1 scenario is generated from the same 

experimental run at the same Ra and thermal boundary condi-
tions and, therefore, inheres a better representation of distinct 
flow compared to the u-net trained in the P2 scenario. With 
the single exception of the Ra = 4 × 105 case in the P2 sce-
nario, the MAE of the u-net predictions decreases with Ra. 
While this, at first glance, seems to be counter-intuitive since 
flows get more complex with increasing Ra, it is a consequence 
of the measurement technique and turbulent superstructures. 
On the one hand, the experiment and the measurements were 
designed and performed to investigate the development of 
large-scale turbulent superstructures, and due to the inherent 
trade-off between the field of view and spatial resolution, the 
measurements do neither resolve the smallest temperature 
nor velocity structures, and these are averaged out. On the 
other hand, the turbulent superstructures are more distinct and 
pronounced at lower Ra, and the temperature fields appear 
smoother at higher Ra (Moller et al. 2022), which tends to 
be beneficial for the u-net. The lower MAE for the P2 u-net 
predictions at Ra = 4 × 105 is a consequence of the training 
data, which only for this Ra incorporates a lower and higher 
Ra. Hence, the u-net performs an “interpolation” compared to 
the “extrapolation” of the other P2 cases.

To gain more physical insights, we continue with compar-
ing exemplary instantaneous snapshots of the temperature 
fields for Ra = 4 × 105 shown in Fig. 13.

Here, we contrast the ground truth temperature T̃GT with the 
temperature predicted by the u-net trained with scenario P1 T̃P1 
and scenario P2 T̃P2 . We observe that the dominant structures 
in the temperature field, the so-called turbulent superstruc-
tures, are clearly distinguishable in both predicted temperature 
fields. However, small-scale features appear to be smoothed 
out in the predictions. This observation also persists in the 
fields of the temperature differences T̃GT − T̃naive,P1 , which 
resembles the difference of the naive approach, T̃GT − T̃P1 and 
T̃GT − T̃P2 . Looking at the T̃GT − T̃naive,P1 field, we observe dif-
ferences significantly larger than those of any u-net prediction. 
Hence, the naive approach is not suitable at all. For the dif-
ference T̃GT − T̃P1 , we note that for large parts of the field, the 
absolute value of the deviation is below 0.1. However, there 
are localized spots, especially for T̃GT − T̃P1 > 0 , where the 
deviations are slightly larger. Nevertheless, the absolute value 
for 90% of the differences is below 0.15, and larger outliers 
are unlikely since the temperature measurement is itself asso-
ciated with measurement uncertainty. Likewise, we observe 
localized spots of higher deviations in the difference field 
T̃GT − T̃P2 , but additionally, it seems to be somewhat biased 
toward T̃GT − T̃P2 < 0 which indicates a slight overestimation 
of the temperature predicted by the u-net trained in scenario 
P2. Still, the absolute value for 90% of the differences is below 
0.15. To further quantify how well ground truth and predic-
tion align, we computed the Pearson correlation coefficient 
C(T̃GT, T̃P) (8) for each T̃GT the corresponding T̃P as:

Table 3  Test results of the P1 models (same Ra)

Ra MAE

P1 [K]: � ± � P1 [AU]: � ± � Naive [AU]

2 × 105 0.04424 ± 0.00031 0.06320 ± 0.00044 0.1093
4 × 105 0.09138 ± 0.00069 0.06259 ± 0.00047 0.1108
7 × 105 0.14645 ± 0.00046 0.06002 ± 0.00019 0.1121

Table 4  Test results of the P2 models (varying Ra)

Ra MAE

P2 [K]: � ± � P2 [AU]: � ± � Naive [AU]

2 × 105 0.05877 ± 0.00181 0.08396 ± 0.00259 0.1022
4 × 105 0.10810 ± 0.00350 0.07404 ± 0.00240 0.1097
7 × 105 0.18366 ± 0.00503 0.07527 ± 0.00206 0.1288
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where cov(T̃GT, T̃P) is the covariance between ground truth 
and prediction and 𝜎T̃GT and 𝜎T̃P are their standard deviations. 
The resulting mean correlation coefficient C for all Ra and 
scenarios is shown in Table 5.

