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Abstract
A new method is presented to measure the separation distance between probing volumes of closely spaced multi-foci Focused 
Laser Differential Interferometers (FLDI). The accuracy and precision of this distance measurement directly translate into 
the quality of convection velocity measurements performed by means of arrays of FLDI. The suggested method is based 
on the detection of a propagating weak blast wave, generated with a simple and inexpensive apparatus using an automotive 
spark plug. Demonstration is conducted using an FLDI with two foci (D-FLDI). The generated blast wave is probed at mul-
tiple distances from its source to verify its weakening into an acoustic pulse, which offers ideal conditions to the proposed 
methodology. D-FLDI separation distance measurement using the new approach is compared to measurements using beam 
profiler images and to the alternative currently established in the literature, based on the FLDI response to a moving weak 
lens. Tests are made on varying internal configurations of the D-FLDI, while the distance between the two systems is kept 
constant. Results show the present method to have improved accuracy and robustness in comparison with the moving lens 
approach, while requiring significantly less effort. Measured separation distances obtained from blast wave detections in 
a single location are within 0.5% of the reference value measured through the beam profiler. This procedure is therefore a 
practical and reliable alternative to the measurement using beam profiler imaging, with similar quality. Its advantages concern 
associated costs, flexibility when measuring in constrained spaces such as in proximity to walls, and applicability to systems 
in which beam imaging is not an option, such as multi-point line FLDI.

1  Introduction

Focused Laser Differential Interferometry (FLDI) is a 
non-invasive measurement technique capable of detecting 
flowfield density fluctuations with remarkable spatial and 
temporal resolution, being especially suited to the field of 
experimental hypersonics (Parziale et al. 2013). With simple 
modifications, it is also possible to use FLDI as a velocity 
measurement tool by producing two closely spaced probing 
volumes to obtain a double-foci FLDI (D-FLDI), as shown 
by Jewell et al. (2016). The detected signal using the two 
probing volumes is very similar but for a time lag, which 
can be converted into convection speed measurement if the 
distance that separates the two systems is known.

In the precursor exploration by Jewell et al. (2016), veloc-
ity estimates of second-mode instability wavepackets in a 
hypersonic boundary layer consistent with typically expected 
values were obtained using D-FLDI. Exploratory work on 
velocimetry by means of parallel FLDI measurements has 
since then been conducted in multiple laboratories. Jewell 
et al. (2019) presented velocity measurements of compress-
ible turbulent jets. Results followed the jet nominal values, 
albeit with a consistent offset. Ceruzzi and Cadou (2019) 
also performed velocity measurements of a turbulent free jet 
of air. Results agreed to hot-wire measurements and a veloc-
ity decay model if a certain distance from the jet exit was 
observed, although large uncertainties were reported. Bathel 
et al. (2020) used a carefully adjusted D-FLDI with parallel 
optical axes to probe a laser-induced breakdown shock wave 
and a conical hypersonic boundary layer with second-mode 
instabilities. Measured shock wave convection velocity was 
in close agreement to the reference obtained from simul-
taneous high-speed schlieren, and with lower uncertainty. 
Reasonable agreement was also verified for the velocity of 
the instability wavepackets, for which FLDI and high-speed 
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schlieren were performed in different runs of the shock tun-
nel. Weisberger et al. (2020) presented FLDI velocimetry 
using a novel type of arrangement, in which a multi-point 
line FLDI is obtained. Convection velocity of laser-induced 
breakdown shock waves were reported with close agreement 
to high-speed schlieren measurements. Another novel meth-
odology to obtain an array of FLDIs was used in Gragston 
et al. (2021b) to detect second-mode instabilities in the 
boundary layer on a flared cone. The obtained wavepacket 
convection velocities were within the expected range with 
respect to the nominal boundary layer edge velocity.

The accuracy and precision of velocimetry by means of 
double- or multi-foci FLDI depend on two main parameters. 
First, how well the two signals correlate, since the agreement 
between them informs the time lag to the velocity calcula-
tion. This depends on what proportion of the flowfield struc-
tures detected with the upstream system convect with little or 
no change until the downstream one. By taking into account 
the length scales of the probed flowfield, the distance sep-
arating the FLDI systems can be adjusted accordingly to 
improve signal agreement. The second parameter is how this 
distance is measured, as the quality of the obtained value is 
directly transferred to the velocity estimation. This was high-
lighted by Weisberger et al. (2020) concerning their meas-
urements using adjacent channels of a multi-point line FLDI 
array, which yielded uncertainties in the order of ±10% . In 
that same work measurements with ±0.9% uncertainty were 
reported when using channels from separate lines, the differ-
ence being only how the spacing between the FLDI probes 
was determined. A similar occurrence is also seen in Ceruzzi 
and Cadou (2019) with the turbulent jet measurements, in 
which the separation between probes in the D-FLDI was 
given with ±6% and the velocity measurements presented 
large error bars.

Three methods are currently established in the literature 
to obtain the separation distance between FLDI systems: 
directly imaging the beams with a beam profiler; gradu-
ally blocking the beams with a precision-controlled stopper 
(Weisberger et al. 2020); or analyzing the system response to 
a lens with large focal length crossing the path of the beams 
(Ceruzzi and Cadou 2019).

The beam profiler offers a direct and precise measure-
ment, but is not applicable if the systems are not physically 
discrete, such as the line FLDI. Additionally, it may not 
be available in all laboratories due to its significant cost in 
comparison with common FLDI components. The beam-
blocking approach also requires specific precision equip-
ment, and was shown to present unsatisfactory precision. 
The lens response method is inexpensive, but time-consum-
ing and also subject to higher uncertainties as will be fur-
ther detailed in this work. Furthermore, the beam profiler 
and the lens methods rely on the existence of certain spatial 
clearance to accommodate either instrument dimensions or 

their movement, which may prevent their application when 
the FLDI beams are positioned close to a surface, e.g., for 
boundary layer measurements. These difficulties are minor 
if beam separation measurements are performed in the 
preparation phase of an experimental campaign, with flex-
ible time and physical constraints. However, the FLDI has a 
number of flexible parameters (positioning, differentiation 
axis, sensitivity, beam convergence, to name a few) which 
may be tuned or changed in the course of the experiments, 
as exemplified in Weisberger et al. (2020) and Siddiqui et al. 
(2021). Such adjustments require choosing and manipulat-
ing optical components, which may change the separation 
distance of the FLDI systems. An updated distance meas-
urement is therefore required, in which the disadvantages of 
these methods may become relevant.

