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Abstract
Measurements of the steady and unsteady forces acting on a pair of circular cylinders in crossflow are performed from sub-
critical up to ultra-high Reynolds numbers. The two cylinders with equal diameters d are arranged inline at two centre-to-
centre distances: S/d = 2.8 and 4. The trend of the drag curve for the upstream cylinder Cd

1
(Re) at both distances is similar 

to that for a single circular cylinder. The development of the drag curves Cd
2
(Re, S/d = 2.8, 4) of the downstream cylinder is 

inverse to that of the upstream cylinder. For both cylinder spacing values, the drag on the downstream cylinder is negative for 
subcritical Reynolds numbers, increases abruptly to positive values at the beginning of the supercritical regime, and shows a 
significant dip at transcritical Reynolds numbers. This drag inversion indicates that the critical distance Sc decreases sharply 
in the supercritical Reynolds number range. For S/d = 2.8 at Re → 107 , the downstream cylinder experiences once more a 
thrust force. The curve of the Strouhal number St(Re) of the downstream cylinder for S/d = 4 is very close to that of a single 
cylinder. For Reynolds numbers of Re ≈ 1 ×106 - 7 ×106 , the Strouhal numbers have nearly equal values of St ≈ 0.22 - 0.24 
for both distances. This is followed by a branching. For Re → 107 and the case S/d = 2.8, the Strouhal numbers dip at St = 
0.17. However, for S/d = 4, they increase up to St = 0.27. In the supercritical range, two peaks occur in the power spectra 
for the large distance S/d = 4. Based on a wavelet analysis, we can conclude that the low-frequency mode, which does not 
occur for a single cylinder, is an interference effect.
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Graphic abstract

1 Introduction

The flow around a pair of circular cylinders is the paradigm 
example for the study of interference effects in fluid mechan-
ics. Even with a single cylinder, there are very strong Reyn-
olds number effects, and the situation becomes even more 
complex when a second circular cylinder is placed in the 
vicinity. The current study concentrates on the “simple” case 
where the two cylinders are arranged inline. The Reynolds 
number is varied over three orders of magnitude for two 
relevant cylinders’ centre-to-centre distances. Apart from 
the measurement of the mean forces and mean base pres-
sures on both cylinders, this study focuses on the measure-
ment and analysis of the fluctuating forces acting on the 
downstream cylinder. In this way, we obtain information on 
the spectra, Strouhal numbers, and RMS values of the lift 
forces. In addition, we conduct a wavelet analysis on the 
data to obtain information on the time-frequency behaviour 
of the phenomena.

(Sumner 2010) carried out a review of experimental 
and numerical studies on the flow around two circular tan-
dem cylinders. Based on the investigations discussed, the 

interference between the two individual cylinders has a 
strong influence on the flow topology around the tandem 
arrangement. In particular, the centre-to-centre spacing S 
and the Reynolds number determine whether the two cyl-
inders behave as one extended bluff body or as two clearly 
separated bodies.

If S is small, negative drag forces can occur on the down-
stream cylinder (Kuzniecow (1931); Hoerner (1958)). With 
increasing S, a jump to positive drag forces appears, i.e. a 
drag inversion. The location of the sign reversal is called the 
critical spacing Sc. For subcritical Reynolds numbers, these 
phenomena can be explained by the existence of different 
modes or states of the flow topology and vortex shedding. 
(Zdravkovich 1987) and (Alam et al. 2018) characterized 
the different states as follows: there are three basic types 
of the flow structure possible, namely “extended-body 
regime”, “reattachment regime” and “co-shedding regime”. 
In the first regime, i.e. for 1.0 < S/d < 1.5, both cylinders are 
close together such that the shear layers that have separated 
from the upstream cylinder can overshoot the downstream 
cylinder and the flow in the gap is rather stagnant. For an 
increased distance of 1.5 < S/d < 3.5, the second regime is 
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present, in which the free shear layers that separate from 
the upstream cylinder can reattach to the downstream cyl-
inder. Additionally, for these distances, the flow in the gap 
remains almost stagnant. In both cases, proximity effects 
dominate, and one common vortex street is formed behind 
the downstream cylinder. Both cases are denoted as “mode 
I”. In other words, the “extended-body flow” and “reattach-
ment flow” are a subdivision of “mode I”, i.e. the state in 
which proximity interference is dominant. At large spac-
ing, i.e. for S/d > 3.5, the separated free shear layers from 
the upstream cylinder are able to form vortical structures, 
which travel downstream before impinging on the down-
stream cylinder. In this “co-shedding regime” or “mode II”, 
both cylinders shed vortices. The value S/d ≈ 3.5 at which 
the transition between both modes occurs is denoted as the 
“critical spacing” Sc. Notably, around Sc, bistable states can 
occur, in which the flow jumps intermittently between the 
“reattachment” and the “co-shedding” modes. This is a typi-
cal behaviour of such transition phenomena in fluid flow. 
We present and discuss various simplified sketches of the 
different flow states later with Fig. 12.

For a tandem arrangement with a small centre-to-centre 
distance of S/d = 1.56, experiments by (Schewe and Jacobs 
2019) showed that the critical spacing Sc depends on the 
Reynolds number range and that a drag inversion is an indi-
cation for a change in the modes from a state in which prox-
imity interference dominates to a “co-shedding flow” or vice 
versa. Regarding the subcritical case, our present experi-
ments were performed for two distances, namely below (S/d 
= 2.8) and just above the critical value (S/d = 4).

For very high Reynolds numbers, only a few investiga-
tions are available. For two distances S/d = 3 and 5, the 
results from (Pearcy et al. 1982), obtained at high Reynolds 
numbers, can be found in (Zdravkovich 1987). Their data 
include drag coefficients and Strouhal numbers up to super-
critical Reynolds numbers of Re ≈ 7 ×105 and up to Re = 7 ×
106 for S/d = 3 and 5, respectively. For one typical subcriti-
cal Reynolds number, (Alam et al. 2003) performed exten-
sive experiments in which the spacing was systematically 
changed in small steps in the range of 1.1 ≤ S/d ≤ 9. Their 
results show that at a spacing of S/d = 4, sudden jumps in 
the drag coefficient and the Strouhal number appear, both of 
which are caused by the transition from “mode I” to “mode 
II”. Consequently, in their studies, the critical spacing has 
a value of Sc/d = 4. Regarding our values obtained in the 
subcritical Reynolds number range, we use their results for 
comparison.

(Schewe and Jacobs 2019) performed experiments for a 
large Reynolds number range from Re = 2 ×105 up to Re 
= 6 ×106 for a cylinder centre-to-centre spacing of S/d = 
1.56. They measured the steady aerodynamic forces and 
investigated the influence of the angle of incidence and the 
propensity to flow-induced vibrations. Among others, their 

results show that for the inline configuration, the appearance 
of the drag curve for the upstream cylinder is similar to that 
of a single smooth circular cylinder. They therefore used 
the same classification for the individual Reynolds number 
ranges, i.e. sub-, super-, and transcritical. In the small criti-
cal Reynolds number regime at approximately Rec = 3 ×105 , 
the transition from the sub- to the supercritical range occurs, 
the latter extending up to Re ≈ 106 . After a second, rather 
long transition regime, a new stable state, the transcritical 
Reynolds number range, is reached at approximately Re = 
5 ×106.

The present measurements have been obtained in the 
same high-pressure wind tunnel in which the studies by 
(Schewe 1983) and (Schewe and Jacobs 2019) were con-
ducted. The mean and fluctuating forces on the downstream 
cylinder were measured with a rigid piezo-balance. The 
Reynolds number was varied between Re = 7 ×104 and 1.2×
107 . The desired maximum Reynolds number was achieved 
without any compromises regarding the size of the model, 
Mach number effects (M < 0.1), geometric blockage effects 
(10%), surface roughness, or inflow turbulence intensity.

