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Abstract
Particle diffusometry, a technology derived from particle image velocimetry, quantifies the Brownian motion of particles 
suspended in a quiescent solution by computing the diffusion coefficient. Particle diffusometry has been used for pathogen 
detection by measuring the change in solution viscosity due to amplified DNA from a specific gene target. However, particle 
diffusometry fails to calculate accurate measurements at elevated temperatures and fluid flow. Therefore, these two current 
limitations hinder the potential application where particle diffusometry can further be used. In this work, we expanded the 
usability of particle diffusometry to be applied to fluid samples with simple shear flow and at various temperatures. A range 
of diffusion coefficient videos is created to simulate the Brownian motion of particles under flow and temperature conditions. 
Our updated particle diffusometry analysis forms a correction equation under three different polynomial degrees of shear 
flow with varying flow rates and temperatures between 25 and 65 °C. An experiment in a channel with a rectangular cross 
section using a syringe pump to generate a constant flow is done to analyze the modified algorithm. In simulation analysis, 
the modified algorithm successfully computes the diffusion coefficients with ± 10% error for an average flow rate of up to 8 
pixel∕Δt on all three flow types. Complementary experiments confirm the simulation results.
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1 Introduction

Quantifying Brownian motion under the influence of flow, 
especially a shear flow, has been a topic of discussion that 
is receiving wide attention (Duits et al. 2015). Brownian 
motion is a random thermal vibration of microscopic par-
ticles, mathematically defined by the diffusion coefficient 
using the Stokes–Einstein equation,

where k is the Boltzmann constant, T  is the absolute temper-
ature, � is the dynamic viscosity, and a is the hydrodynamic 
radius of particles (Brown 1828; Einstein 1905). Standard 
reference calculations involving the Stokes–Einstein equa-
tion assume fluids to remain quiescent for simplicity in 
quantifying Brownian motion. However, many researchers 
have delved into the characterization of Brownian motion 
with various aspects of fluid flow and different assumptions 
and restrictions (San Miguel and Sancho 1979; Foister and 
Ven 1980; Katayama and Terauti 1996; Schram and Trigger 
1996). These are all tremendous theoretical achievements 
in characterizing the phenomenon of diffusion undergoing 
fluid flow.

With the development of new visualization technologies, 
novel experimental methods of visualization and quantifica-
tion of Brownian motion have emerged. With technology to 
visualize sub-micron scale particles, calculations of diffu-
sion quantification under shear flow have also been experi-
mentally verified (Derksen and van de Water 1990). Using 
2D planar and 3D stereo imaging systems can visualize the 
exact trajectories of particles exhibiting Brownian motion, 
fully capable of characterizing the diffusion aspect of par-
ticles under various types of flow (Orihara and Takikawa 
2011; Takikawa et al. 2019).

Particle diffusometry (PD) is a visualization technique 
derived from particle image velocimetry (PIV) to quantify 
Brownian motion using correlation analysis. PD is often 
through imaging fluorescent microspheres suspended in a 
sample solution (Clayton et al. 2016). Unlike the single-par-
ticle tracking velocimetry (PTV) technique, which measures 
the individual movements of specific particles, known as a 
Lagrangian approach, PD incorporates the statistical aver-
aging of the motion of multiple particles within a defined 
area of interest, an Eulerian approach. PD obtains diffusion 
coefficients by recording temporally sequential images and 
performing correlation analysis. Olsen and Adrian rederived 
Eq. 1 by involving experimental factors to calculate diffusion 
coefficients:

(1)D =
kT

6��a

(2)D =
s2
c
−s2

a

16M2Δt

where M represents the overall magnification in the image 
and Δt represents the time delay between images. The auto-
correlation, the correlation of an image with itself, produces 
high and narrow peaks, with its peak width denoted as sa . 
The cross-correlation compares an image with its sequential 
pair, with its peak width designated as sc (Olsen and Adrian 
2000a, b). The cross-correlation peak tends to be lower and 
broader than the autocorrelation peak, broadened by the ran-
dom particle movement (Chamarthy et al. 2009; Chuang and 
Sie 2014). Without convective flow within the recording, the 
cross-correlation peak width contains the Brownian motion 
information. The degree of correlation peak broadening can 
be directly related to the diffusion coefficient using Eq. 2.

