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Abstract 
An underwater force sensor for internal waves is presented. Using this sensor, we measure forces at a location near the surface 
of a fluid. The sensor performs a point measurement with a high temporal resolution. We perform measurements in a density-
stratified fluid contained in a trapezoidal basin. By shaking this basin longitudinally, internal gravity waves are generated. 
Controlling the frequency with which the basin oscillates, these waves propagate toward a wave attractor whose shape varies 
from complicated to rectangular. We measure the force exerted by these waves on a plate that is partially submerged into 
the fluid. We observe the formation and decay of wave attractors. When a surface reflection of a wave attractor is near our 
sensor we measure (relatively) strong forces. We confirm our findings with simulations. We observe an asymmetry in the 
direction of the force. This asymmetry leads to a net force and could imply the driving of a mean flow.

Graphical Abstract

Internal waves only exist when the fluid in which they 
propagate is stratified in density (internal gravity waves) or 
angular momentum (inertial waves). These waves propagate 

obliquely relative to the stratifying direction. The angle of 
propagation is fixed by the wave’s frequency and the strati-
fication. Waves of given frequency (e.g., tides) preserve this 
inclination when reflecting from any boundary, also when 
reflecting from a sloping boundary. The consequence of this 
constraint is that for almost any shape of basin, these waves 
are focused onto a limit orbit, called a wave attractor (Maas 
1997).

The existence of internal and inertial wave attractors was 
shown in experiments (Maas and Lam 1995; Maas 2005). In 
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Maas and Lam (1995), perturbations were generated using 
parametric resonance with vertical oscillations of a tank. 
Later, experiments generated wave attractors in density 
stratified fluid by horizontal oscillations of a tank (Haze-
winkel et al. 2008, 2011a). Internal wave attractors were 
shown to persist despite basins having non-uniform strati-
fication, small-scale boundary corrugations (Hazewinkel 
2010) or being forced non-centrally in a three-dimensional 
(paraboloidal) domain (Hazewinkel et al. 2011a). In Gos-
tiaux (2007), an internal wave generator is discussed which 
allows more energy to be inserted into the system. This led 
to the discovery of a parametric subharmonic instability 
(PSI) via a triadic resonance (Scolan et al. 2013).

Two optical non-intrusive measurement techniques that 
are often used to study internal gravity waves are Synthetic 
Schlieren (Dalziel et al. 2000) and particle image velocime-
try [PIV, e.g., Maas (2005)]. See, e.g., Hazewinkel (2008, 
2010) for 2D observations; and Manders and Maas (2003); 
Hazewinkel (2011b); Pillet (2018) for 3D observations. In 
Synthetic Schlieren, density perturbations caused by inter-
nal gravity waves change the path of light rays through the 
fluid. These changing light rays are tracked using a back-
ground reference. Using digital image correlation, Synthetic 
Schlieren relates the apparent changes in the still reference 
back to the gradients of the density perturbations. This 
allows a full cross-sectionally averaged view of the 2D field 
of density gradients. In PIV, motions are visualized by illu-
minating particles within a laser sheet. These particles form 
a dot pattern similar to Synthetic Schlieren. By following the 
motion of these patterns, the local velocity can be inferred. 
PIV gives velocity fields in a plane, yielding a snapshot of 
the flow. By rapidly changing the plane of measurement, a 
3D velocity field can be determined.

We are interested in the behavior of wave attractors near 
the reflection locations, in particular their surface reflections. 
These reflection locations can be the source of interesting 
dynamics, such as triad interactions (Dauxois 2018), and can 
leave an impact traceable from satellite altimeter observa-
tions (da Silva 2012). Internal tides reflecting on continental 
slopes can deposit sediments and possibly erode the sedi-
ment surface (Cacchione et al. 2002). Because an attractor 
can experience strong gradients, it can be a challenge to 
perform accurate measurements inside these regions. To 
investigate the behavior of a wave attractor near the sur-
face of a fluid, we have designed a new sensor. This sen-
sor measures the horizontal force at one location near the 
surface. The sensor consists of a small vertical plate that 
deflects due to the movement of the fluid. This deflection 
is measured and related to the force exerted by the ambient 
pressure difference.

Many studies have been performed on the generation 
of internal gravity waves by oscillating objects in strati-
fied fluids. One of the first experimental studies on internal 

gravity waves was (Mowbray and Rarity 1967). Here, a clas-
sical Schlieren technique was used to measure the internal 
gravity waves generated by a circular cylinder oscillating 
horizontally or moving a flat strip horizontally. Later, stud-
ies focused on the generation of internal gravity waves by 
oscillating spheres (e.g., Voisin et al. (2011); Brouzet (2017) 
and references therein). With our sensor, we have gone the 
opposite route: instead of oscillating an object and studying 
the generated internal waves, we generate internal waves and 
study the response of the object. We use a small, thin flat 
plate as the object. By tracking the movement of the plate 
very accurately, we can measure the response of the plate 
caused by the internal waves.