2  Experimental arrangement

2.1  Test set‑up

As mentioned before, the current experiments were carried 
out in the High-pressure wind tunnel of the DLR Institute 
of Aeroelasticity. The wind tunnel is of the closed return 
type and can be pressurized up to 10 MPa (100 bar). In that 
way, maximal Reynolds numbers on the order of 107 can be 
achieved in an incompressible flow of M ≤ 0.1. The main 
details of the wind tunnel are as follows:

• maximum flow speed: U = 35 m/s;
• size of square test section: 0.6 x 0.6 m 2:
• total pressure range: 1 ≤ p

0
 ≤ 100 bar;

• Reynolds number range: 104 < Re < 107 , based on the 
cylinder dimension d = 0.06 m.

Fig. 1  Coordinate system of cylinder arrangement. In the present 
experiments, the forces on the downstream cylinder were measured 
by a piezo-balance. The distance S between the cylinders—the centre-
to-centre spacing—is S/d = 2.8 and 4
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The closed test section is 1 m long and can be decoupled 
from the wind tunnel by means of an air lock system, while 
the tunnel tube is kept under pressure. The drag and lift 
forces on the downstream cylinder were obtained using 
piezo-balances, described in detail in (Schewe 2007). The 
resultant mean drag and lift coefficients are defined as Cd

2
 

= Fx/(qLd) and Cl
2
 = Fy/(qLd), respectively, where Fx is the 

drag force, Fy is the lift force, q is the dynamic pressure, 
and L is the span of the section. The subscript “2” denotes 
the downstream cylinder. The forces were measured in the 
fixed wind tunnel coordinate system, as displayed in Fig. 1.

The cylinder diameter is d = 0.06 m, resulting in a geo-
metric blockage of 10%. The distance S between both cylin-
ders, i.e. the centre-to-centre spacing, is either S/d = 2.8 or 
4. The surface roughness of each cylinder equals k/d = 3 ×
10−6 , meaning that both cylinders can be classified as very 
smooth. The aspect ratio of the cylinders with span L is 
relatively high: d:L = 1:10. The lowest eigenfrequencies of 
the downstream cylinder are related to its bending modes in 
the stiff piezo-balance, fz = 489 Hz in the lift direction and 
fx = 435 Hz in the drag direction. Typical vortex shedding 
frequencies are less than one-third of the structural eigen-
frequencies. An extreme case taken at the highest possible 
total air pressure of 100 bar and at Re = 1.1×107 is shown 
in Figs. 10c, 11. For the calculation of the RMS values, 
the contribution of the structural bending was extracted by 
integrating the corresponding PSD up to 280 Hz only. In 
most cases, the contribution of bending motion is negligible

A wake rake was applied to determine the mean pressure 
distribution in the combined wake of both cylinders. In a 
post-processing step, these data were then used to calculate 
the sectional total drag coefficient Cdrake . The pressure rake 
was located at the midspan position, close to the exit of the 
test section. The distance from the centre of rotation of the 
downstream cylinder (attached in the balance) to the tips of 
the Pitot probes was 390 mm, which corresponds to 6.5d. 
The wake rake was equipped with 6 static pressure tubes 
and 52 Pitot pressure tubes, both distributed symmetrically 
around the centreline. Near the centreline, the distances 
between the Pitot pressure probes were Δz = 6 mm. The 
distance Δz increases when z approaches the upper or lower 
wall. For all measurements, the signals were acquired with 
a sample rate of Fs = 5 kHz, an integration time of T = 30 s, 
and a resolution of 16 bit.

2.2  Drag measurement

As briefly discussed in the preceding section, we used two 
methods for the drag measurements: the wake rake for 
obtaining the total drag on the tandem arrangement Cdrake 
and the piezo-balance for the measurement of the steady 
and fluctuating forces Cd

2
(t) acting only on the downstream 

cylinder. We can thus obtain information on the mean drag 

force on the upstream cylinder by forming the difference 
Cdrake - Cd2 = Cd

1
 . The accuracy of Cd

1
 is reduced because 

of a principal problem: the balance measures the global force 
on the entire cylinder, i.e. it integrates in the spanwise direc-
tion from wall to wall, while the rake force measurement 
is a sectional one where it is assumed that the flow around 
the body is two-dimensional. In particular, in the transition 
regions, the flow around nominally two-dimensional bluff 
bodies can nevertheless be substantially three-dimensional 
and is accompanied by the formation of span wise cell-like 
structures (Schewe 2001). The results can thus also depend 
on the actual position of the individual cell structures in 
relation to the location of the sectional measurement. We 
are aware that this procedure is not ideal, but this method 
is the only one available that keeps the experimental effort 
within reasonable limits.

3  Experimental results

3.1  Drag coefficients

The measurements were performed for two distances S/d = 
2.8 and 4 over a large range of Reynolds numbers of 7 ×104 ≤ 
Re ≤ 1.2×107 . As mentioned in the introduction, (Alam et al. 
2003) provided a large set of measured quantities, among 
which characteristic values are the Strouhal number and 
RMS values. Regarding the subcritical Reynolds number 
range, we use their results for comparison.

The measured force coefficients have not been corrected 
for wall interference effects since there is no valid correction 
method for such a large Reynolds number range in which 
the separation location moves substantially. Furthermore, we 
know of no method to correct the unsteady measurements. 
In (Schewe 1983), these points were already discussed in 
detail for a single circular cylinder with an equal geometric 
blockage ratio of 10%.

In Fig.  2, the total drag of the tandem arrangement, 
obtained from the pressure rake in the wake behind both 
cylinders, is plotted as a function of the Reynolds number. 
Examples of various wake profiles for both distances S/d 
are given in Fig. 3. For comparison reasons, the curve of the 
drag coefficient CD(Re) of a single smooth circular cylinder 
by (Schewe 1983) is included in Fig. 2. The latter data were 
obtained using a piezo-balance.

At first glance, the appearances of both Cdrake(Re)-curves 
for the tandem cylinder arrangement are similar to the corre-
sponding curve of a single smooth circular cylinder with S/d 
= 0. However, in the case of S/d = 4, the drag coefficients in 
the individual ranges are much higher than those of a single 
circular cylinder. The reason for this large difference in drag 
force is discussed in sect. 4. For a single smooth cylinder, 
the drag coefficients are, for example, approximately 1.2 
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in the subcritical range, 0.2 in the supercritical range, and 
0.5 in the transcritical Reynolds number range. The loca-
tion of the critical Reynolds number regime at 3.5×105 then 
again nearly coincides with that of a single circular cylin-
der. A long supercritical range up to Re ≈ 106 is present for 
both distances, where the drag coefficient lies in both cases 
around Cdrake ≈ 0.6. After a second, extended increase in 
both drag curves up to approximately Re = 5 ×106 to 6 ×106 , 
the Cdrake-curve for S/d = 4 exhibits a very small local maxi-
mum that is followed by a further increase in the total drag. 
For the smaller distance S/d = 2.8, there is a pronounced 
maximum with Cdrake ≈ 1 at Re = 5 ×106 , followed by a 
steady decrease to 0.8 for Reynolds numbers approaching Re 
→ 107 . The reason for this decline in total drag is the sharp 

drag force reduction that acts on the second cylinder Cd
2
 at 

approximately Re = 107.
As mentioned before, Fig. 3 presents typical wake pro-

files for both distances in each Reynolds number range. The 
integrated area corresponds to the sectional total mean drag 
coefficient Cdrake of the tandem arrangement. The width of 
the distribution is a measure of the width of the wake. At 
the subcritical Reynolds number Re = 1.9×105 , the distribu-
tion exhibits the largest width for the distance S/d = 4 ( ◻ 
in Fig. 3). In contrast to the measurements for S/d =1.56 
by (Schewe and Jacobs 2019), the distribution of the cur-
rent data has only one maximum in the subcritical region, 
whereas for the former distance, two maxima, at z/d ≈ ±1, 
are present. The reason could be that for the case S/d = 
1.56, the flow is in the “elongated body mode” (the first 
subdivision of “mode I”), for the present case S/d = 2.8 in 
the “reattachment mode” (second subdivision of “mode I”), 
and for S/d = 4 in the “co-shedding mode”, i.e. “mode II”. 
Furthermore, for the case S/d = 1.56, the distance from the 
centreline of the downstream cylinder to the wake rake is 
10.3d, whereas for S/d = 2.8 and 4, it is only 6.5d.