Previous research found PD to be a promising method 
to measure changes in biomolecule conjugated nanoparti-
cles, protein folding states for biotherapeutics, and amplified 
DNA presence to detect pathogens, all from the measured 
change in the diffusion coefficient (Clayton et al. 2016, 
2017a, b, 2019). Using PD to perform such measurements 
only takes ~ 8 s of data using a fluorescence microscope, 
charge-coupled device (CCD) camera, and MATLAB algo-
rithm (Clayton et al. 2017b). These materials are ubiquitous 
in typical wet lab spaces; therefore, PD can be performed in 
settings where traditional viscometers may be unavailable. 
Moreover, with the advancement of mobile phone technol-
ogy, the smartphone camera has displaced the conventional 
CCD camera as a recording device of comparable quality 
but at a much more affordable price (Wang et al. 2021). PD 
has also taken this approach by expanding its use to a more 
portable application, measuring amplified DNA presence to 
detect pathogens. Recently, a smartphone-adapted mobile 
imaging device has been used to detect the presence of V. 
cholerae in environmental water, malaria in 10% blood, and 
SARS-CoV-2 in 10% saliva (Moehling et al. 2020; Colbert 
et al. 2021, 2022). These previous works involving PD on 
a portable device laid out the foundation for the technol-
ogy to be used at the point of use. To further translate the 
technology into commercial use, the usability of this device 
was evaluated in the field in Bangladesh (Rager et al. 2021).

Despite showing potential for translating PD-based 
diagnostic devices from the lab bench to the field, the cur-
rent approach to PD relies on two restrictive assumptions. 
The first assumption is that the experiment is performed 
within a quiescent solution. Previously, we constructed 
enclosed microfluidic chips to minimize fluid flow in 
PD measurements to avoid evaporation-driven flows and 
temperature gradients (Clayton et al. 2019; Colbert et al. 
2021). However, small amounts of potential flow may be 
present due to imperfections in constructing the micro-
fluidic chip. The second assumption is that the solution 
must be maintained at room temperature, often denoted 
as 21 °C (Moehling et al. 2020). These assumptions are 
present to negate the flow effect on the broadening of the 
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correlation peak widths and temperature effects that alter 
Brownian motion directly (as seen in Eq. 1). The presence 
of thermal gradients or expansion of microbubbles within 
the fluid due to the temperature differentials could induce 
flow. Indeed, the current algorithm does not distinguish 
Brownian motion from fluid flow when computing sus-
pended particle diffusion coefficients. These issues need 
to be addressed to implement PD in more complex settings 
beyond the lab.

In this body of work, we address the computation of diffu-
sion coefficients in the presence of convective fluid flow and 
temperature gradients within the imaging plane to improve 
PD for further real-world applications using a smartphone 
as the recording device. The PD technique could be imple-
mented into diagnostic devices where a lab-grade environ-
ment would be hard to achieve by allowing the algorithm 
to compensate for more measurement errors upon data 
gathering.

2  Methods

2.1  Simulated videos

Simulated videos of particles undergoing Brownian motion 
are generated in triplicate using an in-house  MATLAB® 
(The MathWorks, Natick, MA) code. The simulated particle 
concentration mimics the one used in experimental images 
( 6 × 109 particles∕mL ). Additionally, the code implements 
various diffusion coefficients to generate videos with vary-
ing diffusivity. The simulated images are 1024 × 1024 pixel 
areas, like an experimental microscope setup with a 40X 
objective on an inverted microscope (Zeiss Axio Observer, 
Zeiss, White Plains, NY). The experimental measurements 
are recorded without geometrical binning for signal enhance-
ments and a lag time ( Δt ) of 0.067 s (15 frames per second).

Plotting is used to simulate the particle paths instead of 
indexing to avoid losing sub-pixel information of the simu-
lated particles’ location. For each image, location informa-
tion is plotted as a scatter plot, and then a Gaussian filter is 
applied to add the padding around the point source location.