In Sect. 1, we discuss the design of our sensor. We start 
with the deflection of a vertical plate due to a force normal to 
the plate and the measurement of this deflection. This setup 
is calibrated and several control experiments are performed. 
We model the fluid-solid interaction to relate the measured 
forces to horizontal velocities. In Sect. 2, we discuss the 
experimental setup, the generation of wave attractors and 
the use of our new sensor. In Sect. 3, we show the measure-
ments from our new sensor. We use a range of frequencies, 
including those for which wave attractors appear. Individual 
and continuous measurements are performed. We reproduce 
our experiments with simulations. In Sect. 4, we give some 
remarks on our sensor and the observations on wave attrac-
tors. We make some suggestions for improvements on our 
sensor.

1  Design of a force measurement

The main part of our sensor is a small vertical plate, the 
dimensions of which are shown in Fig. 1. The main design 
consideration for our sensor is that we want to perform force 
measurements in the flow without disturbing the flow. To 
prevent too much flow disturbance from our sensor, we use a 
plate with a small width. To achieve a large sensitivity of the 
sensor, we use a plate that is very thin. The plate is clamped 
above the fluid, penetrates the surface of the fluid and has 
a free end in the fluid. A force is exerted on the submerged 
part of the plate due to fluid movement. The plate deflects 
due to a transverse force and this deflection is measured 
above the surface of the fluid by a laser displacement sensor. 
Figure 2 shows a schematic of this process. In the coming 
sections, we explain the design further.

1.1  Relation between force and deflection of a flat 
plate

We model the force exerted by the fluid as a point force act-
ing 5mm from the tip of the plate, at the green dot in Fig. 1. 
For one fixed end at s = d and a small force Fx applied at 
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the free end of the plate at s = 0 , the deflection � along the 
length of the plate is

where 0 ≤ s ≤ d is the coordinate along the length of the 
plate, d the effective length ( d = l − lc − 5mm = 113mm , 
with l the total length of the plate and lc the length of the 
clamp), E the Young’s modulus of the material of the plate 
and I the area moment of inertia of the cross section of the 
beam (in the xy-plane). At every location s, the deflection 
� is linear with the applied force Fx . We want to maximize 
the deflection of the beam for a given force. We achieve this 
by minimizing the area moment of inertia I. For a rectan-
gle I = wt3∕12 , where w is the width and t the thickness. 
Choosing a small thickness of the plate ensures a very small 
moment of inertia. A very thin plate has a low resistance to 
bending when exerting a force perpendicular to the plate.

Figure 1 shows the dimensions of the plate. We use a 
plate of stainless steel with a thickness of 0.1mm . Table 1 
lists further properties of the plate.

1.2  Measuring deflections

When a flow exerts a force on the plate, the plate deflects 
according to (1). To measure the deflections, we use a laser 
that measures the distance to an object: a point (above the 
surface of the fluid) on the plate. This is a Micro-epsilon 
non-contact laser displacement sensor (optoNCDT1402-10). 
The optoNCDT 1402-10 laser has a resolution of Δ� = 1�m 
and measures the deflection at s = 59mm . The smallest 
change in force the sensor can measure is 0.6�N.

1.3  Calibration

The experimental setup consisting of the plate and the laser 
is calibrated. We place the plate horizontally and the laser 
above it. The deflection due to self-weight of the plate is 
constant and is corrected for. By placing small weights 
(individual staples) on the tip of the plate, the plate deflects. 
The small weights are placed at the green dot in Fig. 1. The 
deflection is measured by the laser. We relate the output 
signal (voltage) to the force exerted on the tip of the plate. 
Figure 3 shows that the relation between force and output 
voltage is linear.

1.4  Control cases

To test the force sensor, we perform a series of control exper-
iments. First, we test the sensor without any water. Figure 4a 
shows a measurement without water. A weak, but nonzero, 
signal is measured. The frequency of the measured signal 
corresponds to the forcing frequency. Since the force sensor 
is placed on top of the tank and the entire tank is oscillated 
horizontally, the sensor is moving back and forth. The upper 

(1)�(s) =
Fx

6EI

(
s3 − 3d2s + 2d3

)
,

Fig. 1  Front (left) and side (right) views of the plate with dimensions 
in mm. The plate is clamped at the top (hashed) with a clamp length 
l
c
= 12mm and has a free end at the bottom. The laser displacement 

sensor measures the deflection of the plate at the red dot. The weights 
in the calibration are placed at the green dot. The blue line is the sur-
face level of the fluid

Fig. 2  Schematic overview of the experiment. The plate is clamped 
from above while the free end is located inside the fluid. The laser 
displacement sensor measures the distance (shown in red) to the plate 
above the fluid
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part of the plate is clamped and moves with the laser and 
tank. The lower part of the plate is free and displays some 
inertia. Since the plate is very thin it deforms easily. The 
motion of the lower end of the plate lags the motion of the 
upper part and this lag is recorded by the laser. With increase 
in forcing frequency, this lag becomes larger and the ampli-
tude of the oscillation recorded by the laser increases. The 
force increases with increase in forcing frequency.