Looking at the table, we observe a high degree of corre-
lation for the u-net predictions for all cases with a correla-
tion coefficient C of 0.7 or higher. The naive approach for 
both scenarios results in the same correlation coefficient, 
which is at least 0.2 lower compared to the u-net prediction 
and decreases with Ra. This shows that temperature T̃  and 

(8)C(T̃GT, T̃P) =
cov(T̃GT, T̃P)

𝜎T̃GT𝜎T̃P

,

vertical velocity ũz are not highly correlated, especially at 
high Ra and, hence, the simple re-scaling approach of the 
vertical velocity field is unsuitable. Similar to the MAE, 
we see that for the P2 scenario, the u-net performs best for 
Ra = 4 × 105 . In the next step, we computed the probabil-
ity density functions (PDFs) of the temperatures T̃  from 
all snapshots in the test data set to understand further the 
deviation between measured and predicted temperature. 
Contrasting the PDFs shown in Fig. 14, we observe a good 
agreement for the lowest Rayleigh number Ra = 2 × 105 
especially for the P1 case, albeit the PDFs of the predicted 
temperature show a lower probability of extreme tempera-
ture events and specifically high temperatures, which is 
in line with the smooth appearance of the predicted tem-
perature fields.

This trend continues and increases with the Rayleigh 
number. For Ra = 4 × 105 , we furthermore observe that the 
PDFs of the predictions for T̃ < 0.5 no longer collapse on 
each other. While the PDF of the P1 u-net predictions agrees 
rather well with the PDF of the measurement data, the P2 
u-net underestimates the probability of T̃ < 0.4 events and 
overestimates the probability of T̃ ≈ 0.6 events. This coin-
cides with the bias we observed in the temperature difference 

Fig. 13  Comparison of exemplary measured and predicted temperature fields T̃GT (a), T̃P1 (b), T̃P2 (c) and the difference fields T̃
GT

− T̃
naive,P1 (d), 

T̃GT − T̃P1 (e) and T̃GT − T̃P2 (f) at Ra = 4 × 105

Table 5  Overview average Pearson correlation coefficient C for vari-
ous Ra and scenarios

P1 (u-net) P2 (u-net) Naive

Ra = 2 × 105 0.78 0.72 0.52
Ra = 4 × 105 0.77 0.76 0.46
Ra = 7 × 105 0.74 0.70 0.37
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field T̃GT − T̃P2 . For the highest Ra most dominantly but also 
for the lower Ra , we observe that the statistics of the tem-
perature PDFs are not symmetric. This is mostly an effect 
of the asymmetric boundary conditions of the experiment, 
which resembles almost perfect isothermal boundary con-
ditions at the bottom plate in contrast to the cooling plate 
made from glass where the conductive heat transfer within 
the plates is comparable to the convective heat transfer at the 
surface of the plate. This results in an increased probability 
of inverted heat transfer and limits the global heat transfer 
of the system. Further details can be found in Käufer et al. 
(2023). Nevertheless, we see a PDF of the P1 predictions 
and the measured temperature in the range 0.2 < T̃ < 0.65 
almost match. Unlike the P1 predictions, the PDF of the 
P2 predictions shows a significant overestimation of cold 
temperatures. This is expected since the probability density 
function of the test and training cases differs significantly.

As the final step of our analysis of the predicted tem-
perature data, we compare the azimuthally averaged power 
spectra of the temperature. These spectra indicate how the 
temperature is distributed over the different spatial scales 
or wavelengths. They are also commonly used to determine 
the size of the turbulent superstructures (Pandey et al. 2018; 
Moller et al. 2022). To determine the azimuthally averaged 
spectra, we compute the temperature field’s two-dimen-
sional discrete Fourier transform (DFT). We then compute 
the power spectrum and average the data azimuthally. We 
apply a spectral filter where we discard wavelengths that are 
larger than the field of view and therefore have no physical 
meaning. Additionally, we zero-pad the temperature fields 
to increase the number of spectral bins. Further details on 
the procedure can be found elsewhere (Moller 2022). The 
computed dimensionless wavelength �̃� is normalized by H.