Three different flow profiles are generated: constant, Cou-
ette, and Poiseuille. Their velocity profiles are distributed so 
that the zero velocity points (when they exist) are at the edge 
of each simulated image. The maximum value of each veloc-
ity profile is increased from 1 to 10 pixels with a 1-pixel 
increment. The particle motions from convective flow are 
overlaid on top of the Brownian diffusion. All convective 
flows proceed from left to right. The effect of the angle of 
the convective flow is explored by generating flows with 
various degrees of shear at angles varying from 0 to 80° with 
a 10-degree increment.

2.2  Experimental setup

We made a simple chip to contain the seeded particle solu-
tion for experimental imaging with an overall dimension of 
1 cm by 1 cm. The chip is composed of 4 layers: 2 layers of 
188 μm thick cyclic olefin polymer (COP) (Zeonor, Tokyo, 
Japan), 142 μm thick pressure-sensitive adhesives (PSA) 
(Adhesives Research, Glen Rock, PA), and 5 mm thick 
polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning, 
Auburn, MI, USA) (Fig. 1a). For the PSA layer, a channel 
with the dimensions of 2 mm by 2 cm is cut using a VLS3.75 
laser cutter (Universal Laser Systems, Scottsdale, AZ). For 
one of the two layers of COP, 2 mm diameter through holes 
are punched at the inlet and the outlet. The syringe pump 
(kdScientific, Holliston, MA) is used to control the incre-
ments of flow rate through the chip. The 3 mL BD Luer-Lok 
syringe (Becton, Dickinson and Company, Franklin Lakes, 
NJ) paired with PEEK tubing (Idex Health & Science, Oak 
Harbor, WA) is used to connect the syringe pump with the 
chip. A 5 cm by 5 cm cast of 5 mm thick PDMS is cut to the 
size of the overall chip with two designated channels for the 
inlet and the outlet and is used as supporting material for the 
polyetheretherketone (PEEK) tubing, aligned with the inlet 
and outlet of the chip (Fig. 1b).

In the experiment, 500  nm Yellow–Green (Ex441/
Em485) fluorescent microspheres (Polysciences, Niles, IL) 
are diluted in deionized water to a final concentration of 
6 × 109 particles∕mL . The recordings are taken at room tem-
perature using an inverted fluorescence microscope (Axio 
Observer, Zeiss, White Plains, NY) equipped with a high-
intensity LED lamp and 40X magnification objective. The 
images of the Yellow–Green particles are recorded using an 
iPhone 6 (Apple, Cupertino, CA) mounted to the eyepiece 
of the microscope using an adaptor (Gosky Optics, Zhejiang 
Province, China) (Fig. 1c). The adaptor is modified using 
two spacers, at a total thickness of 1.5 cm, to distance the 
eyepiece of the microscope and the iPhone 6, achieving the 
optimal focal length.

Using an objective micrometer (Carolina, Burlington, 
NC), the circular field of view, restricted by the eyepiece 
of the microscope, displayed on the recording device is 
calculated to have a diameter of 574 μm . The obtained 
images have a dimension of 1920 × 1080 pixel . The center 
coordinate of the circular field of view is computed, and 
then the information is used to cut out a 1024 × 1024 pixel 
square region for further analysis. Outside the square cut-
out region, the particle shows circular aberration due to 
the eyepiece’s combined lens effect and the iPhone camera 
lens system. For the experimental flow rates, conversions 
are applied to match the parameter used in the simulation. 
The simulated image sets have their maximum flow rate 
increased at a rate of 1 pixel∕Δt (Fig. 1d). With the channel 
geometry of 2 mm × 2 cm × 142 μm , the calculation shows 
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the volumetric flow rate of 77 nL∕min is equivalent to the 
planar flow rate increment of 1 pixel∕Δt in the simulated 
cases. The syringe pump controls the volumetric flow rate 
from 77 to 1702 nL∕min (22 pixel∕Δt ). Each recording con-
tains 300 image pairs (~ 21 s). 3–5 videos are recorded per 
increment of the flow rate.