Second, we test the sensor in non-stratified (uniform 
density) water. Figure 4b shows a measurement with water. 
A strong signal is observed, especially when turning the 
forcing on or off. The dominant frequencies are those cor-
responding to the natural frequencies of surface waves in 
a rectangular container (Ibrahim 2005), which are much 
higher, O(1Hz) , than the forcing frequency � = 0.14Hz . 
For a trapezoidal domain, the length of the tank at the sur-
face determines the frequencies. No increase in force with 
forcing frequency is observed. Effectively, we are measuring 
the effect of surface waves on our sensor. With such a strong 
signal from surface waves, the effects of internal gravity 
waves are hard to measure.

Third, we test the sensor in non-stratified water while 
covering the surface. A small hole exists through which the 
plate enters the fluid. The hole is just large enough to allow 
the plate through while not obstructing the movement of 
the plate. On top of the cover, we place the laser measuring 
the deflections of the plate. Figure 4c shows a measurement 
with a covered surface. The signal is weak, weaker than in 
the case of a free surface and even weaker than in the case 
of no water. The water adds an extra damping to the system. 
No sudden increase in signal when turning the forcing on 
or off is present. The forcing frequency is the only observed 
frequency. The force again increases with increase in forcing 
frequency. The cover successfully removes surface waves 
from the system.

Last, we perform measurements in stratified water in a 
rectangular domain. We perform a ‘continuous’ measure-
ment in which we perform a frequency sweep. Every min-
ute the forcing frequency is increased by 0.01Hz . Figure 5 
shows one such measurement. Independent of the location 
of the sensor, one resonance frequency dominates. This 
frequency corresponds to the natural frequency for inter-
nal gravity waves in rectangular domains (Maas 2001). No 
asymmetry in the force is observed. Outside of the reso-
nance frequency, the force increases with increase in forcing 
frequency.

From these control measurements, we conclude that (1) 
covering the surface of a fluid effectively damps surface 
waves and (2) an unwanted background signal, related to 
inertia of the sensor’s loose end, is present. This background 
signal increases with increase in frequency.

Fig. 3  The calibration consists of five different measurements. For 
each measurement, a different weight is placed on the tip of the plate

Fig. 4  Control cases. Dashed lines indicate start and finish of the 
forcing. Forcing frequency � = 0.14Hz
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1.5  Relation between flow and the force on a flat 
plate

We place the plate perpendicular to a background flow. 
The force exerted by a flow on a flat plate has been studied 
extensively [e.g., Grift (2019)]. We use an empirical rela-
tion, called the Morrison equation, where the drag force Fx is

where FCD is the steady-phase drag force, Fvm the drag force 
due to the accelerating fluid, � is the density of the fluid, u 
the horizontal velocity of the fluid, S the surface area of the 
submerged part of the plate and CD the drag coefficient. The 
added mass is the displaced mass times an added mass coef-
ficient CA : ma = �StCA , where t is the thickness of the plate.

Since (2) is an empirical formula, we turn to experi-
ments to determine the hydrodynamic coefficients, CA and 
CD . In Tian (2017), a series of experiments on oscillating 
flat plates were performed. Rectangular plates with differ-
ent aspect ratios were also studied. Since the plates were 
periodically forced, the reported drag coefficients CD and 
added mass coefficients CA were averaged over the forcing 
period. Tian (2017) report the results as a function of the 
Keulegan–Carpenter number KC = uT∕D , with u the maxi-
mum (horizontal) velocity of the oscillation, T the period of 
the oscillation and D a characteristic dimension of the plate. 
We estimate u from our simulations. For a typical measure-
ment in our experiments, the Keulegan–Carpenter number 
is KC = 3.3 . This is just outside the range of the experiments 
of (Tian 2017). We use linear extrapolation to determine the 
coefficients. We find a drag coefficient of CD = 3.6 and an 
added mass coefficient of CA = 90 . The added mass becomes 
ma = 1.58 g . The mass of the submerged part of the plate is 

(2)Fx(t) = FCD + Fvm =
1

2
CD�u|u|S + (mp + ma)

du

dt
,

mp = 0.14 g . The added mass ma is about 11 times as large 
as the mass of the plate mp.

Using the linear non-viscous horizontal momentum equa-
tion, the time derivative du

dt
= −

1

�

�p

�x
 . Substituting this in (2), 

we obtain

The force acting on the plate consists of a term proportional 
to the square of the velocity and a term proportional to the 
horizontal pressure gradient. Assuming a plane wave with a 
periodic signal with frequency � , time derivative du

dt
= i�u . 

Then, the second term in (3) is proportional to the product 
of horizontal velocity and frequency.

1.6  Interpretation as a ribbon microphone

A ribbon microphone is an instrument designed to sense 
pressure waves. It has a metal sheet called a ribbon or dia-
phragm, both sides of which are exposed to the medium 
around it. The diaphragm is clamped on both sides and 
placed in a magnetic field. The diaphragm acts as a conduc-
tor: movements of the diaphragm cause a potential differ-
ence. The exposure on both sides makes ribbon microphones 
sensitive to pressure differences instead of pressure itself. If 
such a ribbon microphone is placed in a pressure field, the 
force Fribbon acting to move the diaphragm is Beranek and 
Mellow (2019)

where S is the effective surface area of the diaphragm, 
�p∕�x sin � the component of the x-gradient of the pressure 
acting across the faces of the diaphragm and � the angle of 

(3)Fx =
1

2
CD�u|u|S − (mp + ma)

1

�

�p

�x
.