The present work introduces an alternative approach to 
measuring the separation distance between FLDI probes, 
while addressing the limitations pertaining to the current 
methodologies. The procedure is based on the detection of 
a propagating weak blast wave, generated with an electric 
spark in ambient air. The practical advantages analyzed in 
the present study and the preference for low-cost equipment 
of easy access are meant to render this technique easily 
applicable in other laboratories. The developments pre-
sented in the next sections are constrained to a double-foci 
FLDI, but can be directly extrapolated to arrays of more foci, 
regardless of whether they are optically discrete or continu-
ous on the focal plane.

2 � Theoretical background

2.1 � Indirect estimation of FLDI parameters

Two parameters pertaining to FLDI diagnostics are relevant 
in this work. Namely, the small distance separating the two 
foci which make one FLDI, and the greater distance that 
separates two independent FLDI systems. For convenience, 
the former will be referred to as internal or �x1 and the lat-
ter, external or �x2 . Figure 1 shows a schematic of the FLDI 
used in this work and illustrates these distances. Accurate 
knowledge of the internal separation distance is necessary 
to correctly interpret the FLDI data, given its differential 
nature. The external separation is in turn useful when using 
multiple FLDI bundles to measure convection velocities by 
means of data cross-correlation.

Approaches to indirectly estimate these distances are 
valuable when the beams cannot be directly imaged with a 
beam profiler, e.g., due to hardware or spatial constraints. 
One such method is presented in Fulghum (2014) to obtain 
�x1 by analyzing the FLDI response to a weak lens cross-
ing its path along the axis of beam separation. The method 
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was later extended to also obtain �x2 in Ceruzzi and Cadou 
(2019).

The procedure consists of registering the D-FLDI output 
as a lens of long focal length (in the order of meters) is 
moved along the axis of beam separation. The output of each 
FLDI will describe a sinusoid when plotted as a function 
of the displacement of the lens. The period of the sinusoid 
depends on �x1 and the focal length of the lens. The size and 
focal length of the lens can hence be chosen such as to pro-
vide at least one full sinusoid period when traversed across 
the path of the FLDI beams. With the D-FLDI, the sinusoids 
produced by each FLDI will be out of phase, due to the dis-
tance between them �x2 as the moving lens is probed. The 
mathematical description of this behavior is summarized 
below in view of clarifying the terminology and relevant 
parameters for the present work.

If the FLDI response to the moving lens is normalized to 
have unitary amplitude, the corresponding sine wave when 
the lens moves along the x-axis can be described as:

with Tn and �n denoting the spatial period and the phase 
respectively, and n = A,B representing the two FLDIs. The 
dependence of Tn and �n with �x1 and �x2 is given by: 

with fL denoting the focal length of the weak lens and an 
average period T̄  employed to calculate �x2 . This is a rea-
sonable approximation because the two periods TA and TB 
are ideally identical, since in the type of D-FLDI configura-
tion used here the optical piece controlling �x1 is shared by 
the two FLDIs. An alternative to this approximation is to 

(1)yn = sin

(
2�

Tn
x + �n

)

(2a)�x1n =
�0fL

Tn

(2b)𝛥x2 =
T̄

2𝜋
(𝜑A − 𝜑B)

cross-correlate the two sinusoids to find the spatial lag between 
them. However, a limited sample of sinusoid cycles resulting 
from the movement range of the lens can lead to considerable 
inaccuracy on the spatial lag estimation. The results in this 
work were obtained using Eq. (2b) to calculate �x2.

Another indirect approach to estimate �x1 concerns the 
geometric disposition of the FLDI components. As detailed 
in Sect. 3.1, the internal separation distance originates from a 
divergence angle � introduced in the FLDI beam at the focus 
of its field lens fL on the emitting side. Assuming small angles, 
geometric optics yield simply �x

1
= fL� . In this work, the 

divergence angle is produced by means of a Sanderson prism 
(Sanderson 2005), which consists of a bend-stressed polycar-
bonate bar. Following the approach in Biss et al. (2008), linear 
elastic theory can be used in combination with the properties 
of the prism material to estimate the resulting divergence angle 
introduced between the beams:

with E the material modulus of elasticity, � the bending 
deflection, b the thickness of the bar and Y and L describing 
the bending supports as shown in Fig. 2. The fringe-stress 
coefficient f� is an optical property of the polycarbonate 
material measured using a light source of wavelength � , 
with their ratio remaining constant for varying wavelengths.

(3)� =
�

f�

6E�b

(Y2 − 3L2)

Fig. 1   Schematic of a double-foci FLDI system with constant separation distance. Beams propagate from left (pitch-side) to right (catch-side). 
The two independent FLDIs are shown as different colors. Optical components required to duplicate the standard system are highlighted in red

Fig. 2   Schematic of the arrangement to generate a pure bending 
moment
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2.2 � Blast waves

A blast wave is originated in a fluid as a result of sudden 
movement, such as the expansion of high-pressure gases 
previously confined, or an instantaneous localized energy 
release. The pressure disturbance caused by such an event 
propagates away from its source with the local speed of 
sound. In ambient air, the elevated pressure is accompanied 
by an elevated temperature, which causes the local speed of 
sound to increase. With these portions of the disturbance 
propagating faster than their vicinity, a discontinuity is even-
tually formed as a shock wave front (Kinney and Graham 
1985).