2.3  Flow adjustments to particle diffusometry

Modifications are made on a pre-existing in-house 
 MATLAB® (The MathWorks, Natick, MA) code built for 
end-point diffusion coefficient measurements. For the inter-
rogation window size, 128 × 128 pixel is chosen to account 
for spatial variation, followed by Keane and Adrian during 
the development of our analysis (Keane and Adrian 1992). 
On average, each interrogation window containing 8–10 par-
ticles was used for 100 image frame stacks (~ 8 s of data) 
for a high signal-to-noise ratio while maintaining a statisti-
cally relevant number of data points (Clayton et al. 2017b). 
Instead of using the correlation peak width from a single 
image pair, temporal averaging is used to reduce random 
error. Correlation peaks from 100 sequential image pairs are 
averaged (Samarage et al. 2012).

Experimental recordings of fluorescent particles do not 
necessarily form Gaussian intensity profiles due to impuri-
ties in the particle shapes, aggregation of particles, unbal-
anced illumination, and the presence of shear flow (West-
erweel 2008). These irregularities cause the correlation 

peak to be stretched in their height, not entirely following 
a Gaussian profile. For both the simulation and experimen-
tal cases, the fitted Gaussian peak tends to be broader and 
shorter than the raw correlation peak (Fig. 2a) when fitting 
the curve of the overall interrogation plane (Scharnowski 
and Kähler 2016). Also, uncertainties in the experimental 
setup, such as particle shape deformation, aggregation, and 
illumination, produce background noises, causing the base 
value to rise from zero. As for the PD algorithm, Gaussian 
fitting has been used in the analysis, but here with the addi-
tion of the flow, fitting of non-circular-Gaussian peaks and 
correcting the baseline are necessary (Clayton et al. 2016, 
2017a).

The entire interrogation window of 128 × 128 pixel val-
ues is averaged, excluding the center 11 × 11 pixel, and sub-
tracted to match the baseline of the overall interrogation 
window. This baseline subtraction corrects the correlation 
of random fluctuations (Westerweel 1997; Xue et al. 2014). 
Next, for the peak fitting, an elliptical Gaussian profile is 
drawn using a two-part separated peak fit to obtain the peak 
width of each correlation peak. The two-part separated peak 
fit is used due to the stretched peak in their height beyond 
the Gaussian profile. Therefore, peak fit is split into two 
parts, a height fit and a width fit (Fig. 2b). First, a 3 by 
3 pixel region encapsulating the pixel-level maximum loca-
tion of the peak is used to identify the sub-pixel location of 
the maximum peak height (Nobach and Honkanen 2005; 
Blumrich 2010). Next, a 5 by 5 pixel region surrounding the 

Fig. 1  Experimental setup. a Construction of the microfluidic chan-
nel. Layers were constructed by sandwiching COP and PSA, with 
PDMS on top to hold the tubing. b Exploited view of the chip, PDMS 
has an inlet and outlet punched through for the peek tubing place-

ment. A rectangular setup allows the overall chip to be placed on the 
microscope stage without additional support. c Experimental image 
of the particle. d Simulated particle image for comparison
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pixel-level maximum location, excluding the center value 
(the maximum), is used to capture the Gaussian peak with 
width information matching the correlation peak. This com-
bined Gaussian surface fit is used to calculate the 2D profile 
of the auto- and cross-correlation peaks.

The width of the correlation peak is defined by the width 
of the peak at 1∕e height (Olsen and Adrian 2000b). The 
width of the streamwise and cross-streamwise directional 
Gaussian curves are calculated by extracting the parameters 
of the equation of an ellipse in implicit form. Two radii of 
the ellipses are then computed using the algebraic manipula-
tion of implicit and the general equation of ellipses (Reed 
and Hutchinson 1994). Since the Brownian motion along 
one coordinate axis is independent of the other, the axis 
length perpendicular to the flow direction is used as the cor-
relation peak width (Chamarthy et al. 2009) (Fig. 2c).