As expected, we have the smallest area and the small-
est width in the supercritical case ( ◦/◦ in Fig. 3) for both 
distances S. The curves are practically identical, which cor-
responds to the drag coefficients in the supercritical range 
presented in Fig. 2. In the transcritical range ( ×/× in Fig. 3), 
the values for the wake width and the area lie between both 
Reynolds number cases mentioned above, whereby the val-
ues for the distance S/d = 4 are found to be somewhat higher.

Figure 4a, b displays the individual mean drag forces Cd
1

(Re) and Cd
2
(Re) for distances S/d = 2.8 and 4.0. We recall 

once more that the mean drag force on the upstream cylinder, 
Cd

1
 , is given by the difference between the total mean drag 

coefficient Cdrake of the tandem arrangement and the mean 
drag coefficient that acts on the downstream cylinder Cd

2
 . 

To show the development from smaller to larger spacing S/d 

Fig. 2  Total mean drag coef-
ficient Cdrake of the tandem 
arrangement as function of the 
Reynolds number. The mean 
drag forces were obtained using 
a pressure rake behind the 
downstream cylinder, whereas 
the mean drag coefficients CD 
of a single circular cylinder ( ∙ ) 
were obtained with a piezo-
balance (Schewe 1983)

Fig. 3  Typical mean wake profiles for each Reynolds number range 
(z/d: vertical position/cylinder diameter; p: pressure at location z; p

0
 : 

total pressure; q: dynamic pressure)
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in Fig. 4, the corresponding figure of (Schewe and Jacobs 
2019) is included in Fig. 4c. The different symbols in both 
curves in Fig. 4c represent different total air pressures p

0
 

in the High-pressure wind tunnel. The latter measurements 
were performed in the same wind tunnel for a significantly 
smaller distance of S/d = 1.56. In contrast to the current 
measurements, at S/d = 1.56, only steady forces on both cyl-
inders were determined by means of a strain gauge balance.

For all three cases S/d = 1.56, 2.8, and 4, the appearance 
of the curves for the upstream cylinder Cd

1
(Re) is similar 

to the behaviour of the total drag shown in Fig. 2 and of a 
single smooth circular cylinder (S/d = 0). As the curves of 
Cd

1
(Re) in Fig. 4a, b are partly based on wake drag meas-

urements that are local, i.e. sectional, the scatter of the indi-
vidual data is higher than in the case of a pure integrating 
balance measurement for Cd

2
(Re), as displayed in Fig. 4c 

for S/d = 1.56.

At equal Reynolds numbers, the values of the drag coef-
ficients Cd

1
 in the individual ranges are lower for smaller 

distances S/d. Beyond the critical Reynolds number regime 
for S/d = 1.56, there is a long supercritical range up to 
approximately Re ≈ 106 . For both larger distances S/d = 
2.8 and 4.0, this regime is longer and extends up to Re ≈ 2 ×
106 . Considering the cases S/d = 1.56 and 2.8 in Fig. 4c, b, 
respectively, a second plateau for Cd

1
 is reached at approxi-

mately Re(S/d = 1.56) ≈ 5 ×106 and Re(S/d = 2.8) ≈ 6 ×106 , 
respectively, preceded by a second, rather long continuous 
increase in Cd

1
.

The individual shapes of the Cd
2
(Re, S/d = 1.56; 2.8; 4) 

curves of the downstream cylinder reveal an inverse develop-
ment with the Reynolds number compared to the upstream 
ones. For S/d = 1.56, during the transition from sub- to 
supercritical Reynolds numbers, a sharp change occurs in 
the drag coefficient from approximately Cd

2
 ≈ -0.3 to Cd

2
 ≈ 

+0.4 (supercritical), i.e. exceeding zero. For the larger dis-
tance S/d = 2.8, this change is less prominent, from approxi-
mately Cd

2
 ≈ 0 (subcritical) to Cd

2
 ≈ 0.4 (supercritical). This 

small transition range around Rec ≈ 4 ×105 is the critical 
Reynolds number regime.

In the subcritical regime, the negative sign of the mean 
drag force on the downstream cylinder indicates that the 
spacings S/d = 1.56 and 2.8 are below the critical spacing 
Sc; thus, the state of the flow around both cylinders belongs 
to the “reattachment regime” (“mode I”), where a vortex 
street is formed behind the downstream cylinder only. For 
the largest spacing S/d = 4, however, no zero-crossing of 
the downstream cylinder’s mean drag force is found. In the 
subcritical state, the drag is indeed small but positive ( Cd

2
 

≈ +0.08), leading to the conclusion that the state of the flow 
is in the “co-shedding mode” (“mode II”). The character of 
the drag curve Cd

2
(Re) is quite different from that of both 

other curves; the variations are rather small, and there is no 
discontinuous jump of the drag force in the critical regime. 
One probable reason is the nonexistence of a change in the 
modes, meaning that the distance is too large for impactful 
proximity interference effects.

However, a common property of all three distances is 
the paradox situation, in which the mean drag on the down-
stream cylinder in the supercritical range is higher than that 
on the upstream cylinder. The reason for the phenomena 
that take place in the supercritical regime is the formation 
of separation bubbles on the cylinder’s surface in the critical 
state ( (Zdravkovich 1987)). Following the classic paper by 
(Roshko 1961) regarding a single circular cylinder, the key 
role is played by the location of the laminar/turbulent transi-
tion in the separated shear layers. At subcritical Reynolds 
numbers, the transition occurs in the wake behind the cylin-
der. With increasing Reynolds number, the transition loca-
tion shifts upstream. In the critical range, the transition has 
reached the shoulders of the upstream cylinder. Separation 

(a)

(b)

(c)

Fig. 4  Mean drag coefficients for both individual cylinders as func-
tion of the Reynolds number for three spacing values S/d = 1.56, 2.8, 
and 4.0. In Fig. 4c the different symbols represent different total air 
pressures: ◻/∗ equals 20 bar, ∙/× equals 40 bar, ♢ equals 60 bar, ⬡/+ 
equals 80 bar
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bubbles can thus be formed on its surface, leading to a sharp 
reduction in the wake width of the upstream cylinder. Exper-
imental evidence of separation bubbles in the supercritical 
state can be found in the surface pressure distribution at Re 
= 6.7×105 measured by (Flachsbart 1929) and reproduced 
by (Roshko 1961). The occurrence of separation bubbles at 
Re = 6.5×105 was also confirmed through an LES simulation 
by (Rodriguez et al. 2015). The reduction in the wake width 
behind the upstream cylinder as a result of the formation 
of those separation bubbles leads to an increase in the drag 
on the downstream cylinder Cd

2
 . These transition effects 

are strong for both cases when S < Sc and weak for S > Sc. 
Considering the case S/d = 1.56, the bubbles remain rather 
stable up to Re ≈ 106 . As a consequence, the drag coefficient 
Cd

2
 remains nearly constant at a value of Cd

2
 ≈ 0.4 This is 

followed by a new transition region that is caused by the 
continuous disappearance of the separation bubbles at the 
upstream cylinder, resulting in an increase in the wake width 
and the drag force. Regarding a single cylinder, (Roshko 
1961) named this regime the “upper transition”. The open-
ing of the wake of the upstream cylinder is coupled with a 
continuous decrease in the drag on the downstream cylinder. 
At approximately Re ≈ 3.5×106 , a second sign reversal of the 
drag takes place to values down to Cd

2
≈ −0.07(< 0), the 

transcritical plateau. It can therefore be concluded that the 
state of the flow has changed again, from the “co-shedding 
mode” back to “mode I” in which proximity interference 
effects are dominant. More precisely, a transition to the 
“reattachment mode” takes place, in which the free shear 
layers that have separated from the upstream cylinder can 
reattach to the downstream cylinder.