The velocity described by a moving shock wave is pro-
portional to its strength. In the case of blast waves originated 
by localized events such as energy addition in a finite vol-
ume, the strength of the shock wave front will progressively 
become weaker due to volume divergence, dissipation and 
relaxation. As the blast wave loses strength, it eventually 
becomes an acoustic pulse, propagating approximately with 
the ambient sound speed. Even in this limit, it still retains a 
distinct pressure signature marked by a compression phase 
and an expansion phase. This waveform of unique shape 
and known convection speed offers ideal conditions for 
the experimental detection of distances. Nonetheless, this 
requires knowing at which point the blast wave is adequately 
approximated as an acoustic pulse.

An accurate physical simulation of the blast wave evo-
lution is beyond the scope of this work. Instead, a simple 
formulation of blast wave convection velocity as a function 
of distance is pertinent. Specifically, the case of very weak 
blast waves, with M ≈ 1 no more than a few centimeters 
from the source will be of interest.

Jones et al. (1968) proposed a simple theoretical model 
to estimate the trajectory of the blast wave generated by a 
lightning discharge. The model is based on the strong shock 
similarity solution for a cylindrical shock wave, first-order 
corrected for the weak shock limit1. It will be shown in 
Sect. 4.2 that for the spark-generated disturbance in this 
work, the region with significant gradient of blast wave 
propagation velocity is confined to the vicinity of the source 
(distances of same order of magnitude as the length of the 

spark). Therefore, assuming the shock wave to be cylindri-
cal is reasonable when considering the blast wave trajectory 
estimation.

The trajectory of the shock wave front is described in 
terms of radius R and arrival time t. The undisturbed speed 
of sound c0 and a characteristic radius R0 are used to non-
dimensionalize R and t as x = R∕R0 and � = c0t∕R0 , respec-
tively. The characteristic radius is defined as:

with � the specific heat ratio (assumed constant), P0 the 
undisturbed ambient pressure, E0 the energy deposited per 
unit length and B = 3.94 a constant for air. The trajectory for 
the weak shock is described as:

Equation (5) can be used to obtain an analytic expression for 
the dimensional shock wave convection velocity Us = dR∕dt 
as a function of the distance to the blast wave source R, as:

In this equation, the only unknown parameter is R0 , which is 
determined by the energy addition E0 following Eq. (4). An 
experimental method to obtain E0 will be shown in Sect. 4.2.

3 � Experimental setup

3.1 � Double‑foci FLDI

The D-FLDI arrangement used in this work is shown sche-
matically in Fig. 1. The laser source is a 200 mW Oxxius 
LCX-532S DPSS laser with nominal wavelength 532.3 nm. 
As mentioned in Sect. 2.1, Sanderson prisms are used to split 
the beams into interferometric pairs. The prismatic bar is a 
6 mm thick MakrolonⓇ bent with L = 85 mm and Y = 29 mm 
(refer to Fig. 2). Light intensity after beam recombination 
is measured using Thorlabs DET36A2 photodetectors, ter-
minated with 50� . The outputs from the photodiodes were 
amplified 25 times using a SRS SR445A DC-350 MHz 
preamplifier. All data presented in this work were recorded 
for 1 ms using an AMOtronics transient recorder with DC-
coupling and a sampling rate of 100 MHz.

The FLDI presented here has been designed to oper-
ate in the HEG shock tunnel (DLR 2018). The free gap 
between the field lenses is approximately 3.8 m. The beams 
are expanded to approximately 45 mm diameter at the field 

(4)R0 =

√
4E0

�BP0

(5)� =
1

2

�√
1 + 4x2 − 1

�

(6)Us = c0

√
1 + 4(R∕R0)

2

2R∕R0

1  Bach and Lee (1970) proposed a more complex model, derived 
from the Navier–Stokes equations assuming a power law for the den-
sity profile behind the shock wave. Although this is not the case for 
the weak shock limit, the authors highlight that the obtained shock 
trajectory would remain accurate in the limit due to the conservation 
of total mass and energy. The solution obtained through this method 
has been compared to the one from the approach of Jones et  al. 
(1968), yielding identical results for trajectory. For simplicity, the 
approach from Jones et al. (1968) is retained in this work.
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lenses, which have a diameter of 100 mm and focal length 
500 mm.

Eleven different values of Sanderson prism deflec-
tion were used, allowing flexibility of separation between 
the orthogonally polarized components in the range of 
70 ≤ �x1 ≤ 250 �m . When adjusting the prism deflection, 
bending was always applied past the intended value and 
then returned to it, to avoid hysteresis following Biss et al. 
(2008). The prism deflections � were measured with a deflec-
tion gauge with 0.01 mm precision. The investigations were 
separated into indirect evaluation using a lens with focal 
length 3 m and the present blast wave method (4 points), and 
direct measurement using a DataRay TaperCamD-UCD23 
beam profiler (7 points) as detailed in Table 1. The table 
also shows the beam divergence angles corresponding to 
the Sanderson prism deflection values, for reference. These 
angles are estimates from linear elastic theory, including a 
vertical offset due to residual stress to be seen in Sect. 4.1.

Prior to blast wave measurements, the undisturbed 
response of the FLDI was adjusted to approximately half-
way between its lowest and highest output, where sensitivity 
is at its maximum. This was accomplished by fine adjust-
ment of the relative position of the Sanderson prism on the 
catch-side along the axis of beam separation. When the 
beam-splitting optics is manipulated in this way, the phase 
difference between the resulting colinear beams changes. 
Since the interferometer is adjusted to an infinite fringe con-
figuration, this results in an uniform intensity change after 
the beams are made to interfere with the polarizer before 
the photodiode. This approach is present in Lawson et al. 
(2019), only using Wollaston prisms instead of Sanderson. 
Conversion of voltage produced by the photodetectors into 
phase difference was also performed following that work.

Duplication of the basic FLDI into two or more closely 
spaced systems can be achieved in many different ways 
(Ceruzzi and Cadou 2019; Jewell et al. 2019; Bathel et al. 
2020; Weisberger et al. 2020; Gragston et al. 2021a). In the 
present work, the D-FLDI is produced by means of a Wol-
laston prism of 2◦ splitting angle together with a polarizer, 
highlighted in red in Fig. 1. In this approach, the prism splits 
the incoming beam into two diverging beams with orthogo-
nal polarization. The accompanying polarizer is oriented to 

project the beams back into the original polarization plane, 
such that the remainder of the system operates identically to 
the single FLDI arrangement. With both the original beam 
and the polarizer oriented at 45◦ with respect to the fast axis 
of the prism, two systems with identical power are obtained.