2.4  Flow velocity confirmation

A secondary method is required to verify the results of the 
modified algorithm on the simulated videos. A single-pass 
PIV analysis is applied to the image pairs identifying the 
velocity vectors for the interrogation windows. The general 
assumption is that the flow direction does not change within 
the duration of 100 image pairs (6.67 s), which is indeed true 
for the simulated videos. For each interrogation window, a 

simple 5-point Gaussian sub-pixel peak fit is used to locate 
the true location of the peak maximum (Raffel et al. 2007). 
The true center location is recorded for all the pairs and 
averaged to the location of each interrogation window. The 
x - and y-directional shift is measured by identifying the peak 
maximum shift from the center of the interrogation window. 
The computed flow vectors are compared to the simulated 
values since the flow velocities are a known factor in the 
simulated videos.

2.5  Flow profile identification

The constant flow profile case is investigated to provide a 
model experiment to test the accuracy of the simulation. To 
ensure the constant flow profile is maintained within the 
channel, the velocity profile along the width and height of 
the rectangular channel is calculated. The velocity profiles 
for a rectangular channel can be derived as,

where Δp is the pressure difference, � is viscosity, w , h , and 
L are the channel’s width, height, and length, respectively, 
and x , y , and z are the coordinate axes along the channel 
(White 1991). Along the channel width, the flow profile in 

(3)u(y, z) =
4h2Δp
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Fig. 2  Correlation analysis processing. a Comparison of experimental 
data and fitted peak using an unmodified PD algorithm. b Two-part 
separated peak fit (top) and cross-correlation (bottom) peak due to 
shear. The first column presents the height fit using the 3 × 3 region, 
the second column shows the width fit using the 5 × 5 region exclud-

ing the center value, and the last column portrays the combined fit. 
The black line represents the 1∕e height. c Distortion on the cross sec-
tion of the cross-correlation peak due to shear. The modified algo-
rithm’s peak width is defined as the cross section width in the cross-
streamwise direction
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Eq. 3 is that of constant flow. For the height of the flow, 
depth of correlation (DOC) also needs to be considered. The 
expression for the DOC can be derived as,

where � is the threshold weighting function, normally 
taken as 0.01, n0 is the index of refraction of the immer-
sion medium (for the case of air immersion lens, which is 
used in this paper, this value is 1), dp is the particle diam-
eter, NA is the numerical aperture of the objective, � is 
the wavelength of the light, and M is the objective mag-
nification (Bourdon et  al. 2005; Wereley and Meinhart 
2009). Parameters used for the experiments are as such, 
dp = 470 nm, NA = 0.95, � = 488 nm, andM = 40  .  The 
depth of correlation is calculated to be 2.514 μm using these 
parameters. Applying Eqs. 3 and 4, the velocity variation 
along the z-direction is no more than 0.03%, showing the 
flow profile variation in the height dimension of the flow is 
negligible.

Experimentally, the flow profile of the recording always 
remains that of constant flow if the recording takes place 
at the center of the rectangular cross section of the channel 
geometry. With the syringe pump pushing liquid at constant 
flow rates, the overall particle behavior should be aligned to 
a single direction with a minimal angular variation.

3  Results and discussion

3.1  Frame rate adjustment

When experimentally measuring Brownian motion and 
quantifying diffusion coefficients with PD, the frame rate of 
recorded videos influences the calculated values (Clayton 
2017). For example, particles’ Brownian motion is hindered 
by the solution viscosity for high viscosity medium. If the 
lag time between frames is shorter than the time required 
for a measurable motion of particles to occur, the corre-
lation of these two frames may show a little-to-no change 
in the displacement of particles. On the other hand, if the 
lag time between frames is longer than the time required 
for a measurable motion of particles to occur, there may be 
no correlation between two subsequent frames as the time 
passed between two frames allow particles to move beyond 
their original coordinates. These errors can occur when the 
camera frame rate is not optimally aligned with the parti-
cle Brownian motion and can be corrected by changing Δt , 
essentially adjusting the camera to have an optimal frame 
rate to match the particle Brownian motion (Clayton 2017). 
However, the technique would require pre-knowledge of the 
sample viscosity, which isn’t always available.