(4)Fribbon = −S
�p

�x
Δl sin �,

Fig. 5  Continuous measure-
ment in stratified water in 
a rectangular domain. The 
buoyancy frequency was 
N = 0.37Hz = 2.3

rad

s
 . Spikes 

reveal the change in forcing 
frequency
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attack of the diaphragm with respect to the flow. Δl is the 
effective path length: the difference in pressure between the 
two sides of the ribbon is the same as that in a pressure field 
between two points in space separated by this distance. It 
is this difference in pressure due to the difference in phase 
between the front and back that actuates the ribbon in the 
ribbon microphone.

Using the horizontal momentum equation for a fluid and 
� = 90

◦ in (4) and comparing to the second term of (2), we 
observe that the two terms are similar.

Our sensor has the same working principle as a ribbon 
microphone. Waves travel past a plate, which deflects due to 
a force exerted by a pressure differential. These deflections 
are measured to approximate the local pressure gradient of 
the fluid. A difference is that we measure the deflection with 
a laser displacement sensor, while in ribbon microphones, 
the deflection is measured by potential differences. Just like 
ribbon microphones, our sensor is proportional to the fre-
quency of the wave.

2  Experimental setup

2.1  Generating internal gravity waves and wave 
attractors

For the experiment, we use a narrow rectangular tank. 
The tank is filled with a stratification, in which the density 
decreases linearly upwards. The background density con-
sists of a constant part 𝜌⋆ and a much smaller (by a factor 
100) spatially-varying part �0(z) . This stratification is built 
using the so-called double-bucket technique. After filling, an 
inclined side wall is placed in the tank. This breaks the sym-
metry of the domain. The entire tank is positioned on a table 
with wheels that can oscillate horizontally with an amplitude 
of 2 cm and a forcing frequency � . The generated internal 
waves have a frequency equal to the forcing frequency.

The dispersion relation � = N cos � relates the fre-
quency � of the internal waves to the buoyancy frequency 
N =

√
−g∕𝜌⋆d𝜌

0
(z)∕dz . For constant buoyancy frequency N 

and constant frequency � , internal waves propagate energy 
in a straight line inclined at a constant angle ±� . By periodi-
cally forcing the fluid at different frequencies � and measur-
ing the angle � at which internal gravity waves propagate, the 
buoyancy frequency N is determined: N = 0.37Hz = 2.3

rad

s
 . 

After completing the measurements, this procedure is 
repeated to confirm the stratification has not changed.

For certain frequency bands, (m,  n) wave attractors 
appear, where integers m and n indicate the amount of 
surface and sidewall reflections of the limit cycle, respec-
tively. Using the geometric description from Maas (1997), 
we construct a Poincaré plot for the experimental setup: 
see Fig. 6. For each frequency, a simulation is done and 

the locations of the surface reflections are shown. When, 
for a given frequency, there are many surface reflections 
(large m and n), internal gravity waves are focused onto a 
high-period, ‘complicated’, limit cycle or an ergodic orbit 
(Lenci et al. 2021), both involving many boundary reflec-
tions and subject to viscous damping. When there is one (or 
a few) surface reflection(s), (small m and n) internal gravity 
waves are focused onto an excitable limit cycle and wave 
attractors can appear. Figure 6 shows there is a frequency 
band around 0.15Hz for which (1,1) wave attractors appear 
and another frequency band around 0.25Hz for which (2,1) 
wave attractors appear. We use Synthetic Schlieren (Dal-
ziel et al. 2000) to confirm the existence of wave attractors 
in these frequency bands. Figure 7 shows a wave attractor 
generated in our experiments. It has amplified perturbations 
located in the vicinity of the theoretically predicted rectan-
gle (roughly identical with the middle of the black regions). 

Fig. 6  A Poincaré plot of the experimental setup. The red line indi-
cates the measurement location. The dimensionless variable x indi-
cates the position of the reflection point at the surface of the fluid 
scaled with halfwidth L, with x = 0 being the leftmost point and 
x = 2 the rightmost point, see the top of Fig. 2

Fig. 7  A qualitative view of the vertical gradient of the density per-
turbation of a wave attractor in the trapezoidal domain of our experi-
ments, visualized using Synthetic Schlieren. The colors indicate the 
strength of the gradients: black a strong positive gradient and white a 
strong negative gradient. This (1,1) wave attractor has one reflection 
point at the surface and one at its vertical side wall. The bottom of 
the domain was just out of view of the camera. The forcing frequency 
was 0.16Hz
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Phase propagation (not shown) is in a direction perpendicu-
lar to each of the four branches and indicates the internal 
wave propagates its energy in a counterclockwise fashion 
around this rectangle.

2.2  Using the force sensor

At the surface, we insert the plate in the fluid near the middle 
of the domain. We place the plate parallel to the direction of 
gravity, parallel to the z-axis in Fig. 2. We assume internal 
gravity waves propagate in the xz-plane and no movement 
exists in the y-direction. Then, the angle of attack � of the 
plate with respect to the flow is 90◦.