With regard to the medium distance S/d = 2.8, the trend of 
the curve Cd

2
(Re) is similar, including a significant decline 

in Cd
2
 when the Reynolds number approaches very high val-

ues of Re → 107 . However, compared to the preceding case, 
the decline is not as steep and begins later at approximately 
Re = 3 ×106 . In addition, the transcritical plateau around Re 
≈ 107 remains at a positive value of Cd

2
 ≈ 0.2; hence, there 

is no zero-crossing, as was found for the smallest distance.
It was already mentioned that for the largest distance S/d 

= 4, the behaviour of the drag curve of the downstream cyl-
inder Cd

2
(Re) is in the critical Reynolds number range rather 

different from the case of both other distances. This is also 
valid in the very high Reynolds number regime where the 
decline in the mean drag is relatively small, i.e. from Cd

2

(Re ≈ 2 ×106 ) ≈ 0.5 to a value of 0.4 at Re ≈ 107 . The most 
obvious difference is the nonexistence of a distinctive dip 
of the mean drag on the downstream cylinder for S/d = 4.

The measured mean lift coefficients for the downstream 
cylinder, which are not shown here, are practically zero over 
all investigated Reynolds number ranges. If one were to pass 
through the critical regions in smaller velocity steps than 
used in the current study, one would most likely find steady 

asymmetric states with Cl
2
 ≠ 0, as reported in (Schewe 

1983) for single smooth cylinder flows and in (Schewe and 
Jacobs 2019) for two smooth circular cylinders in a tandem 
arrangement.

3.2  Base pressure coefficients

The mean base pressure coefficient Cpb
1
 of the upstream 

cylinder is shown for the distances S/d = 2.8 and 4 in the 
upper part of Fig. 5, whereas the lower part of the same 
figure presents Cpb

2
 for the downstream cylinder.

Most notable are the trends of both Cpb(Re)-curves for 
the upstream cylinder. They both show a similar behaviour 
as that found for the corresponding drag curves Cd

1
(Re). In 

the case of the smaller of the shown distances, S/d = 2.8, 
there is however a significant dip around Re ≈ 107 , i.e. a 
large increase in the mean base pressure. In particular, in 
the subcritical region, the absolute values of the mean base 
pressure of the upstream cylinder are lower for the smaller 
of the spacing values. The interference effects in the sub-
critical range, i.e. the occurrence of an inverse drag (hence 
thrust) on the downstream cylinder is reflected in a signifi-
cant decrease in the mean suction pressure of Cpb

1
 ≈ -0.75 

in comparison to Cpb = -1.2 for a single cylinder.
A first look at the mean base pressure coefficient of the 

downstream cylinder, Cpb
2
(Re), in the lower part of Fig. 5 

confirms a similar trend of both curves as described above 
for Cpb

1
(Re). A significant difference is the nonexistence of 

Fig. 5  Mean base pressure coefficients Cpb
1
 and Cpb

2
 for both cylin-

ders and two spacings S/d = 2.8 and 4. The upper figure shows the 
values for the upstream (index 1) and the lower figure for the down-
stream cylinder (index 2)
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a jump in the critical Reynolds number range, though. The 
variations are furthermore much smaller and at the crossover 
to the supercritical regime, there appears only a kink in the 
curve.

Although different values for the cylinder interspacing 
were chosen, an approximate comparison of the current 
results with the corresponding measurements of (Alam et al. 
2003), taken at a subcritical Reynolds number of Re = 6 ×
104 , can be performed here. (Alam et al. 2003) measured the 
base pressure of the upstream cylinder of Cpb

1
= −0.9 at S/d 

= 2.2 and Cpb
1
≈ −0.68 at S/d = 3.5. Our current result of 

Cpb
1
= −0.75 at the distance S/d = 2.8 in the upper part of 

Fig. 5 thus lies in an intermediate position. As an example, 
for a distance with S > Sc, (Alam et al. 2003) obtained a 
value of Cpb

1
= −1.25 at S/d = 4.5, which lies close to our 

result of Cpb
1
= −1.28 at S/d = 4. Regarding the downstream 

cylinder, the experimental data by (Alam et al. 2003) show 
a value of Cpb

2
≈ −0.65 at S/d = 2.4, while we obtained 

Cpb
2
= −0.58 at S/d = 2.8, as presented in the lower part 

of Fig. 5. For a larger distance beyond the critical value Sc, 

(Alam et al. 2003) measured Cpb
2
= −0.62 at S/d = 4.5, 

which lies close to our value of Cpb
2
= −0.68 at S/d = 4.

3.3  Strouhal number and RMS‑values 
of the fluctuating lift forces

The Strouhal number St and the RMS values of the fluctuat-
ing lift coefficient Clrms were obtained from the spectra of 
the fluctuating lift acting on the downstream cylinder. Their 
values for spacing S/d = 2.8 and 4 are plotted in Fig. 6. The 
corresponding results for the single smooth cylinder (S/d = 
0) are also included for comparison. Since the single smooth 
cylinder had the same diameter d and the measurements 
were taken in the same wind tunnel with the same balance 
(Schewe 1983), nearly equal test conditions were obtained 
in both experiments. Unfortunately, no results for Clrms and 
St are available for the small distance S/d = 1.56, as pre-
sented in the previous figures. The reason behind this is that 
(Schewe and Jacobs 2019) used a strain gauge balance in 
their tests, which is not suitable for unsteady measurements.

Fig. 6  RMS-values (upper) and 
Strouhal numbers (middle and 
lower figure) obtained from the 
fluctuating lift forces acting 
on the downstream cylinder 
as function of the Reynolds 
number and the spacing. ∙ : 
single circular cylinder data 
by (Schewe 1983). In the 
supercritical range two peaks 
occurred in the power spectra 
at the same Reynolds number. 
The dominant Strouhal number 
is indicated by a dot within the 
circular symbols, whereas the 
open circles without dots belong 
to the secondary peak



Experiments in Fluids (2021) 62:176 

1 3

Page 9 of 18 176

All three plots in Fig. 6 show a strong dependency of the 
RMS values of the fluctuating lift coefficients and the Strou-
hal number on the Reynolds number for the downstream 
cylinder. Note that the precise measurement of force fluctua-
tions is very difficult; however, it is a showpiece of the stiff 
piezo-balance.

For the sub- and transcritical regimes, the RMS values 
obtained for the larger spacing (S/d = 4) in the upper plot 
of Fig. 6 are much higher than for the shorter distance (S/d 
= 2.8). In the transcritical range, the values for S/d = 4 are 
even twice as high. In the supercritical regime, the RMS val-
ues for the smaller spacing are then again somewhat higher, 
although the difference is smaller than in both aforemen-
tioned regimes. In any case, the RMS values of the fluctuat-
ing lift of the downstream cylinder are significantly higher 
for all studied Reynolds numbers in both tandem arrange-
ments than for a single cylinder. In particular at very high 
Reynolds numbers near 107 , these values at the larger spac-
ing are as high as for a single circular cylinder at subcritical 
Reynolds numbers and approximately 7 times as large as 
those found for a single circular cylinder at equal transcriti-
cal Reynolds numbers.

Considering these results, note that the RMS values of 
the fluctuating lift are the result of the force fluctuations 
acting on the entire downstream cylinder that span from one 
sidewall of the test section to the other; hence, Clrms is in this 
case related to a cylinder length of 10d. In comparison, the 
RMS measurements of the fluctuating lift obtained by (Alam 
et al. 2003) are, for example, related to cylinder length of 
0.92d only. Hence, it can be expected that their RMS values 
are significantly higher. An interpolation of the measured 
values in Fig. 13 in (Alam et al. 2003) results in a value of 
Clrms ≈ 0.6 for the smaller spacing S/d = 2.8, whereas for S/d 
= 4, a value of Clrms ≈ 0.9 was measured.