Figure 15 shows the power spectra calculated from a sin-
gle exemplary instantaneous temperature snapshot (black, 

red, and blue) and the corresponding vertical velocity snap-
shot (green). Looking at the spectra, we observe excellent 
agreement between the spectra of the measured temperature 
data and their respective predicted counterparts in all cases, 
especially for wavelength �̃� > 0.5 . For smaller scales, we see 
an increased power spectral density E(�̃�) for the measure-
ment data as a consequence of the smoother appearance of 
the predictions. Of high interest in large aspect ratio, RBC 
are the turbulent superstructures whose size is commonly 
determined by the maximum of the power spectrum. Thus, 
a magnification of the peak region is shown in the bottom 
right of each plot. The dashed, gray line indicates the wave-
length �̃� corresponding to the peak in the power spectrum, 
which is additionally written in the inset. For Ra = 4 × 105 
and Ra = 7 × 105 , we observe a good agreement between 
the measured and predicted temperatures, especially for 
Ra = 7 × 105 where all peaks virtually collapse. In con-
trast, for Ra = 2 × 105 , the peak of the P2 prediction shows 
a reduced power spectral density compared to the peak 
obtained from the measurement data. Nevertheless, the 
shapes of the peaks still agree well.

Beyond that and even most importantly, the plots show 
that for all cases, the wavelength �̃� belonging to the peak is 
the same for the predictions and the measurements, which 
underlines that the u-net in both scenarios is a suitable tool 
capable of correctly predicting the size of the temperature 
superstructures.

Comparing the temperature spectra with the vertical 
velocity spectra, we can see a similar trend; however, the 
vertical velocity spectra are offset from the temperature 
and have a less pronounced peak at a large wavelength, 
which indicates the superstructure size. Especially for 
Ra = 7 × 105 , we see a significant difference between the 
temperature and vertical velocity spectra since the spec-
tral peak of the vertical velocity is shifted toward a smaller 
wavelength. This indicates that the u-net learns to transfer 

Fig. 14  PDFs of the temperature T̃  for various Ra
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spatial scales rather than just augmenting the vertical veloc-
ity field.

So far, we have investigated the performance of the u-net 
models of both scenarios P1 and P2 by means of fields, prob-
ability density functions and power spectra of the tempera-
ture. We saw that for both scenarios P1 and P2, the u-net is 
able to accurately predict the temperature and, specifically, 
the large-scale structures in the temperature field. Overall 
the predicted temperature data are smoother, containing 
fewer extreme temperature events. This aligns with our 
expectations since the smallest-scale structures are lost in 
the convolutional layer of the contraction branch of the u-net 
despite the skip connections. On the one hand, this means 
the u-net does not reproduce the smallest-scale features. On 
the other hand, it makes it robust against measurement noise 
and acts like a filter. In fact, both autoencoders and u-nets 
were also successfully used for denoising tasks in the past 
(Vincent et al. 2010; Bao et al. 2020).

6.2  Heat transfer prediction

An important quantity of any RBC setup is the system’s heat 
transfer, which is described by the Nusselt number Nu. Since 
we obtain temperature and vertical velocity data at the same 
point in space and time, we are able to determine the local 
Nusselt number

Here, Θ̃ denotes the temperature fluctuation, which we obtain 
by decomposing T̃  into the linear conduction profile T̃lin and 

(9)Nuloc =
√
RaPr ũz(x̃, t̃)Θ̃(x̃, t̃).

the fluctuations Θ̃ according to T̃(x̃, t̃) = T̃lin(z̃) + Θ̃(x̃, t̃) 
with T̃lin = 1 − z̃ . Thus T̃lin = 0.5 at the horizontal mid-plane 
where the data were measured. Further details on the deriva-
tion of the Nuloc can be found in Käufer et al. (2023).

Figure 16 shows exemplary snapshots of the Nuloc field 
computed from ũz and T̃GT (a), ũz and T̃P1 (b), and ũz and T̃P2 
(c), respectively.

Comparing all three fields, we can easily detect the same 
patterns, albeit the fields of the ground truth Nuloc number and 
Nuloc calculated from the P1 predictions are substantially more 
similar. Yet, most strikingly, is the fact that we observe negative 
Nuloc events in the u-net predictions independent of the training 
scenario. In general, high temperature and upward velocity, as 
well as low temperature and downward velocity, are strongly 
correlated since temperature-induced local changes in density 
drive the flow. Hence, the neural network could achieve low 
MAE values by predicting high temperatures where upward 
velocities occur and vice versa. In practice, we also observe 
events Nuloc < 0 where heat is transferred from top to bottom, 
even though with a much lower probability. The occurrence 
of negative Nuloc events in the Nuloc field obtained from both 
predictions, furthermore, at the same locations as in the ground 
truth fields, proves that the u-net learns a representation of the 
flow that goes far beyond the simple correlation of velocity and 
temperature. To further investigate this intriguing insight, we 
turn our attention to the PDFs of Nuloc in Fig. 17.