The location and properties of our sensor (and our experi-
ment) are listed in Table 1. Since the plate is clamped above 
the fluid and the free end is below the surface of the fluid, 
the surface area S that experiences a force from the fluid is 
only that part of the plate that is submerged.

The sign of the force F relative to the horizontal veloc-
ity u is determined by the position of the laser. In Fig. 2 the 
laser is positioned to the left of the plate. When a positive 
horizontal velocity exists (around the location of the plate), 
the flow is from left to right in Fig. 2. The plate will deflect 
to the right, with the flow. The distance between the laser 
and the plate will increase: a positive force is measured.

3  Results

We performed measurements for a fixed domain, buoyancy 
frequency and measurement location. Two types of meas-
urements were performed: individual and continuous. In 
individual measurements, we keep the forcing frequency 
constant during the experiments. The forcing is turned on 
for five minutes and then off. Each measurement is started 
from rest. This allows us to see the build-up and decay of 
wave attractors. In continuous measurements, the forcing 
is turned on and the forcing frequency is changed stepwise 
without stopping the forcing. This allows a sweep over the 
entire frequency range.

3.1  Individual measurements

For each individual measurement, we changed the frequency 
� . Figures 8, 9, 10 and 11 show measurement results for 
different frequencies. The first dashed vertical line indicates 
the start of the forcing ( t = 0 s ) and the second dashed verti-
cal line the end of the forcing ( t = 300 s ). Figure 6 shows 
for which frequencies we expect to measure signals from 
large-scale (small m and n) wave attractors: when the surface 
reflection is near the location of our sensor.

Figure 8 shows the measured force for a frequency of 
0.04Hz . This is the lowest frequency we measure and it 

gives the weakest signal. The signal is close to the resolu-
tion of 0.6 μN. The position of the plate before and after the 
experiment shifted slightly. This is due to the moment at 
which the tank starts and stops in its oscillation cycle. We 
see a periodic signal with a frequency corresponding to the 
forcing frequency. Internal gravity waves propagate through 
the fluid but no wave attractor forms.

Table 1  Parameters of experiment

Parameter Symbol Value

Water tank
Forcing frequency � 0.04–0.26 Hz
Amplitude forcing 2 cm

Buoyancy frequency N 0.37 Hz = 2.3 rad
s

Height D 24.5 cm
Length at surface 43 cm
Length at bottom 2L 65 cm
Width 13.5 cm
Angle of sloping wall 42°
Duration forcing stage 300 s
Duration decay stage 120s
Plate
Thickness t 0.1 mm
Length l 130 mm
Width w 5–10 mm
Clamp length l

c
12 mm

Depth submerged 25 mm
Surface area submerged S 1.75 × 10−4 m2

Density 8 × 103 kgm−3

Young’s modulus E 200 GPa
Area moment of inertia I 4.2 × 10−4 mm−4

Horizontal location 27.5 cm

Dimensionless location x 0.85

Fig. 8  The measured force for a forcing frequency of 0.04Hz . The 
signal is close to the resolution of 0.6 μN. Dashed lines indicate start 
and finish of the forcing. The amplitude of the measured force is 
1.8  μN resulting in a velocity amplitude of 1.0mm s−1
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Figure 9 shows the measured force for a frequency of 
0.15Hz . This frequency corresponds to the strongest wave 
attractor in our experiments: we can see the attractor occur 
at the inclined wall by the naked eye. We observe a build-up 
phase and a saturation phase in the form of a periodic steady 
state. After the forcing is stopped, the signal slowly decays: 
the wave attractor persists for a while after turning off the 
shaking. The exponential decay time is 25 s or 3.75 wave 
periods. Figure 10 shows the measured force for a frequency 
of 0.16Hz . For this frequency, a weaker (1,1) wave attractor 
is present. After the build-up phase, we observe an over-
shoot (also seen in Synthetic Schlieren measurements (Lam 
and Maas 2008) with a maximum amplitude of the force 
of 44  μN and an overcompensation due to viscous effects 

with an amplitude of 23  μN before a periodic steady state is 
reached with an amplitude of 27 μN. For some frequencies 
where wave attractors appear this overshoot is observed, but 
not for all frequencies.

The force measurements in Figs.  9 and 10 show an 
asymmetry in the direction of the force. Negative forces 
are larger than positive forces. A negative force is in the 
negative x-direction. The observations made using Synthetic 
Schlieren show the wave attractors are traversed anti-clock-
wise. The signal is strongest in the upper right branch of 
the wave attractor and weakens along the path of the wave 
attractor due to viscous effects. The focusing reflection and 
resulting amplification occur at the inclined side wall [e.g., 
Chalamalla and Sarkar (2016)]. A net force, pointing away 
from the inclined side wall, is observed. This net force indi-
cates the existence of a mean flow.