(4)zcorr = 2

�

1−
√

�
√

�

�

n2
0
d2
p

4NA2
+

5.95(M+1)2�2n4
0

16M2NA4

�

We developed a method to record and correct the effect of 
an inaccurate frame rate on diffusion coefficient calculations 
using a modified PD algorithm. We computationally simu-
lated the Brownian motion of particles with diffusion coef-
ficients varying from 3E-13 to 3E-12  m2/s with an increment 
of 1E-14  m2/s. The lower boundary value (3E-13  m2/s) was 
chosen from the previous paper regarding the PD technique 
(Moehling et al. 2020), and a tenfold value of 3E-12  m2/s 
was used as the upper boundary. We analyzed the simulated 
particle images to determine the correction factor to opti-
mize the frame rate.

In Fig. 3a, as the raw data deviates from a y = x graph, 
we showed that the Brownian motion of particles produced 
a higher diffusion coefficient than what a pre-set frame rate 
can adequately capture, leading to inaccurate calculations. 
We calculated the correction required for each data point 
using this deviation from the expected y = x graph. When 
the ratio of the simulated diffusion coefficient to the ana-
lyzed diffusion coefficient is multiplied by the analyzed 
diffusion coefficient, this will produce the accurate diffu-
sion coefficient for the simulated data set. A scatter plot 
was used to better represent this correction relationship 
(Fig. 3b). Here, the x-axis represented the analyzed diffu-
sion coefficient from the algorithm, and the y-axis was the 
ratio between simulated and analyzed diffusion coefficients, 
representing the amount of correction required for the values 
on the x-axis. This comparison allowed us to estimate the 
percentage of correction needed based on the computed dif-
fusion coefficient by the modified algorithm.

A regression analysis was performed on the list of cor-
rection factors to compensate for all possible outcomes 
from the algorithm. To best describe the simulated dataset 
and minimize the effect of constraining the curve, a cubic 
polynomial fit was used as the best fit with an R2 value of 
0.983. Since the purpose of regression was to best capture 
all the aspects of the scattered plot, we also fitted higher 
degree polynomials beyond cubic. However, the resulting 
higher polynomial correction equation only varied the dif-
fusion coefficient results in the 1E-15  m2/s region, 100-fold 
smaller in values than the target diffusion coefficient range 
(3E-13–3E-12  m2/s). After applying the correction equation, 
the analyzed and simulated diffusion coefficients matched. 
This linear regression is portrayed in Fig. 3a with the regres-
sion equation slope of 0.995, showing a near-perfect 1:1 
ratio.

3.2  Diffusion simulation under simple flow

The particles were simulated with a diffusion coefficient of 
1E-12  m2/s to represent the condition at room temperature 
(25 °C). A total of 270 videos per flow type (constant, 
Poiseuille, and Couette flows), each with 101 frames, were 
simulated as three replicates. Oftentimes, flows occur in 
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microfluidic chips due to the movement of the air bub-
bles trapped within the microfluidic channel or well. When 
bubbles are present within the microfluidic well, these 
create flow within the sample at an angle not necessarily 
aligned with the axis of the camera. Therefore, particles 
were simulated with a flow angle ranging from 0 to 80° 
with 10-degree increments to recreate variations of angle 
alignment in the flow direction caused by the bubble. Each 
video contained 101 frames for the analysis, resulting in 
a single averaged diffusion coefficient value per video. 
All the analyzed diffusion coefficients were averaged with 
respect to the flow rate the videos were generated with. 
For each data point on the plot, 30 diffusion coefficients 

were averaged: three replicates of 0–80° with 10-degree 
increments.

The relative error (% error on diffusion coefficients in 
Fig. 4a) on the analyzed diffusion coefficients was plotted 
against the simulated flow velocities. Since the diffusion 
coefficient values are known for the simulated data set, 
the relative error is calculated as the ratio of the difference 
between the measured diffusion coefficient and simulated 
diffusion coefficient to the measured diffusion coefficient. 
We observed that the % Error in diffusion coefficient meas-
urements increased as the flow velocity increased; the phe-
nomenon is observed in other works involving measure-
ment under flow conditions (Walker et al. 2005). The effect 

Fig. 3  Correction of diffusion coefficients on fixed frame rate. Error 
bars represent one standard deviation above and below. a As the dif-
fusion coefficients get larger, the deviation of raw data from the cor-

rected data increases, and the correction made by the fitted equation 
is also represented. b Trend represents the percentage of correction 
required for the simulated diffusion coefficient range. (N = 3)