In the lower part of Fig. 6, the results for St(Re) show 
that for the largest of the three shown spacing values, S/d 
= 4, the subcritical Strouhal numbers are approximately St 
= 0.18, close to St = 0.182 obtained by (Alam et al. 2003), 
but approximately 10% lower than for a single cylinder. At 
the end of the critical Reynolds number range, there is a 
jump to the supercritical state. The most striking feature 
in the supercritical state is the occurrence of two peaks in 
the power spectra at a constant Reynolds number. In other 
words, after the jump into the supercritical state, two Strou-
hal numbers exist at the same Reynolds number. The first 
peak at St = 0.44 is caused by the dominant peak in the 
spectrum, whereas the second value at St = 0.24 results from 
a secondary peak. Representative examples of the power 
spectra ΦCl(St) are shown in Fig. 7 and are discussed in the 
next section. The dominant peaks in the spectra are indicated 
in Fig. 6 by dots within the circular symbols. Hence, open 
circles without dots belong to secondary peaks. It is evident 
that the higher frequency component, i.e. St ≈ 0.4, dominates 

up to Re ≈ 5 ×105 ; thereafter, the lower frequency component 
predominates, i.e. St ≈ 0.24. This behaviour extends up to Re 
≈ 2 ×106 . If only the high values around St ≈ 0.4 are consid-
ered, then the shape of the St(Re)-curve is similar to that of 
the single cylinder, and the values of the respective ranges 
(super- and transcritical) are approximately 10% lower. In 
conclusion, we can state that, apart from the transition range 
around Re ≈ 106 , the current measured values are in this case 
close to the case of the single cylinder, and the discontinuous 
jumps for critical Reynolds numbers are prominent as well.

For the medium spacing S/d = 2.8 (the middle plot of 
Fig. 6), the St(Re)-curve of the downstream cylinder is quite 
different. In the subcritical Reynolds number range, the 
Strouhal number is St ≈ 0.14 and thus significantly lower 
than those for the largest distance S/d = 4. (Alam et al. 2003) 
obtained nearly the same value. The jump in the supercriti-
cal Reynolds number range reaches only St ≈ 0.34 and is 
followed by a stepwise decrease down to a new plateau, the 
latter beginning at approximately Re = 2 ×106 and having 
Strouhal numbers somewhat higher than St ≈ 0.2. At approx-
imately Re = 8 ×106 , there is a distinctive dip down to a level 
of St ≈ 0.16. This dip is coupled with a corresponding dip 
in the drag coefficient Cd

2
 in Fig. 4 and in the Clrms of the 

Fig. 7  Development of the power spectra ΦCl,2(St) as a function of the 
Reynolds number, obtained from the fluctuating lift forces Cl

2
(t) that 

act on the downstream cylinder at a spacing of S/d = 4.0
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downstream cylinder in the upper plot of Fig. 6. Notably, for 
this S/d-value, the transcritical Strouhal numbers are again 
close to the subcritical values. (Alam et al. 2003) obtained 
a value of St ≈ 0.14 for the missing subcritical case of S/d 
= 1.56, which corresponds to our and Alam’s results for 
S/d = 2.8.

3.4  Power spectra

In the discussion of the behaviour of Strouhal numbers as a 
function of the Reynolds number, reference was made to the 
complexity of the underlying power spectra. To give an over-
view of how the spectra of the fluctuating lift forces Cl

2
(t) 

that act on the downstream cylinder develop from subcritical 
up to very high Reynolds numbers, twelve spectra, typical 
for the respective Reynolds number ranges, are shown in 
Fig. 7.

The selected cylinder spacing is in this case S/d = 4. In 
this way, the abrupt changes in the critical range and the 
appearance of two peaks—with mutual dominance—can 
clearly be visualised. In the left column of Fig. 8, the most 
important spectra of Fig. 7 are shown in a two-dimensional 
representation to allow a more quantitative examination and 
evaluation.

The lowest grey spectrum in Fig. 7, which corresponds 
to Fig. 8a, was recorded at Re = 1.5×105 and is typical for 
the subcritical Reynolds number range. The main feature 
is the single dominant peak at St = 0.19, which protrudes 
more than 35 dB from the background. The second spectrum 
(magenta solid line) in Fig. 7 represents the critical state 
immediately prior to the jump into the supercritical range. 
The mean drag coefficient is still high (above 1), and the 
Strouhal number is still low at approximately St = 0.19, but 
in the spectrum, a second smaller peak already appears at 
St = 0.42. In the third spectrum (black solid line) in Fig. 7, 
which corresponds to Fig. 8b, the jump into the supercriti-
cal range has been completed. From the second spectrum 
in Fig. 7 on, the most striking feature is the appearance of 
two Strouhal number peaks within the spectrum at the same 
Reynolds number (see also Fig. 8c). According to Fig. 7, this 
behaviour is present up to Re ≈ 3 ×106 . For larger Reynolds 
numbers up to Re = 8 ×106 , each spectrum consists again 
of only one broad peak at St = 0.24 (see also Fig. 8d). As 
the Reynolds number increases further, a new and narrower 
peak develops at a slightly higher Strouhal number of St = 
0.27, as seen in the last, topmost spectrum in Fig. 7, as well 
as in Fig. 8e.

In the right column of Fig. 8, Fig. 8f–j shows several 
spectra belonging to the smaller distance S/d = 2.8. Most 
of these spectra correspond to the same Reynolds number 
regimes as their counterparts in the left column so that the 
influence of the spacing can be seen directly. Except for the 
lower Strouhal number value at the smaller distance S/d = 
2.8, the shapes of the spectra in the subcritical case (1st 
row) are similar. Note that for S/d = 2.8, no spectra with 
two peaks can be observed. Additionally, in the supercritical 
case (2nd row), the peak for S/d = 2.8 is not as pronounced, 
and the Strouhal number is significantly lower than in the 

Fig. 8  Power spectra ΦCl,2(St) for different Reynolds numbers, 
obtained from the fluctuating lift forces Cl

2
(t) acting on the down-

stream cylinder. In the left column, i.e. Fig. 8a–e, the spacing is S/d = 
4. In the right column, i.e. Fig. 8f–j, the spacing is S/d = 2.8

Fig. 9  Power spectrum ΦCl,2(f) taken in the supercritical regime (Re 
= 5.8×105 ) for S/d = 4, corresponding to the spectrum in Fig. 8c, but 
with horizontal frequency axis and enlarged ordinate scaling
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case of the larger spacing. In Fig. 6, it was already presented 
that for both distances, the curves for the Strouhal number 
St(Re) and the corresponding RMS values of the lift coef-
ficient almost coincide in the range Re = 1 ×106 - 6 ×106 . The 
reason for both observations is the very similar broadband 
spectra in this Reynolds number range (see Fig. 8d, i). When 
the Reynolds number continues to rise, a new peak develops 
from the broadband spectrum, similar to S/d = 4 (Fig. 8e), 
but this time at a significantly lower Strouhal number of St 
= 0.18 (Fig. 8j).

Considering all results from the spectral analysis, an 
important finding is the presence of two peaks in the super-
critical region for the larger distance S/d = 4, which most 
likely arises from the two different flow modes. Figure 9 
shows the special case where the two peaks in the power 
spectrum ΦCl,2(f) for the downstream cylinder have nearly 
equal heights. The spectrum was taken in the supercritical 
regime (Re = 5.8×105 ) and corresponds to the spectrum 
shown in Fig. 8c, corresponding to a cylinder spacing of 
S/d = 4. To illustrate the effects, the range of the ordinate 
of the spectrum is slightly adapted, and the abscissa now 
indicates the frequency.