We note that PDFs agree well, especially in the range 
0 < Nuloc < 50 for all Ra. With the exception of the P2 case 
for Ra = 7 × 105 , Nuloc > 50 events seem to be slightly 
underrepresented in the Nuloc calculated from predicted 
temperature data. Again this can be linked to the smoother 

Fig. 15  Power spectra of instantaneous temperature (black, red, and blue) and vertical velocity fields (green) for various Ra



Experiments in Fluids (2023) 64:191 

1 3

Page 13 of 18 191

temperature field obtained from the predictions. Further-
more, the absolute probability of these events is low.

Looking at the probability for Nuloc < 0 , we see that the 
data obtained from the u-net predictions correctly repre-
sents the probability of low-intensity reversed heat transfer 
events, but the negative far-tail events are underrepresented. 
As mentioned above, those events are the toughest to predict 
due to the preferential correlation between temperature and 
velocity. Considering the low value of the absolute probabil-
ity of these events, those might be altered by the measure-
ment uncertainty. An exception is the PDFs obtained from 
the P2 data at Ra = 2 × 105 . Solely based on the PDFs, for 
this Ra, the P2 model seems to outperform the P1 model 
since it better matches the PDF of the measured ground truth 
data, even for extreme Nuloc < 0 events. At first glance, this 
seems surprising, but recalling that the P2 model for this 
Ra was trained only with data of higher Ra, which have a 
broader distribution of Nuloc < 0 events, it is unsurprising 
that these are embedded into the trained model.

Lastly, we want to quantify and compare the global 
heat transfer characterized by the global Nusselt number 
Nu = ⟨Nuloc⟩Ã,t̃ which we obtain by averaging Nuloc over 
the field of view Ã and time t̃.

Looking at the resulting values in Table 6, we observe that 
the ground truth Nu and the Nu calculated from the P1 agree 
well with relative differences, which are defined as the abso-
lute value of the difference between reconstructed and meas-
ured global Nusselt number divided by the measured global 
Nusselt number, between 14.1% and 0.3% . As a rule of thumb, 
Nu obtained from the P1 predictions is slightly higher. In con-
trast, the deviations for Nusselt numbers obtained from the P2 

Fig. 16  Comparison of exemplary local Nusselt number fields at Ra = 4 × 105 calculated from purely measurement data (a) and from measured 
velocity and predicted temperature (b, c)

Fig. 17  PDFs of the local Nusselt number Nuloc for various Ra

Table 6  Overview of the global 
Nusselt Nu for all combinations 
of Ra and temperature 
determination methods

GT P1 P2

Ra = 2 × 105 3.62 4.13 2.96
Ra = 4 × 105 5.10 5.12 4.41
Ra = 7 × 105 5.38 5.80 7.94
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predictions—which undoubtedly are the more difficult predic-
tions—are significantly larger with relative values between 
47.6% and 13.5% . Contributing to this large deviation is that in 
the experimental setup, a change in Ra also affects the thermal 
boundary conditions, additionally influencing the flow physics. 
Nevertheless, we see qualitative agreement. In both cases, the 
relative deviation is the lowest for Ra = 4 × 105 which is rea-
sonable in the P2 case but unexpected for the P1 case where the 
MAE of the temperature prediction is lowest for Ra = 7 × 105.

To summarize, we have shown that the u-net predictions 
allow us to compute physically plausible Nuloc fields, albeit 
underestimating the probability of extreme Nuloc < 0 events. 
Comparing the global values of Nu, we observed good quan-
titative agreement between ground truth and the P1 case but 
only qualitative agreement for the P2 case.