The duplicated system is obtained regardless of the pre-
cise positioning of the pair prism-polarizer on the pitch-side, 
as long as it is placed before the pitch-side Sanderson prism. 
Depending on its position with respect to the expanding and 
field lenses on the pitch-side and their focal lengths, multiple 
values of bundle separation �x2 at the D-FLDI center plane 
can be achieved with the same Wollaston prism, which can 
be advantageous in investigations aiming at, e.g., compar-
ing spectral amplitudes between multiple points. A novel 
approach following this objective with a grid of FLDIs is 
presented in Gragston et al. (2021a).

However, this flexibility comes at the cost of allowing 
the two FLDI systems to describe non-parallel trajectories 
between the field lenses, as their axes will cross either before 
or after the focal length of the pitch-side field lens for all but 
one specific position of the splitting prism-polarizer pair. 
This way, the separation between the systems �x2 will vary 
along the probing region, which must be considered when 
using the duplicated FLDI setup to perform flowfield veloc-
ity measurements. Since the signal obtained on each FLDI 
is an integration of flowfield disturbances across the probing 
volume, disturbances crossing the FLDIs at stations with 
different values of �x2 may bias the velocity measurement.

To avoid this, a parallel disposition of FLDI bundles is 
recommended in velocimetry applications, as highlighted 
in Bathel et al. (2020). In that work, a Nomarski prism was 
used to ensure parallelism between the FLDIs. This type of 
birefringent prism works similarly to the Wollaston prism 
used here, but redirects the output beams so that they cross 
at a point ahead of it. Parallelism between the two FLDIs is 
thus achieved by adjusting this crossing point to be at the 
focal length of the pitch-side field lens, i.e., to coincide with 
the Sanderson prism on the left in Fig. 1.

In the present work, a similar effect is achieved by com-
bining the Wollaston prism with the convergent lens respon-
sible for expanding the beams in the FLDI on the pitch-side. 
The precise position and focal length of the expanding lens 

Table 1   Sanderson prism deflections (measured) and corresponding beam divergence angles (estimated from linear elastic theory) investigated 
in the present work, separated by method and scope

Method Scope � [mm] � [arc min]

Beam profiler �x
1
 , �x

2
0.25, 0.40, 0.55, 0.70, 0.90, 1.10, 1.40 0.42, 0.58, 0.75, 0.92, 1.14, 1.36, 1.69

Moving lens �x
1
 , �x

2
0.30, 0.59, 0.95, 1.45 0.47, 0.79, 1.19, 1.75

Blast wave �x
2

0.30, 0.59, 0.95, 1.45 0.47, 0.79, 1.19, 1.75
Linear elastic theory �x

1
0.00 to 1.80 (continuous) 0.14 to 2.14
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are predefined by a combination of other parameters in the 
FLDI, namely the focal length of the field lens, the desired 
distance between the field lenses and the desired maximum 
beam diameter. Once this is set, the position of the Wollas-
ton prism with respect to the expanding lens is determined 
using geometric optics such that the image of the origin 
of the two output beams coincides with the location of the 
pitch-side Sanderson prism in the setup. The center axes of 
each FLDI generated using this approach are shown in Fig. 1 
as dashed lines with the corresponding colors.

For system design purposes, an initial estimate of the 
resulting �x2 as a function of the position of the optical ele-
ments and the splitting angle of the Wollaston prism can be 
obtained through trigonometric relations. Once all compo-
nents are in place, a more precise measurement of the final 
�x2 such as the procedure proposed in this work is essential 
to minimize errors in the velocity measurements.

3.2 � Blast wave generation

The FLDI �x2 measurement methodology proposed in this 
work requires a known and repeatable density disturbance to 
cross the optical axis of the FLDI systems. This is achieved 
in a simple manner through a spark in ambient air at rest. In 
contrast to past works which have successfully used laser-
induced breakdown sparks to study the FLDI response (Par-
ziale 2013; Bathel et al. 2020; Weisberger et al. 2020), an 
electric discharge is used here. The advantages for the pur-
pose of the current work are high positioning flexibility with 
reduced cost and safety risks, while producing a blast wave 
with as little strength as possible with good repeatability.

The weak disturbance is preferred here because the con-
vection velocity of an expanding blast wave varies as it 
propagates, but tends asymptotically to the ambient speed 
of sound, as seen in Sect. 2.2. The premise is to use the 
known value of this lower bound to obtain the separation 
between the FLDI bundles from the time lag between the 
signals. Therefore, it is advantageous that the blast wave is 
weak enough to degenerate into an acoustic pulse as close as 
possible to the source, hence minimizing the required physi-
cal space and the influence of external factors. Furthermore, 
the spark generation in ambient air without requiring any 
specific environmental conditioning is aimed at facilitating 
the application of the method. Only the ambient temperature 
is required to determine the local speed of sound.

The electric spark is obtained by means of an automotive 
spark plug. The distance between the electrodes of the spark 
plug is increased to approximately 4 mm such that the result-
ing blast wave produces the necessary amplitude of density 
fluctuations to be detected with the FLDI. A schlieren image 
of the spark-generated blast wave is shown in Fig. 3.

To study the evolution of the blast wave trajectory and 
determine the distance from the source beyond which the 

propagation velocity is M ≈ 1 , the spark plug setup is 
installed on a translating mount with 0.1 mm precision. 
This allows the blast wave source to move along the axis of 
separation between the FLDI bundles, while the FLDI setup 
remains untouched. The combined uncertainty of operator 
and hardware to control this movement was estimated as 
±0.25 mm. The origin of the mount places the center of 
the gap between the electrodes approximately at the middle 
point between the two FLDIs. This was manually adjusted 
in a much coarser manner, with uncertainty in the order of 
1 mm. Given the sensitivity of the theoretical velocity dis-
tribution to the origin of the blast wave, the vector of meas-
urement positions is allowed to be uniformly offset by an 
optimization algorithm when processing the results, as will 
be detailed in the next section.