One broadband peak is present at approximately f = 116 
Hz, and a second relatively narrowband peak is present at 
approximately f = 218 Hz, the latter corresponding to St 
= 0.44. Both peaks protrude approximately 10 dB from 
the spectral background. The ratio of the two frequencies 
is close to 1:2. Hence, subharmonic resonance could play 
a role here. This possibility is discussed in more detail in 
sect. 4.2. The (as yet unanswered) question that arises with 
the usual long-term spectral analysis is in which temporal 
context the events responsible for the two frequencies occur. 
By applying the Fourier transform with a sliding window or 
a wavelet transform, this question can be investigated and is 
discussed in the following section.

3.5  Time‑frequency analysis‑continuous wavelet 
transform

When looking at time signals obtained in flows around 
bluff bodies, the question often rises as to how these sig-
nals change as a function of time and what the causes for 
these changes are. There are two methods to answer these 
questions: application of a Fourier transform with a slid-
ing window, termed a spectrogram, or a continuous wavelet 
transform.

We have applied the continuous wavelet transform, which 
is an alternative to the Fourier transform ( (Gaviria and Mon-
tejo 2018)). This algorithm computes the similarity between 
each segment of a signal and a short, wave-like distribution 
called a wavelet. The wavelet can be scaled across many 
widths to capture different frequencies. Due to the varia-
tion in the wavelet length, even frequencies far apart from 

one another can be detected well. In general, the Heisenberg 
uncertainty principle determines the lower limit for the fre-
quency-time resolution product. The result of a continuous 
wavelet analysis is then, for example, a “scalogram”.

For sub-, super-, and transcritical Reynolds num-
bers, typical scalograms are presented in the upper parts 
of Fig. 10a–c. The selected cylinder distance is S/d = 4. 
As a contour plot, the scalogram displays the percentage 
of energy for each wavelet coefficient depending on time 
t and scale s and is quantified in the colour bar. The scale 
s is related to the frequency f as s = Fs/f, with Fs being the 
sample frequency. The complex Morlet wavelet has been 
applied, which is particularly suitable for oscillatory phe-
nomena. The central frequency is fixed at Fc = 1 Hz, and the 
wavelet width is varied between 2 and 8.

Before discussing the scalograms, it is suggested to first 
examine the data on which the wavelet transform is based, 
namely the corresponding time series of the lift coefficient 
Cl

2
(t) of the downstream cylinder in the lower parts of 

Fig. 10a, c. They show at first sight a similar appearance 
to the time series of a single circular cylinder at sub- and 
transcritical Reynolds numbers (Figs. 13 and 14 in (Schewe 
1983)). The corresponding long-term power spectra can be 
found in Fig. 8a, e. Both time series of the lift coefficient 
show the appearance of time histories caused by more or 
less periodic vortex shedding, as is typical for bluff bod-
ies. There is a monofrequency oscillation as the carrier fre-
quency, which is modulated at random.

Returning now to the scalogram of the subcritical case at 
Re = 1.5×105 in Fig. 10a, the rising and falling amplitudes, 
i.e. the modulation, are reflected in the scalogram by more 
or less connected islands formed of closed contour lines. 
These islands or areas are lined up on the horizontal line 
of scale s = 210, which corresponds to a vortex shedding 
frequency of f = 23 Hz. The oval-shaped areas are in the 
transverse direction aligned to the time axis, and their widths 
are a measure of the frequency fluctuations due to the vortex 
shedding process. The inner red centres mark the areas with 
the largest amplitudes of Cl

2
 , while the white spaces indicate 

amplitudes close to zero. The latter is particularly evident 
at t ≈ 1 s, approximately t ≈ 5.5 s, and t ≈ 8.5 s. The scalo-
gram in Fig. 10c describes the transcritical case (Re = 1.1×
107 ). Its appearance is similar to that of the aforementioned 
subcritical case. However, the main islands or areas are now 
lined up on the horizontal line of scale s = 36, which cor-
responds to a vortex shedding frequency of f = 143 Hz. The 
corresponding time function shows this typical burst-like 
character as well, although the degree of randomness regard-
ing the modulation is higher. A special feature is that along 
the line of scale s = 11 that corresponds to a frequency of f 
≈ 452 Hz, there is a second line of weak oval spots, which 
occur randomly. This frequency corresponds approximately 
to the bending frequency of the downstream cylinder in the 
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Fig. 10  Wavelet analysis, i.e. “scalogram”, of fluctuating lift Cl
2
 

(upper subplots) and the corresponding time function (lower sub-
plots) for typical sub-, super-, and transcritical Reynolds numbers. 
The scalogram displays the percentage of energy for each wavelet 
coefficient depending on time and scale s and is quantified in the col-

ourbar. Upper image: Subcritical case (Re = 1.5×105 ), scale s = 210 
corresponds to f = 23 Hz; centre image: Supercritical case (Re = 5.8×
105 ); lower image: Transcritical case (Re = 1.1×107 ), scale s = 36 → 
f = 143 Hz; s = 11 → f = 452 Hz
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lift direction. Because of the high pressure ( p
0
 = 100 bar) at 

this Reynolds number, the value is reduced compared to the 
value of fz = 489 Hz given in sect. 2.1, which is measured 
at atmospheric pressure. In this particular case, the bending 
frequency is slightly excited because its value correlates with 
three times the vortex shedding frequency at this Reynolds 
number. This superharmonic resonance of the third order 
is also visible in Fig. 11. The figure shows the long-term 
spectrum ΦCl,2(f) recorded in the transcritical regime at Re 
= 1.1×107 , and apart from the enlarged frequency axis, this 
spectrum corresponds to the spectrum shown in Fig. 8e.

Figure 10b shows the scalogram for a supercritical Reyn-
olds number of Re = 5.8×105 . This corresponds to the spe-
cial case where two spectral peaks of nearly equal height 
are present in the long-term spectrum (see Fig. 9). Over-
all, the time series has a stochastic character, but there are 
also intermittently occurring time ranges of approximately 
Δt ≈ 0.1 s in which burst-like wave packets are detectable. 
These wave packets are strong enough to produce the two 
significant peaks in the long time (averaged) power spectrum 
(Fig. 9). Especially in the time ranges of t = 0.1 - 0.2 s and t 
= 0.4 - 0.5 s, monofrequency short wave trains appear whose 
amplitudes vary stochastically. In the scalogram, these burst-
like wave packets can be identified as oval elongated areas, 
aligned inline on the dotted line of scale s = 24 that cor-
responds to a frequency of approximately f = 220 Hz (St = 
0.44, high-frequency mode). Looking now in more detail 
at how the peak at approximately f = 120 Hz is reflected in 
the scalogram, a slightly different picture is obtained. This 
frequency corresponds to a scale of s = 41, and around this 
dotted line, there are also islands of closed contour lines. 
However, each of them has a more irregular shape, and 

compared to the high-frequency mode at s = 24, the centres 
of the islands are more widely spread around the line of s = 
41. In the time domain, this behaviour is expressed in such a 
way that there are fewer clear wave trains at 120 Hz. It seems 
that the low-frequency mode (s = 41) is active all the time 
and that this frequency varies strongly around the average 
value, whereas the high-frequency mode (s = 24) is more 
intermittent, with a higher degree of regularity and intensity.

The question rises whether the low-frequency mode has 
something to do with the fact that the cylinder spacing S/d 
= 4 is very close to the critical distance Sc, which could 
cause the flow to jump back and forth between the two 
states, namely the “single-body” and “co-shedding” modes 
( (Alam et al. 2003)). However, such behaviour would occur 
at a low frequency, lower than St = 0.22, as is the case here. 
In particular, in a scalogram, such a jump back and forth 
should be clearly visible. However, in our case, the low-
frequency mode becomes the dominant mode with increas-
ing Reynolds number, indicating that the mode anticipates 
a flow state characteristic of the very high Reynolds number 
range before the transcritical regime begins.