For a forcing frequency of 0.15Hz this mean force is 
large: During the periodic steady state, the mean force is 
−17 μN and the amplitude of the periodic signal is 58 μN . 
Although a mean force breaks our assumption of a periodic 
flow, we still use (3) with a periodic flow to compute the 
velocities. This force implies a mean (horizontal) velocity 
of −6mm s−1 and an amplitude of the periodic (horizontal) 
velocity of 14mm s−1 . The mean flow is almost half of the 
periodic flow velocity. Such strong mean flows have been 
observed before (Bordes 2012). For a forcing frequency of 
0.16Hz , the mean force is −0.87 μN and the amplitude of 
the periodic signal is 27 μN during the periodic steady state. 
This implies a mean velocity of −0.53mm s−1 and an ampli-
tude of the periodic velocity of 8.4mm s−1 . The mean flow is 
about 5% of the periodic flow velocity, similar to the results 
in (Brouzet 2016). The periodic velocity amplitudes for both 
frequencies are similar to those measured in Hazewinkel 
et al. (2011a) for comparable experiments.

Figure 11 shows the measured force for a frequency of 
0.26Hz . The (2,1) wave attractor that is present for this 

Fig. 9  The measured force for a forcing frequency of 0.15Hz . This 
frequency corresponds to the strongest wave attractor in our experi-
ments. Dashed lines indicate start and finish of the forcing. During 
the periodic steady state, the mean force is −17 μN and the ampli-
tude of the periodic signal is 58 μN . This implies a mean velocity of 
−6mm s−1 and an amplitude of the periodic velocity of 14mm s−1

Fig. 10  The measured force for a forcing frequency of 0.16Hz . This 
frequency corresponds to a wave attractor. Dashed lines indicate 
start and finish of the forcing. After the forcing starts, an overshoot 
(A) occurs followed by viscous overrelaxation (B) before a periodic 
steady state is reached (C). After the forcing stops, an exponential 
decay (D) is observed. During the periodic steady state, the mean 
force is −0.87 μN and the amplitude of the periodic signal is 27 μN . 
This implies a mean velocity of −0.53mm s−1 and an amplitude of the 
periodic velocity of 8.4mm s−1

Fig. 11  The measured force for a forcing frequency of 0.26Hz . 
Dashed lines indicate start and finish of the forcing. The amplitude 
of the measured force is 12.3 μN resulting in a velocity amplitude of 
4.8 mm s−1
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frequency does not have a reflection point near the plate. 
When the forcing starts, the signal immediately reaches a 
periodic steady state. After the forcing is stopped, the sig-
nal disappears quickly. Although the frequency increased, 
the measured force was lower than in Fig. 10. Equation (3) 
shows us that the horizontal velocity |u| must have been 
lower (at this measurement location).

3.2  Simulation

We turn to simulations to confirm the behavior we find in 
the experiments. Since our plate is very thin ( 510mm ) with 
respect to the width of the tank ( 13.5 cm ), we assume the 
flow does not feel the effects of the plate. So the plate is 
moved by the flow, but the flow is not influenced by the 
plate. This simplifies the numerical model. Since the forcing 
direction is perpendicular to the side walls of the tank and 
the plate, we assume the flow is two-dimensional.

In van Oers et al. (2017), a numerical model to simu-
late wave attractors in stratified fluids was developed. This 
numerical model was constructed in such a way that several 
conservation laws were obeyed exactly: the numerical model 
conserved (at least) energy, mass and momentum exactly. 
Here, we expand their model by including a viscous term 
and a body forcing term. We solve the non-dimensionalized 
linear Boussinesq equations

where u = (u,w)T is the two dimensional velocity field, � 
the scalar perturbation density field, P the mechanical pres-
sure field, ẑ is the unit vector in the z-direction and N is the 
buoyancy frequency. The fluid is excited by an external body 
force a per unit mass (Jouve and Ogilvie 2014) with

where � is the forcing frequency and F0 the forcing ampli-
tude. The densimetric Froude number Fr and the Reynolds 
number Re are

Table 2 lists the different scales used. The numerical model 
has been implemented in the Portable, Extensible Toolkit for 
Scientific Computation (PETSc) (Balay et al. 2020; Balay 
2019). The mesh is generated using Gmsh (Geuzaine and 
Remacle 2009).

(5)

𝜕u

𝜕t
= −∇P −

1

Fr2
𝜌ẑ +

1

Re
∇2u + a,

𝜕𝜌

𝜕t
= Fr2N2w

∇ ⋅ u = 0,

(6)∇ × a = F0 sin(�t),

(7)Fr =
U

√
g�̂�∕𝜌∗L

, Re =
𝜌∗LU

𝜇
.

We repeat our experiments in our simulations. Figure 12 
shows a result of our simulation. We take the horizontal 
velocity and pressure gradient at the location of our sen-
sor (at the green dot in Fig. 1) and use (3) to calculate the 
forces experienced by the plate in our simulations. Figure 13 
shows the force acting on the plate, determined from our 
simulations.