Fig. 4  Comparison of simulation results with analyzed values on the 
trend of error increase on flow rate variation. a Relative error percent-
age on diffusion coefficients on three simple shear flow types. b Rela-

tive error percentage on analyzed flow rate through single-pass PIV. 
c Relative error percentage of analyzed diffusion coefficients of con-
stant flow at elevated temperatures
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generally resembled a linear pattern, with deviations from 
linear caused by the flow type. The slope was the smallest 
in the constant flow case compared to Couette or Poiseuille 
flows. The next lowest slope was from the Couette flow, 
where the polynomial degree was 1, one dimension higher 
than the constant flow. Lastly, Poiseuille flow with a poly-
nomial degree of 2, hence the parabolic flow, showed the 
highest slope value showing the most progressive increasing 
trend in error as the induced flow rate increased. Therefore, 
the % Error measured for the diffusion coefficient depended 
on their induced flow rate and the degree of shear on each 
flow. The analysis revealed that the diffusion coefficient 
results show a greater than 10% error when the flow rate 
exceeds 8 pixel∕Δt (120 pixel/s) with the improved algo-
rithm on PD.

Single-pass PIV was applied to obtain the velocity vec-
tor of the flow, which was then compared to the values each 
video was simulated with to verify the correctness of the 
algorithm. Induced flow velocity was compared to the veloc-
ity analyzed using PIV on both magnitude and direction. 
As shown in Fig. 4b, a simple pass PIV, a 5-point Gaussian 
sub-pixel fit on a correlation peak, is a valid estimator for 
the computation of flow speed from the generated simula-
tion videos. However, a significant measurement variation 
occurred in the low flow velocity region. As the flow veloc-
ity became comparable to, or smaller than, the Brownian 
motion of the particles in the solution, the single-pass PIV 
analysis presented a substantial margin of error in comput-
ing the induced flow velocity. Overall, the maximum error 
on the graph did not exceed ±10% , and the trend suggested 
that the error reduced as the induced flow velocity increased. 
The results showed the modified algorithm did not neglect 
the overall amount of flow when computing diffusion coef-
ficients under the presence of a simple flow.

We adjusted measurements to analyze different temper-
ature variations once the simulation results were verified 
under room temperature conditions (25 °C). We extended 
the simulation range to 22  pixel∕Δt , compared to the 
10 pixel∕Δt used for the previous analysis, to ensure a 
broader range of trends was captured. Only the constant 
flow case was considered as the variation amongst the sim-
ulation results for the three flow types only varied in their 
slopes; their trend remained identical. The theoretical dif-
fusion coefficients were simulated at temperatures ranging 
from 25 to 65 °C with 10 °C increments. Likewise, the tabu-
lated values for dynamic viscosity at varying temperatures 
were integrated into the simulation. During the frame rate 
adjustment investigation, the correction equation for such 
phenomena was established for the diffusion coefficient 
range of 3E-13–3E-12  m2/s. Only the diffusion coefficient 
in this range could be adjusted with the proposed correc-
tion equation. The highest theoretical diffusion coefficient 
for the analyzed temperature range occurred at 65 °C, as 

the diffusion coefficient is proportional to the temperature 
(stated in Eq. 1). The theoretical diffusion coefficient at 
65 °C is 2.43E-12  m2/s, below 3E-13  m2/s, ensuring the 
analyzed diffusion coefficient was within the proposed dif-
fusion coefficient range that the correction equation for the 
frame rate adjustment accounts for.

The results of the varied temperature simulation show no 
visual differences in their trends; scatter plots were aligned 
on top of each other (Fig. 4c). Additionally, the slopes 
showed no statistically significant difference when compar-
ing multiple linear regressions on each variable tempera-
ture data set (p-value = 0.3). The variance on multiple lin-
ear regression was only presented amongst their percentage 
error at zero flow velocity. Therefore, relative error change 
of diffusion coefficients did not depend on the temperature 
variation. The improvement made on capturing the appear-
ance of the correlation peak in the presence of flow can be 
used for any temperature variation, given the correction 
equation is applied for the said range. The percent error 
only changed when the induced flow rate changed at each 
temperature value simulated. The change in percent error, 
calculated by the modified PD algorithm, depended only on 
the induced flow rate.