Measurements were taken at 23 positions corresponding 
to nominal distances between spark source and FLDI probe 
of 3 mm to 50 mm. The spacing between adjacent probing 
positions was made smaller closer to the source, where the 
velocity gradient is larger. The spark plug was controlled to 
produce a single spark during the recording time, allowing 
the disturbances to fully dissipate between discharges. Ten 
blast waves were generated and recorded at each position. 
The lowest and highest observed time lags were discarded, 
and the remaining 8 were individually analyzed. The ambi-
ent temperature near the probing region was measured with a 
digital ambient thermometer with precision of 0.05◦ C before 
each series of measurements to calculate the ambient sound 
speed. When the sound speed is used in Sect. 4.2 to deter-
mine �x2 , the uncertainty carried over from the tempera-
ture measurement is less than 0.01% and will therefore be 
neglected.

4 � Results and discussion

4.1 � Estimation of distances with existing methods

An example of the results following the procedure described 
in Sect. 2.1 is shown in Fig. 4. The data were obtained 

Fig. 3   Enhanced schlieren image of the blast wave generated using an 
automotive spark plug
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using the D-FLDI described in Sect. 3.1 with Sanderson 
prism deflection � = 0.59 mm and a lens with focal length 
fL = 3  m. The horizontal error bars correspond to the 
±0.25 mm combined uncertainty of operator and hardware 
to control the lens position, which was performed using 
the same supporting mount used for the spark generator 
described in Sect. 3.2.

The period and phase of the sine functions in the form 
of Eq. (1) are determined using least-squares method on 
the normalized FLDI output. A Monte Carlo approach is 
adopted to estimate a representative uncertainty for the fitted 
sinusoids as follows. Uniformly randomized errors on the 
lens displacement values within the assumed uncertainty of 
±0.25 mm are used to calculate 10,000 scenarios. The same 
modified lens displacement vector is used for both FLDIs 
in any given case, since the separation distance between 
them is constant and independent of this uncertainty. From 
the obtained distribution of periods and phases, an average 
sinusoid is obtained for each FLDI (blue and red lines in 
Fig. 4). An idea of the variation of the fits is given by the 
shaded area around each line, composed of 1000 different 
results from the Monte Carlo simulation. Values for �x1 and 
�x2 calculated using Eq. (2) with the average Tn and �n are 
shown in the textbox. Finally, the inset plot displays the 
two average sinusoids when one of them is offset in the x 
direction by the calculated �x2 . An additional offset in the 
y direction is introduced for clarity, otherwise the lines are 
indistinguishable. The precise overlapping in terms of both 

phase and period is a validation of the physical assumptions 
of this methodology.

The distribution of period Tn and phase �n values 
obtained with the Monte Carlo approach are used to esti-
mate the uncertainties for the calculated �x1 and �x2 . Based 
on Eq. (2), the propagation of uncertainties � of �x1 and 
�x2 given uncertainties for period T and phase difference 
�� = �A − �B yields: 

For the example shown in Fig.  4, Eq. (7) gives 
��x1A = 0.86 �m , ��x1B = 0.75 �m and ��x2 = 0.11  mm. 
Hence the �x1 obtained for the two FLDIs shown in the 
textbox in Fig. 4 is the same within the uncertainty bounds, 
which is expected and validates the approach of using an 
average T̄  in Eq. (2b). It is also noted that the uncertainty of 
�x2 is proportionally much larger than that of �x1 . This is a 
consequence of the lens displacement uncertainty having a 
much greater influence on the phase of the sine wave than 
on its period, as can be inferred from the shaded regions in 
Fig. 4.

Complementary to the beam distance measurements per-
formed with the moving lens, the FLDI beams were imaged 
at the center plane of the D-FLDI using a beam profiler. 
An example of the obtained image is given in Fig. 5, for 
Sanderson prism deflection � = 0.9 mm. The resolution of 
the beam profiler was in situ calibrated as 10.3 �m per pixel. 
Distances �x1 and �x2 were measured by detecting the peak 
values of profiles resulting from averaging the pixel intensi-
ties along each vertical line of the images. Ten independent 
images were obtained for each Sanderson prism deflection. 
To achieve sub-pixel accuracy, the average pixel intensity 
profile of each independent image was interpolated using 
a shape-preserving cubic interpolation and smoothed using 
a moving average. The pixel difference between the peaks 
identified in the resulting profiles was then converted to 

(7a)��x1n =
�0fL

T2
n

�Tn

(7b)𝜎𝛥x2 =

√(
𝛥𝜑

2𝜋
𝜎T̄

)2

+

(
T̄

2𝜋
𝜎𝛥𝜑

)2

Fig. 4   Normalized double-foci FLDI response to a moving lens. Dots 
with error bars denote the acquired datapoints and lines correspond to 
least-square fits of sine functions. Shaded areas around the sinusoids 
are possible fits considering randomized errors along the lens dis-
placement points. Resulting �x

1
 and �x

2
 measurements are displayed 

in the textbox. The inset shows the result of horizontally offsetting 
one of the sinusoids by �x

2
 , ideally causing the two lines to overlap. 

They are also vertically offset by 10% for clarity. Data corresponding 
to Sanderson prism deflection � = 0.59 mm

Fig. 5   Beam profiler image of the D-FLDI of the present work. Image 
obtained with Sanderson prism deflection � = 0.9 mm
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distances and used to calculate a mean value and standard 
deviation.

By changing the deflection of the Sanderson prism � and 
repeating the procedures described above, the dependency 
of �x1 with the prism deflection � can be demonstrated. Fig-
ure 6 shows the results of this calibration for multiple values 
of � , with �x1 plotted on the left y-axis and �x2 on the right 
one. The expected results are that �x1 linearly increases with 
the prism deflection � , while �x2 remains unchanged since 
it is not defined by the Sanderson prism settings. The lin-
ear elastic theory estimate for �x1 is obtained from Eq. (3), 
using the optical properties for polycarbonate mentioned in 
Biss et al. (2008), namely f� = 7.0 kN/m for � = 546.1 nm, 
and the mechanical properties of MakrolonⓇ following the 
manufacturer datasheet, E = 2.4 GPa. A small vertical offset 
is introduced in the theoretical prediction to account for the 
trend of an apparent finite �x1 with � = 0 . This may be due 
to a residual stress field in the prism, as highlighted in, e.g., 
Fulghum (2014) and Birch et al. (2020).