Comparing the experiments, Fig. 10, with our simula-
tions, Fig. 13, we notice similarities and differences. The 
overall signal is the same: when the forcing is turned on, a 
build-up, an overshoot and a viscous overrelaxation occur, 
after which a periodic steady state is reached. When the 
forcing is turned off a decay occurs. The amplitude of the 
periodic steady state in the experiments and simulations are 
similar. The build-up is very similar. The time until the over-
shoot occurs is the same: roughly 40 s after the start of the 
forcing. A difference is the amplitude of the overshoot: the 
overshoot amplitude is larger in the experiments. Another 
difference is the time at which the viscous relaxation is vis-
ible: For the experiments, this occurs after roughly two min-
utes of forcing, while for the simulations, this occurs after 
70 s . A third difference is the speed of the decay: the wave 
attractor decays more rapidly in the simulations than in the 
experiments. It seems the wave attractor in the simulation 
can more efficiently dissipate energy than observed experi-
mentally: the decreases in the simulation occur faster (both 
the viscous overrelaxation and the decay of the wave attrac-
tor without forcing). The simulations show no generation of 
a mean flow, consistent with the linearity of the flow.

The background signal, as shown in Fig. 4c, does not 
occur in the simulations. The cause of this effect must lie 
outside the fluid and Morrison’s equation. Our hypothesis 
is that it is caused by the oscillation of entire tank, includ-
ing the sensor. Figure 11 shows an immediate drop-off in 
signal when the forcing is stopped. In our simulation for 
� = 0.26Hz , the signal was weaker. We conclude that the 

Table 2  Parameters of the numerical simulation

Parameter Symbol Value

Length scale L 0.325m

Time scale T 5.76 s

Velocity scale U = L∕T 0.0565ms−1

Background density scale 𝜌⋆ 1 × 103 kg m−3

Perturbation density scale �̂� 1 kgm−3

Pressure scale 𝜌⋆U2 3.19 kgm−1 s−2

Gravity g 9.81m s−2

Dynamic viscosity � 1 × 10−3 Pa s

Densimetric Froude number Fr 1
Reynolds number Re 1.8 × 104

Dimensionless buoyancy freq. N 2.13
Forcing amplitude F0 2.8 × 10−6
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signal in Fig. 11 is dominated by the background signal, 
related to inertia of the sensor, and does not show a measure-
ment of internal gravity waves.

These simulations show that our observations of wave 
attractors are correct. They also confirm the hydrodynamic 
coefficients and the use of the Morrison equation.

3.3  Continuous measurement

We performed a continuous measurement: every minute the 
frequency is increased stepwise with steps of 0.01Hz start-
ing from 0.04Hz and ending at 0.43Hz . By ‘continuously’ 
changing the frequency and never stopping the forcing, a 
much quicker sweep through a large frequency range is pos-
sible. Figure 14 shows this continuous measurement. We 
make two observations: (1) The large increase in force for 
a forcing frequency of 0.15–0.16 Hz, corresponding to the 
range of (1,1) wave attractors that have a surface reflection 
near the plate. (2) Outside the (1,1) wave attractor band, 
the imposed force gradually increases with increase in 
frequency.

Wave attractors are broad-band phenomena, spanning 
a range of frequencies. The reason this looks like a clas-
sical resonance (with one resonance frequency) is that we 

Fig. 12  Wave attractor in 
our simulations. The red line 
indicates the plate. The figure 
shows the horizontal velocity 
after 48 periods with a forcing 
frequency of � = 0.16Hz

Fig. 13  Force on the plate determined from our simulations for a 
forcing frequency of 0.16Hz . The dashed vertical lines indicate start 
and finish of the forcing. The drag force dominates the inertial force 
in our simulations

Fig. 14  The measured force in a 
continuous measurement. Every 
minute the forcing frequency 
was increased by 0.01Hz . The 
peak around 0.15Hz corre-
sponds to a (1,1) wave attractor. 
Outside this (1,1) wave attrac-
tor band, the force gradually 
increases with frequency
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measure at one surface location: the wave attractor that has 
a surface reflection near the measurement location gives the 
strongest signal. Further measurements on the (1,1) attractor 
(not shown here) confirm that forces maximize for slightly 
different forcing frequencies when putting the force sensor 
at different x-locations. From Fig. 6, we expect to measure 
a strong signal when the position of the sensor (red line) 
and the surface reflection of the wave attractor (black line) 
intersect. Moving the sensor (along the surface of the tank), 
we find that the largest signal occurs for slightly different 
frequencies.

There is an asymmetry in the direction of the force when 
wave attractors are present. Figures 9 and 10 show that in the 
first minute the wave attractors are still building up. After 
two minutes, a periodic steady state is reached. Figure 10 
shows that the asymmetry in force is largest during the over-
shoot, corresponding mostly to the first minute. So, in the 
continuous measurement we are mostly measuring this over-
shoot. We also observe that when the frequency changes, the 
signal collapses as the wave attractor of the old frequency 
disappears as the wave attractor of the new frequency builds 
up. For frequencies where no wave attractors appear, this 
collapse is absent and the signal is uninterrupted.

The unexpected peak around 0.29–0.31 Hz may indicate 
that the (1,1) attractor is excited as a subharmonic at half 
the forcing frequency by parametric excitation as for verti-
cally oscillated tanks (Maas and Lam 1995; Chalamalla and 
Sarkar 2016; Dauxois 2018).