4  Discussion

4.1  Flow topology

(Sumner 2010) described the general flow behaviour around 
two smooth circular cylinders in a tandem configuration as 
follows: when two cylinders are arranged inline in tandem, 
the downstream cylinder is shielded from the incoming flow 
by the cylinder upstream. The wake of the upstream cylinder 
modifies the incoming flow conditions for the downstream 
cylinder, while this second cylinder interferes with the wake 
dynamics and vortex formation region of the upstream cyl-
inder. This mutual interference means that the upstream 
cylinder may behave as a generator of unsteadiness, while 
the downstream cylinder can act as a drag-reduction body, 
as a target for the impinging shear layers, or as a second 
vortex shredder. Which of the various interference phenom-
ena described in this way may occur depends mainly on the 
Reynolds number and the distance between both cylinders. 
Including the study by (Schewe and Jacobs 2019), a large set 
of experimental data for three different values of the centre-
to-centre spacing is now available for sub- to transcritical 
Reynolds numbers. Since the data were recorded in the same 
wind tunnel, a comparative discussion is thus appropriate 
and is given below.

Since no flow visualization was performed in the cur-
rent study, we have no detailed information on the wake 
structures around and behind both cylinders, particularly 
for the super- and transcritical Reynolds number ranges. 
Nevertheless, we present ideas on how the flow structures 

Fig. 11  Power spectrum ΦCl,2(f) taken in the transcritical regime at 
Re = 1.1×107 , corresponding to the spectrum in Figure 8e, but with 
extended frequency axis and enlarged ordinate scaling. The peak at f 
= 452Hz is the bending frequency of the downstream cylinder
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in the wake could appear, based on our knowledge on the 
drag coefficients, i.e. Cd

1
 , Cd

2
 , and Cdrake , the width of the 

wake behind the downstream cylinder, and the Strouhal 
numbers. For this reason, Fig. 12 shows—in a very simpli-
fied form—sketches of the flow topologies that are typical 
for the individual Reynolds number ranges and for the three 
studied distances S/d = 1.56, 2.8, and 4. These sketches are 
intended to represent the instantaneous 2D flow fields, i.e. 

large-scale vortical structures without consideration of the 
stochastic (turbulent) nature of the wake flow. They have 
been arranged in a matrix, in which the individual rows rep-
resent the sub-, super-, and transcritical Reynolds number 
ranges for a constant cylinder interspacing. Each column 
displays the changes in the flow field for one of these three 
Reynolds number ranges with varying distance S.

Figure 12 demonstrates that the location of the laminar/
turbulent transition (denoted in each sketch by ⊗ ) and that 
the formation of separation bubbles in the supercritical 
regime play a dominant role regarding the measured Reyn-
olds number effects. Details on the development of the sepa-
ration bubbles on the cylinder’s surface have already been 
presented in the context of Fig. 4. Starting with the first 
subcritical case, i.e. the smallest cylinder distance S/d = 1.56 
in the top left image, the separated shear layers undergo tran-
sition somewhere in the wake behind the upstream cylinder. 
The boundary layers separate laminar from the upstream 
cylinder, and the turbulent free shear layers overshoot the 
downstream cylinder, as a result of which the two tandem 
cylinders can be seen as one extended body: “mode I”. 
Because of the presence of a strong negative pressure in 
the gap between both cylinders, a suction effect is created 
on the downstream cylinder, resulting in a strong negative 
mean drag of Cd

2
= −0.4 that acts on this cylinder. At this 

Fig. 12  Simplified sketches of the instantaneous 2D flow fields that 
are typical for the individual Reynolds-number ranges and for three 
different distances (top: S/d = 1.56; centre: S/d = 2.8; bottom: S/d 
= 4). The key role is played by the location of the laminar/turbulent 

transition, which wanders upstream for increasing Reynolds number. 
The vectors indicate the magnitude and direction of the mean drag 
force coefficients Cd

1
 and Cd

2
 , belonging to the upstream and down-

stream cylinder, respectively

Fig. 13  Mean drag coefficients on the downstream cylinder as func-
tion of the Reynolds number for three distances S/d. Apart from the 
subcritical range for the two smaller distances proximity effects cause 
a strong dip of Cd

2
 for Reynolds numbers approaching transcritical 

values
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small cylinder spacing, the downstream cylinder acts as a 
drag-reduction body. The wake width behind the down-
stream cylinder is small, as reflected by a small total drag 
of Cdrake ≈ 0.6.

For the second subcritical case, i.e. at a centre-to-centre 
spacing of S/d = 2.8 (centre left image), the overall situation 
is similar. However, as already mentioned in the introductory 
section, the free shear layers that separate from the upstream 
cylinder can now reattach to the downstream cylinder, and 
the flow in the gap remains almost stagnant. This image 
is an example of the “reattachment regime”. Compared 
with the previous case, i.e. S/d = 1.56, the larger distance 
between both cylinders now leads to reduced shielding and 
diminished suction effects that result in a reduced negative 
drag force on the downstream cylinder of approximately 
Cd

2
= −0.2. The upstream wake width is further increased, 

leading to a higher total drag of Cdrake ≈ 1.2. Both foregoing 
cases, S/d = 1.56 and 2.8, have in common that proxim-
ity effects dominate and that one common vortex street is 
formed behind the downstream cylinder. They are thus both 
categorised as “mode I”.

The last subcritical case at the largest investigated dis-
tance of S/d = 4 (bottom left image) presents an overall situ-
ation that has changed fundamentally. This image is inspired 
by the flow visualization in Fig. 3a in (Alam et al. 2018). 
Here, both cylinders generate vortices, and the state of the 
flow is now part of the “co-shedding regime”, denoted as 
“mode II”. Because of the large distance, the suction effect 
on the downstream cylinder has disappeared, which results 
in a sign change of the drag force on the downstream cylin-
der; hence, Cd

2
 > 0. The largest distance S/d = 4 thus lies 

beyond the critical spacing Sc, and the downstream cylinder 
acts as a vortex shredder. Compared with the two aforemen-
tioned configurations, the wake behind both cylinders is very 
broad, which results in the highest total drag among the three 
cases of Cdrake ≈ 1.7.

Let us now consider the supercritical cases in the middle 
column, for which the state immediately after the crossover 
is sketched. For all three distances, the location of the transi-
tion moves upstream with increasing Reynolds number. At 
the critical Reynolds number, the transition location reaches 
the shoulders of the upstream cylinder; consequently, sepa-
ration bubbles form with the laminar/turbulent transition 
occurring over the bubble. This crossover from the subcriti-
cal (left column) to the supercritical (centre column) state 
is accompanied by a decrease in the wake width behind the 
upstream cylinder. The separated shear layers produce vorti-
cal structures with a characteristic length much smaller than 
at subcritical Reynolds numbers. This sharp reduction in 
the characteristic length can be identified from the jumps in 
the Strouhal number, which are shown in Figs. 6, 8. In addi-
tion, the reduction in the wake width reduces the shielding 
effect and thus causes an increase in the drag Cd

2
 on the 

downstream cylinder. For the two smaller distances, S/d = 
1.56 and 2.8, the transition from subcritical to supercriti-
cal Reynolds numbers is accompanied by a sign reversal of 
Cd

2
 to positive drag values, i.e. a crossover from “mode I”, 

where proximity effects dominate, to “co-shedding mode 
II”. It can thus be concluded that a substantial shortening of 
the critical spacing Sc has occurred. For all three cylinder 
distances in the supercritical range, the mean drag force on 
the downstream cylinder Cd

2
 is positive; hence, all configu-

rations are in the ”co-shedding mode”. In addition, there is 
an abnormal situation in which the mean drag forces on the 
downstream cylinder are higher than those on the upstream 
cylinder, i.e. Cd

2
 > Cd

1
 . Compared to the three subcritical 

cases, the downstream wake width at supercritical Reynolds 
numbers is reduced significantly, which is coupled with a 
reduction in the total mean drag coefficient to Cdrake(S/d = 
1.56) ≈ 0.4 and Cdrake(S/d = 2.8; 4.0) ≈ 0.6.