3.3  Diffusion experiment under constant flow

We performed PD experimentally to translate our frame 
adjustment correction algorithms into real-world scenarios. 
Our observed experimental flow profile identification sug-
gested that the overall flow was constant. Moreover, the 
trends of PD error under constant flow over the range of 
elevated temperature values were indistinguishable from 
each other. With these two conclusions in mind, we con-
cluded that a Brownian motion measurement under a con-
stant flow profile at 25 °C was suitable for validating the 
simulation analysis on the modified PD algorithm. The result 
is portrayed in Fig. 5.

Due to a slow volumetric flow rate, obtaining a near-
identical flow rate posed a difficulty. Therefore, flow range 
averaging was used to calculate the analyzed values in inter-
vals, implementing error bars on the independent value (flow 
rate). The independent values are obtained using a single-
pass PIV with the method described in the "Flow velocity 
confirmation" section. The data points ranged between 10 
and 50 points per flow rate. A total of 137 data points with 
flow values recorded from 0 to 0.49 pixel∕Δt were averaged 
to produce the baseline standard to calculate the percent-
age error of diffusion coefficient calculation. The standard 
deviation suggested high variation among the dataset, mark-
ing 18 pixel∕Δt as the 10% error threshold. The analysis 
revealed the overall trend match between the simulation and 
the experiment dataset, proving the feasibility and realistic 
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nature of the newly improved algorithm for PD to quantify 
Brownian motion under the presence of flow.

4  Conclusion

Prior to this work, the PD algorithm was excellent for meas-
uring an average particle diffusion coefficient in a quiescent 
solution. However, the modified PD algorithm described 
herein improves upon prior approaches by determining the 
diffusion coefficient of particles under simple shear flows in 
a range of temperature settings.

We acknowledge there are ways to correct flow in par-
ticle image velocimetry, such as window deformation and 
sub-pixel shift. However, these methods do not apply to the 
study of diffusion coefficient via correlation methods as it 
would also alter the particle movement information embed-
ded within. In this work, we describe the shape change in 
the correlation peak under flow occurrences and that this 
shape change only occurs in the direction of the flow. By 
understanding the elliptical nature of the correlation peak 
and obtaining the width of the two axes separately, we have 
improved the method to quantify Brownian motion by com-
puting the diffusion coefficient. Also, we have developed a 
correction equation for when there is a mismatch between 
the recording device’s frame rate and the particles’ average 
Brownian motion. While it is known that this phenomenon 
is correctable by adjusting the lag time for imaging based 

on the known solution viscosity, this requires pre-existing 
knowledge of the solution viscosity. The method presented 
in our work is an improvement over the existing method as 
the mismatch problem can be resolved without knowing the 
solution viscosity beforehand.

The modified PD algorithm analyzes the diffusion coef-
ficient with simple flow up to the flow rate of 8 pixel/∆t 
(120 pixel/s) with less than 10% error. The single-pass PIV 
used to confirm the credibility of the algorithm overall 
showed less than a 5% error across all values of flow veloci-
ties. The algorithm is also tested using simulation at various 
elevated temperatures. The change in the amount of error on 
the diffusion coefficient shows no statistical significance, 
presenting that the error depends only on the induced flow 
rate.

Our flow-adjusted PD algorithm is an improvement to the 
pre-existing PD. The experiments for quantifying the Brown-
ian motion are influenced by any outside vibration source 
or propagation of trapped air bubbles within the microflu-
idic setup. The improved method can reduce the number of 
experiment recordings that are otherwise discarded due to 
flow within the recording. With factors in the experiment 
setup known, such as magnification, exposure time, and 
frame rate, Brownian motion experiments involving other 
setups can use the improvement method mentioned above 
to calibrate for the flow. Future development can expand the 
flow velocity and shear rate the algorithm can compensate 
for. Further, the improved PD algorithm can enlarge the field 
of application where quantification of the Brownian motion 
by measuring the diffusion coefficient is useful.
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