The absence of a signal for the (2,1) attractor, for a fre-
quency band of approximately 0.22Hz to 0.27Hz , is notice-
able. Figure 6 shows that a (2,1) wave attractor exists (at 
least theoretically). Figure 11 shows that when the surface 
reflections of the (2,1) wave attractor are not near the meas-
urement location, no signal reminiscent of wave attractors 
is observed. Since we make steps of 0.01Hz for the forcing 
frequency, we have stepped over the frequency for which 
the measurement location coincides with the surface reflec-
tion position. The forcing frequency 0.22Hz is just outside 
the frequency band for a (2,1) wave attractor. The forcing 
frequency 0.23Hz generates a (2,1) wave attractor with a 
surface reflection of the left beam which is already to the 
left of the measurement location. We measured at the wrong 
location to observe a (2,1) wave attractor. Since the path 
of a (2,1) wave attractor is longer than that of a (1,1) wave 
attractor, (2,1) wave attractors are (in general) weaker than 
(1,1) wave attractors [e.g., Hazewinkel (2010)]. Figures 9 
and 10 show that a periodic steady state is reached after two 
minutes, so the forcing period of 1 minute might be too short 
for a (2,1) wave attractor to fully form.

4  Discussion

We have designed and tested a force sensor for underwater 
use. This sensor consisted of a plate and a laser displace-
ment sensor. Internal waves exerted a force on the plate, 
which deformed elastically. A linear relation between force 
and deflection was found. The force exerted was related to 
the flow by Morrison’s equation. The hydrodynamic coeffi-
cients (the drag coefficient and added mass coefficient) were 
obtained from Tian (2017). Several control measurements 
were performed. These measurements showed that surface 
waves dominated the signal of the sensor. Covering the sur-
face removed the surface waves. The control measurements 
also showed an unwanted background signal.

By periodically forcing a density-stratified fluid, internal 
gravity waves were excited. Due to the asymmetry of the 
domain, simple and therefore physically realizable wave 
attractors appeared for certain frequency bands. Due to the 
intensification of the wave field near the surface reflections 
of the wave attractors, we measured (relatively) large forces. 
From a point measurement, we were able to discern multiple 
characteristic features of wave attractors: a slow build up, an 
overshoot, an overcompensation due to viscous effects and 
saturation in the form of a (periodic) steady-state. After the 
forcing was stopped, the wave attractor disappeared slowly.

Mean (horizontal) forces were observed for wave attrac-
tors. The direction of these mean forces coincided with the 
direction of travel of the waves along the wave attractor. 
These mean forces resulted for most (1,1) wave attractors in 
mean flows of about 5% of the velocity amplitude, near the 
surface directed into the horizontal direction into which the 
internal waves propagated. The generation and direction of a 
mean flow agrees with observations by Bordes (2012). How-
ever, it is at variance with other experimental observations 
in which particle transport in an inclined internal wave beam 
seems to be directed toward the wave maker (Horne 2019). 
Further research needs to elucidate the mean flow generation 
process and differences in direction. One particularly strong 
(1,1) wave attractor, see Fig. 9, had a much larger mean 
force. This large mean force could indicate mean flows that 
are nearly half of the periodic velocity amplitude. Such a 
strong mean force could have implications for the horizontal 
transport of particles in fluids [e.g., Cacchione et al. (2002)].

The downside to our sensor design was a background sig-
nal. The control measurements showed that even in meas-
urement with no water and homogeneous water, a periodic 
signal was measured. The amplitude of this signal increased 
with the forcing frequency. For large forcing frequencies, 
e.g., Figure 11, the background signal dominated. Our simu-
lations showed a much smaller amplitude for these large 
forcing frequencies. The accuracy of our measurements was 
limited. The cause of this background signal was that the 
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entire sensor, including laser and plate, was attached to the 
tank. The entire tank was oscillated horizontally to generate 
internal waves. Inertia of the free end of the sensor caused 
a signal, with a frequency equal to the forcing frequency.

We suggest several improvement to our sensor design: 

1. The accuracy of our sensor was limited since it was 
located on a moving tank, especially at high frequencies. 
Using an internal wave maker (Gostiaux 2007) would 
allow the tank to remain stationary and greatly reduce 
this signal.

2. The material we used for the plate was stainless steel 
with a Young’s modulus of 200GPa . Equation 1 shows 
that the deflection for a given force decreases with 
increase in Young’s modulus. By using a different mate-
rial for the plate, like aluminum with a Young’s modulus 
of 70GPa , we can increase the sensitivity of our sensor.

3. We used a plate with a wider part at the bottom. This 
complicated the analysis. A plate with a uniform thick-
ness of 5mm would have behaved similar.

An alternative design of our sensor would be to use a sphere 
instead of a plate. A lot of theoretical and experimental 
research has been performed on the drag and added mass 
coefficients of spheres [e.g., Voisin et al. (2011) and Brouzet 
(2017)] in stratified fluids. The sphere could be connected 
by a thin square beam. Two lasers could be employed to 
measure the forces in both horizontal directions. These kind 
of measurements (transverse measurements) are particularly 
hard to obtain from optical methods.
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