The results show that �x1 has a similar behavior for both 
FLDIs, with values that coincide for a given � and which 
are well described by the correlation obtained using linear 
elastic theory once an empirical estimate of residual stress 
offset is taken into account. Uncertainties for �x1A and �x1B 
for both the lens and profiler methods have similar magni-
tude as presented for the example above (order of 1 �m ), and 
are not plotted for clarity. A comparatively low accuracy of 
the beam profiler results is observed for the lower end of � 
values. This is a result of inadequate pixel density of the 
instrument to detect beams this close together, making them 
harder to distinguish.

Regarding �x2 , the distribution of values calculated 
through the moving lens method admits the definition of 
a horizontal line that crosses all points within their uncer-
tainty. Such a line would confirm the expected behavior of 
�x2 not depending on the Sanderson prism configuration. 
However, a noticeable fluctuation among the calculated val-
ues of �x2 can be observed, even though they all yielded a 
similar good signal overlap as seen in the inset of Fig. 4 
(not shown). Together with the relatively large error bar of 
each obtained value (approximately ±6% ), concern is war-
ranted as the uncertainty in �x2 is directly fed through to the 
measurement of velocities using the D-FLDI. One way to 
lower this uncertainty is to collect more independent sinu-
soid sweeps, such as to obtain a reliable mean of �x2 with 
an associated standard deviation. Another way is to address 
the large uncertainty of each calculated �x2 , by reducing the 
influence of the lens displacement uncertainty on the sinu-
soidal fits. This may be accomplished by either reducing the 
uncertainty of each point (e.g., with careful operator action) 
or by using more points on each sweep. All these alterna-
tives, however, significantly add effort to a procedure that is 
already inherently time-demanding.

Looking at the �x2 estimates from the beam profiler 
images, a much more consistent distribution is observed. 
The uncertainty of each point is significantly smaller than 
the moving lens results, at ±0.6% . Also, the mean values 
remain unchanged for different values of Sanderson prism 
deflection, with a mean of �x2 = 1.937 ± 0.001 mm . For a 
direct comparison, the results obtained with the method pre-
sented in this work are also highlighted in Fig. 6. Excellent 
agreement to the beam profiler results can be verified. The 
details pertaining to these measurements are presented in 
the next section.

4.2 � Estimation of distances through blast wave 
detection

An alternative to the procedures exemplified in Sect. 4.1 is 
presented in this section. A blast wave is used as a means 
to produce a disturbance with clear signature on the FLDI 
response. The main objective here is to measure �x2 with 
low effort and increased precision, addressing the issues 
highlighted previously.

A sample of blast wave detection using D-FLDI is shown 
in Fig. 7. For ease of operation in the experimental setup, 
FLDI B is upstream of FLDI A with respect to the blast wave 
source, but equivalent results may be obtained inverting the 
disposition of source and probe. The D-FLDI response is 
minimally post-processed to values of phase difference �� . 
The time axis is arbitrarily offset to yield t = 0 when the 
blast wave arrives at FLDI B, since the method explored 
in this section is independent of the blast wave travel time 
upstream of the first FLDI bundle. The clear shape described 

Fig. 6   Values for FLDI �x
1
 (left y-axis) and �x

2
 (right y-axis) meas-

ured using the moving lens method and beam profiler images for mul-
tiple adjustments of Sanderson prism deflection � . The dashed line 
indicates the linear elastic theory prediction, vertically offset to best 
fit the data. The values for �x

2
 obtained with the method suggested in 

this work are also shown for comparison
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by the blast wave detection on each FLDI indicates that an 
accurate estimate of time lag can be obtained as a peak in 
the cross-correlation between the signals.

It is also noteworthy that the signal detected with each 
FLDI is almost identical but for the time lag. This is 
expected since the blast wave does not undergo significant 
changes between the closely spaced FLDI probes, unless 
very close to the spark source. Nonetheless, the multiplica-
tion of FLDI beams requires the addition of system com-
ponents and complexity. The quality and sensitivity of the 
resulting double- or multi-foci FLDI may not be identical, 
and hard to quantify. The controlled disturbance produced 
with the electric spark may therefore be used as a reference 
to identify potential issues that may need addressing.

In Fig. 7, secondary events are observed in the time sig-
nals occurring after the passage of the main blast wave. 
These events correspond to interactions between the blast 
wave and the spark plug structure, as can also be seen in the 
schlieren image of Fig. 3. Events of this nature were veri-
fied to have been strong enough at certain stations to bias 
the cross-correlation of the signals if included. Nonetheless, 
they were always sufficiently separate from the main blast 
wave signature to be easily discarded from the signals prior 
to cross-correlation, hence not interfering with the results 
presented here.

It should be noted that cross-correlating the signals to 
obtain the time lags is preferred for robustness. By tak-
ing into account the full signature of the blast wave on the 
FLDI probes, the lag measurement becomes less sensitive to 
eventual flowfield non-uniformities or signal-to-noise-ratio 

issues. Nonetheless, time lags may also be obtained with 
simpler approaches, such as measuring the time difference 
between the signal peaks. This is an alternative if the sig-
nature from the blast wave is not as easily isolated from 
secondary events as shown here. An example is if the FLDI 
probes are positioned with respect to the surface of a model 
at a certain distance which is not large enough to allow the 
reflected wave to arrive significantly later than the main one, 
nor small enough for the main and reflected wavefronts to 
merge together before reaching the FLDI probes (Kinney 
and Graham 1985).