7  Conclusion and perspectives

In this paper, we proposed a purely data-driven, supervised, 
deep learning-based method to derive the distribution of a sca-
lar quantity from experimental velocity data. We demonstrate 
it for the example of large aspect ratio RBC and extract tem-
perature data from stereoscopic PIV velocity data. We used 
data from experiments at Ra = 2 × 105, 4 × 105, 7 × 105 and 
chose the u-net architecture as a baseline. Starting from this 
point, we investigated the influence of several modifications, 
namely the choice of the activation function, the up-sampling 
and the batch normalization. We observed that only batch nor-
malization had a positive effect on our task. Thereupon, we 
identified the optimal values for the channel factor � = 48 and 
the learning rate � = 0.0005 in an extensive grid search. We 
observed that u-net exhibits stable training behavior, yielding 
only minor deviation in performance when trained with dif-
ferent random initial weights. The chosen parameter combi-
nation shows a low standard deviation of the validation MSE 
and the grid search heat map a clear convergence, indicating 
the robustness of the parameter selection. Subsequently, we 
defined two real-world application scenarios, P1 and P2. In 
scenario P1, we trained the u-net on data of the same experi-
mental run. We studied the influence of the amount of training 
data on the MAE and selected the number of three training 
bursts as the best compromise between model performance 
and training data generation effort. Furthermore, we proved 
that the predictions are independent of the temporal distance 
between training and prediction. The MAE, which is like the 
MSE a common loss metric in the field of machine learning, 
for all models in scenario P1 is below 0.065. For scenario P2, 
we trained the u-net on the data of two Ra and predicted the 
temperature for the remaining third Ra. In this scenario, all 
models achieve MAE values below 0.085. We demonstrated 
that the u-net prediction in any scenario significantly outper-
forms the naive assumption of T̃naive.

We rigorously analyzed the performance of the models in 
both scenarios by comparing the temperature fields, PDFs, 
and power spectra with the ground truth data. We observed 
that the characteristic superstructures are clearly recognizable 
in the predictions of both scenarios, albeit smoothed. The 
signs of smoother predictions are also remnant in the PDFs 
and the power spectra, which show a lower probability for 
extreme temperature events and lower power spectral density 
on smaller scales, respectively. Even though the P2 predictions 
tend to be biased, the size of the temperature superstructure 
can be correctly determined from the spectra in all cases. Our 
comparison of the heat transfer associated with the tempera-
ture predictions unveiled similarities in the field of ground 
truth Nuloc field and the Nuloc fields obtained from the pre-
dicted temperature. Remarkably, the Nuloc fields obtained from 
the u-net predictions feature the occurrence and location of 
Nuloc < 0 correctly, especially for the P1 scenario. The PDFs 
of Nuloc show a good agreement with ground truth data for 
Nuloc > 0 . However, extreme Nuloc < 0 events are underrep-
resented. The comparison of the global Nu displayed quantita-
tive agreement between measurement and P1 scenario data but 
only qualitative agreement for the P2 scenario.

Our study showed that the u-net has proven to be a suitable 
and robust tool. When trained on data of the same experimen-
tal run, it is capable of physically consistent predictions from 
noisy measurement data. In the future, we want to incorpo-
rate information about the heat transfer into the training of the 
u-net. Therefore, we want to add an additional loss term deter-
mined from the difference between the PDF of Nuloc obtained 
from measured temperature and vertical velocity and the PDF 
of Nuloc obtained from predicted temperature and measured 
vertical velocity. Thereby, we expect the model to better esti-
mate the negative tails of the Nuloc PDFs.

Appendix 1 Activation functions

See Fig. 18. 

Fig. 18  An overview over different activation functions a: ReLU, 
Leaky ReLU ( � = 0.01 ), ELU ( � = 1 ), GELU ( � = 0 , � = 1 ) and 
SELU ( � = �01, � = �01 ) for layer outputs o 
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Appendix 2 Experimental data

See Fig. 19. 

(10)ReLU(o) =

{
o if o > 0,

0 otherwise,

(11)LeakyReLU(o) =

{
o if o > 0,

𝛼o otherwise,

(12)ELU(o) =

{
o if o > 0,

a(e
o
− 1) otherwise,

(13)GELU(o) = oΦ(o),

(14)selu(o) = 𝜆

{
o if o > 0,

𝛼(eo − 1) otherwise.

Appendix 3 Hyper‑parameter study

See Fig. 20. 

Fig. 19  The input (a, b) and target (c) of the neural network. Exemplary snapshots at Ra = 7 × 105

Fig. 20  Standard deviation of the validation MSEs for all tested �-�
-combinations as heat map
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