Since the blast wave propagates with increased speed 
near the source and the D-FLDI is kept unchanged, the 
obtained time lags increase as the source is moved away 
from the D-FLDI. When the time lags stabilize around a 
certain value, an indication is obtained that the acoustic limit 
of the blast wave was reached, in which it propagates with 
M ≈ 1 . For a more accurate prediction of this region, Eq. (6) 
is used to obtain the analytic distribution of wave convection 
velocity. In this equation, a single unknown determines the 
trajectory of the wavefront, namely the energy deposited by 
the spark E0 , which defines R0 through Eq. (4). Since the 
distance between the two FLDIs is the same for all blast 
wave probings, the spark energy can be obtained using the 
detected distribution of time lags without explicit knowl-
edge of the distance �x2 , as the solution for an optimization 
problem as follows.

In a D-FLDI constructed as presented in this work and 
considering the very weak blast wave produced, the velocity 
gradient between the two FLDI bundles will generally be 
small enough to be neglected without incurring an excessive 
error. This way, at each probing location Ri (measured with 
respect to the blast wave source) the distance �x2 will be 
given as a function of the time lag �ti as �x2 = Us(Ri) ⋅ �ti , 
with the blast wave velocity Us a function of Ri (and E0 ) 
according to Eq. (6).

Because �x2 is kept constant as the blast wave source is 
moved away, the product between the theoretical Us and the 
experimental �t must remain constant for all measurement 
locations i = 1,…, n when the correct value of E0 is used. In 
other words, the derivative of Us(Ri) ⋅ �ti with respect to the 
radial coordinate r must be zero. The numerical optimiza-
tion problem hence becomes finding E0 that minimizes the 
objective function f composed by the quadratic sum of these 
derivatives:

The derivative in each point Ri is roughly approximated 
through the mean value theorem, by means of finite differ-
ences between Ri−1 and Ri+1 . This is a reasonable approach 
because the distribution of velocities and time lags along 

(8)f (E0) =

n∑

i=1

[
d

dr

(
Us(Ri) ⋅ 𝛥ti

)]2

Fig. 7   Blast wave detection using the double-foci FLDI. Spark gener-
ator is 30 mm from FLDI B, which is upstream of FLDI A. Main and 
secondary events are highlighted. The origin of the time axis is arbi-
trarily offset to match the blast wave arrival at the position of FLDI 
B. Data corresponding to Sanderson prism deflection � = 0.95 mm
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the radial coordinate is expected to describe a well-behaved 
function. This is further conditioned by using for each loca-
tion the average of time lags obtained with the independent 
measurements, denoted above with the bar over �ti.

As mentioned in Sect. 3.2, the origin of the position 
vector was manually adjusted to roughly place the spark 
generator at the middle point between the two FLDIs. 
However, the theoretical velocity distribution Eq. (6) 
is highly sensitive to the accuracy of this origin to ade-
quately capture the region of stronger velocity gradients. 
Therefore, a second optimization layer was introduced in 
the algorithm, allowing a systematic offset of the posi-
tion vector to be adjusted. This layer was placed above 
Eq. (8), searching for the value of position vector offset 
which minimized the standard deviation of the distances 
calculated as Us(Ri) ⋅ 𝛥ti resulting from the inner optimiza-
tion layer. This target is sustained by considering that the 
perfect representation of the data by the theoretical curve 
should yield the exact same �x2 on all points. A schematic 
representation of the full algorithm is shown in Fig. 8. 
Although this double-layer procedure yields a noticeable 
improvement on the overlapping of experimental data and 
theoretical model, adequate results can also be obtained 
without the second (outer) optimization layer, with the 
resulting �x2 having been observed to vary by a maximum 
of only 0.7%.

Once a value of energy deposition E0 is found, the blast 
wave velocity as a function of its radius is determined. An 
estimate of the separation distance between the FLDI bun-
dles �x2 can hence be obtained from any of the query points 
using the local velocity and the measured time lag. To dem-
onstrate the method and provide an idea of precision, the val-
ues of �x2 reported here are obtained as an average between 
all points collected for each Sanderson prism configuration:

where i = 1,…, n denotes the measurement positions as 
before, and j = 1,…,m represents the individual meas-
urements performed at each position. With a total number 
of 184 independent measurements in each series ( n = 23 
positions, m = 8 measurements at each position), the stand-
ard deviation of the �x2 values is used as an estimate of 
uncertainty.

An example of the measurements and resulting calculated 
blast wave trajectory is shown in Fig. 9. The solid line repre-
sents Eq. (6) calculated using E0 obtained from minimizing 
Eq. (8). The dots with error bars are the means and standard 
deviations of Mach numbers calculated using the experimen-
tal time lags and the separation distance �x2 calculated with 
Eq. (9). The horizontal error bars indicate the ±0.25 mm 
position uncertainty mentioned in Sect. 3.2.

(9)�x2 =
1

n ⋅ m

n∑

i=1

m∑

j=1

(
Us(Ri) ⋅ �ti,j

)
The dotted lines in Fig. 9 are the blast wave trajectories 

obtained with variation of ±30% on the calculated E0 . The 
small influence of such a large difference shows that the 
accuracy of the energy deposition estimate is not a deter-
minant factor for the D-FLDI parameter estimation studied 
here.

This procedure was repeated for the same Sanderson 
prism configurations used with the moving lens method. 
The obtained values of �x2 are reported in Table 2. Two 
important results can be highlighted in this table. First, the 
obtained values for �x2 are essentially the same across all 
different � (hence �x1 ) as they should, and all agree with the 
beam profiler measurements to within 0.2% (refer to Fig. 6). 
Second, the standard deviation in all cases corresponds to 
less than 0.5% of �x2 , i.e., a very consistent value of �x2 
is obtained across all measurement points. Hence a precise 
measurement of �x2 can be performed by using time lags 
detected in a single position, as long as the blast wave local 
convection velocity is known.

Fig. 8   Fluxogram of the double-layered algorithm to calculate the 
best theoretical fit to the experimental data. The f (E

0
) used in the 

inner layer is defined by Eq. (8)



Experiments in Fluids (2022) 63:53	

1 3

Page 11 of 13  53

An adequate estimate of the velocity in the vicinity of 
the blast wave source can only be obtained with measure-
ments at multiple locations, e.g., by means of the optimiza-
tion procedure described here. Nonetheless, Fig. 9 shows 
that such an elaborate estimate is not strictly necessary. 
The sonic limit beyond which M ≈ 1 is reached still rela-
tively close to the source, for the case investigated here in 
which an automotive spark plug is the source of the blast 
wave. Farther than approximately 20 mm from the source, 
the blast wave convection velocity can be approximated as 
M = 1 , requiring no further measurements. Processing in 
this simplified way the collection of measurements used to 
obtain Table 2 yielded no more than 0.5% difference to the 
beam profiler mean measurement, with standard deviations 
ranging from 0.2% to 0.7% in the upper limit of 95% confi-
dence interval. Even if the experimental constraints force a 
measurement very close to the source, Fig. 9 indicates that 

assuming M = 1 to calculate the beam separation distance 
from the signal time lags introduces no more than 3% error 
as close as 10 mm. Finally, if in addition to the approxima-
tion of M = 1 , the time lags were obtained simply using the 
peaks of the signals instead of cross-correlation, as previ-
ously mentioned, the obtained differences to the beam pro-
filer measurements were still 1% or less for distances to the 
spark source larger than 20 mm.

The method suggested here is therefore capable of pro-
viding a good experimental estimate of the beam separation 
distance �x2 of a double- or multi-foci FLDI with very low 
effort. The acquisition of repeated blast wave measurements 
at some location within the sonic limit region is quick and 
requires little mechanical preparation, with the whole pro-
cess taking only a few minutes.

As a side note, the blast wave measurements can be fur-
ther used to give an approximate estimate of the internal 
separation distance �x1 as follows. For any given distance 
from the source, the magnitude of the FLDI signal �� 
will be proportional to the separation distance between the 
interferometric pair �x1 . As long as this separation is kept 
small relative to the waveform of the blast wave, the ratio 
��∕�x1 is constant. It is an approximation of the spatial 
derivative of the disturbance, which remains unchanged 
between measurements if the source and the measurement 
location are the same. This way, if the separation �x1|�1 is 
known for one Sanderson prism deflection �1 , the separa-
tion for other configurations �k , k = 2, 3,… can be obtained 
by matching the magnitude of the measured ��|�k , i.e., 
�x1|�k = ��|�k∕(��∕�x1)|�1 . However, at least one known 
value of �x1 is still required, and uncertainties are difficult to 
assess. Nonetheless, Fig. 4 in Sect. 4.1 has shown that linear 
elastic theory provides direct and reasonable estimates of 
this distance when a Sanderson prism is employed to pro-
duce �x1 , requiring only a pre-strain offset to be adjusted. 
Once this is accomplished, it becomes a good practical sub-
stitute for the lens procedure if needed. The measurement 
of �x1 through blast wave detection is therefore only recom-
mended for verification purposes.

5 � Conclusion

The contributions presented in this work addressed a new 
methodology of indirect estimation of the distance separat-
ing the probing volumes of a double-foci FLDI, �x2 . A weak 
blast wave generated in ambient air at rest using an automo-
tive spark plug was shown to become an acoustic pulse close 
to its source. The known convection velocity of this type of 
disturbance, namely the ambient sound speed, was used to 
obtain �x2 from the time lag between the adjacent systems.

An analysis comprising a wide range of measurement 
locations showed that reliable and accurate estimates with 

Fig. 9   Blast wave trajectory regressed from FLDI measurements. 
Solid line indicates the analytic solution using the E

0
 value obtained 

from the optimization procedure. Dotted lines indicate the solutions 
for ±30% on the nominal E

0
 . Measured Mach numbers obtained from 

the time lags detected with D-FLDI, considering the separation dis-
tance indicated in the legend. Data corresponding to Sanderson prism 
deflection � = 0.59 mm

Table 2   Measured FLDI beam separation distances �x
2
 for different 

Sanderson prism deflections �

All units in mm

Sanderson prism � Double-foci FLDI �x
2

0.30 1.937 ± 0.008

0.59 1.933 ± 0.007

0.95 1.937 ± 0.006

1.45 1.935 ± 0.004

Mean: 1.936
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as little as ±0.4% uncertainty ( 2� ) can be obtained from mul-
tiple measurements in a single location, which is easily and 
quickly executed. Comparison to direct measurements using 
a beam profiler showed differences smaller than 0.5% if a 
single location was used farther than 20 mm from the spark 
source, and less than 0.2% if multiple stations are combined. 
The measurements were shown to be consistent throughout 
multiple configurations of the FLDI Sanderson prism, which 
controlled the unrelated separation between the interfero-
metric pair composing one FLDI, �x1.

The existing method of indirect assessment of beam sepa-
ration distances using the FLDI response to a lens with large 
focal length was critically evaluated. Results corroborated 
its excellent ability to measure �x1 . However, for �x2 the 
lens method yielded measurement uncertainties of ±6% , 
together with a considerable variation of the mean results 
(up to 5% ) when �x1 was varied by means of Sanderson 
prism adjustment.

Velocimetry by means of FLDI measurements is only as 
accurate and reliable as the measurement of the separation 
distance between the FLDI systems �x2 . The present method 
is therefore recommended as a means to obtain this value in 
double- or multi-foci FLDI. It preserves the low-cost benefit 
of the moving lens indirect approach while being much less 
time-consuming with improved accuracy and precision, both 
comparable to direct beam imaging. Additionally, it requires 
very little free space (20 mm length ideally, less if neces-
sary), being more practical than a beam profiler in case of 
limited spatial availability such as in the proximity of model 
walls. Also, the non-imaging nature of this method makes 
it applicable to multi-point FLDI systems in which the foci 
are not optically separated.

Finally, it is worth noting that once the blast wave decays 
to an acoustic pulse, it propagates with little change between 
closely spaced FLDI probes. Being a simple, well-known 
and easily reproduced type of disturbance, it may therefore 
be a helpful reference for system response verification in 
multi-foci FLDI.
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