In the third column, the situations with the highest meas-
ured Reynolds numbers of Re ≈ 107 are outlined. The flow 
around the upstream cylinder behaves similarly for all three 
values of cylinder interspacing. The main feature in this 
transcritical range is the location of the laminar/turbulent 
transition at the front side of the upstream cylinder. Return-
ing to the upper transition, the simplified process is con-
jectured as follows: with increasing Reynolds number, the 
separation bubbles at the upstream cylinder gradually disap-
pear. This process is coupled with an upstream movement 
of the separation locations. For the smallest of the three 
distances (top right image), this development is followed 
by a concurring re-rise of the mean drag force in Fig. 4 and 
the upstream wake width in Fig. 3. The shielding effect on 
the downstream cylinder thus increases again and leads to 
a correlating reduction in the mean drag force on the down-
stream cylinder. This development continues with increasing 
Reynolds number until the location of the laminar/turbulent 
transition reaches the front side of the upstream cylinder 
and, as a result, overtakes the separation point.

Figure 4c shows that for the smallest cylinder distance 
of S/d = 1.56, the mean drag coefficients of both cylinders 
level out at a new plateau in the transcritical range. To be 
more precise, at the beginning of the very high range (Re ≈ 
3.5×106 ), there is a second zero-crossing of the drag of the 
downstream cylinder to Cd

2
 = -0.2. Because of this second 

drag inversion, the state of the flow thus changes once again, 
this time from “co-shedding mode II” back to the second 
part of “mode I”, the “reattachment mode”, in which the free 
shear layers that have separated from the upstream cylinder 
can reattach to the downstream cylinder. Compared to the 
corresponding supercritical state, the total mean drag in the 
transcritical regime does not change significantly with Cdrake
(S/d = 1.56) ≈ 0.4.

For the two other cylinder interspacing values S/d = 2.8 
(centre right image) and 4 (bottom right image), the general 
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development is similar to that described above for S/d = 
1.56. However, both larger distances, S/d = 2.8 and 4, result 
in weaker proximity effects so that the drag coefficients Cd

2
 

in both cases remain positive, which means that the critical 
distance Sc is exceeded. The states of the flow in both latter 
cases thus belong to “co-shedding mode II”, in which the 
downstream wake width is significantly increased, which is 
then again coupled with an increase in the total mean drag to 
Cdrake ≈ 0.8 and 1.2 for S/d = 2.8 and 4, respectively.

In the curves in Fig. 13 of the mean drag coefficient 
on the downstream cylinder, the influence of the proxim-
ity effects on the drag force of the downstream cylinder is 
unambiguous, particularly for the two smaller distances. For 
the subcritical range and for Reynolds numbers approaching 
Re → 107 , the mean drag coefficients decrease significantly, 
i.e. there is a prominent dip. For S/d = 1.56, the mean drag 
force even becomes negative again in the transcritical range.

4.2  Fluctuating forces

The discussion of the unsteady effects is unfortunately 
limited to the two larger distances, since, as has been men-
tioned before, no unsteady measurements are available for 
the smallest distance of S/d = 1.56.

The Strouhal numbers for the largest distance S/d = 4 in 
Fig. 6 are very similar to the values for a single cylinder. For 
Reynolds numbers within the range Re = 1 ×106 - 7 ×106 , 
the spectra of the fluctuating lift for both distances in Fig. 8 
are similar, resulting in Strouhal numbers and RMS values 
of the lift force fluctuations having nearly equal values as 
well, i.e. St ≈ 0.22 - 0.24. This is followed by branching at 
higher Reynolds numbers. For Re → 107 , there appears a dip 
in the curve of the Strouhal number for S/d = 2.8 (Fig. 8a) 
down to St = 0.17, as well as a dip in the Clrms(Re)-curve 
(Fig. 8b). In contrast, for the largest distance S/d = 4, both 
curves show increasing trends at high Reynolds numbers. 
The spectrum in Fig. 8e shows only a single dominant peak 
at approximately St = 0.27 because it can be assumed that a 
new state has been reached, which remains constant over a 
larger Reynolds number range. In contrast, the correspond-
ing spectrum for the smaller distance S/d = 2.8 in Fig. 8j 
does not give the impression that a final state has already 
been reached. The transformation of the spectrum in the 
range Re = 1 ×106 to 7 ×106 to a new state at higher Reynolds 
numbers does not seem to have completed yet. There are still 
remaining peak characteristics that belongs to the previous 
Reynolds number range, and the new peak at St = 0.17 is 
probably in statu nascendi.

The significance and influence of the interference effects 
can be determined by comparing the behaviour of the RMS 
of the fluctuating lift force, Clrms , for the tandem cylinder 
configurations to the case of a single circular cylinder (S/d 
= 0). Only then does it become clear whether the addition 

of the second (downstream) cylinder increases or decreases 
the RMS. For the following comparison, it is once more 
significant to mention that the experiments for both the sin-
gle circular cylinder and the tandem cylinder configurations 
were carried out under almost equal test conditions in the 
same wind tunnel. The significance of the RMS values of 
the fluctuating lift is given by the fact that it is an integral 
value, which reflects the degree of unsteadiness in the entire 
flow field. Figure 6 shows that for spacing values S/d = 2.8 
and 4, the RMS values on the downstream cylinder are much 
higher than those for a single cylinder. In particular, at very 
high Reynolds numbers, approximately 107 , Clrms for S/d = 
4.0 reaches values as high as for a single circular cylinder 
at subcritical Reynolds numbers. At the highest Reynolds 
number measured for the single cylinder, i.e. Re = 7 ×106 , 
the RMS values for both tandem arrangements are even a 
factor 4 higher than those obtained for the single cylinder.

In the supercritical range, the most striking feature is the 
occurrence of two peaks in the long-term spectra for the 
large distance S/d = 4 (see Fig. 9). The frequency ratio of 
the two flow modes is close to 1:2. If one considers that 
in the supercritical Reynolds number range, both cylinders 
are shedding vortices, i.e. the “co-shedding mode”, one can 
picture them as two interacting fluid oscillators. Typically, 
these are highly nonlinear and can therefore be responsible 
for sub- and superharmonic resonances. One could there-
fore state that the broadband low-frequency mode is due to 
subharmonic resonance. Nonlinear resonance phenomena 
in flows around a prism with a square cross section and a 
Tacoma section were already described in (Schewe 1989).

A further question is whether the flow structures char-
acterised by the two frequencies occur simultaneously or 
alternately. The wavelet analysis in Fig. 10b shows that (i) 
the low-frequency mode is more irregular, (ii) it seems to 
be active all the time, and (iii) the frequency varies strongly 
around the average value, whereas the high-frequency mode 
in the form of short wave trains is more intermittent, with 
a higher degree of regularity and intensity. The scalograms 
thus provide information on the nature of the fluid forces 
acting on the body, namely how they change as a function 
of time. Since the curve of the Strouhal number of the high-
frequency mode as a function of the Reynolds number cor-
responds in its appearance to what is typical for a single 
cylinder, it can be concluded that the low-frequency mode, 
which does not occur for a single cylinder, is an interference 
effect, which is caused by adding a second cylinder up- or 
downstream.

In this context, it must be emphasized once more that 
the effect of the fluid forces on the downstream cylinder 
reflects the unsteady fluctuations of the entire flow field. 
This means that, even in an attenuated form, there may be 
contributions in Cl

2
(t)—the low-frequency mode—that are 

mainly produced by events in the flow around the upstream 
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cylinder. As mentioned before, this is possible since in the 
supercritical Reynolds number range, the entire flow field is 
in a “co-shedding mode”; i.e. both cylinders generate vorti-
cal flow structures.

5  Conclusions

Based on our measurements regarding Reynolds number 
effects in the flow around two tandem smooth cylinders at 
a centre-to-centre spacing of S/d = 2.8 or 4, the following 
conclusions can be drawn:

• Measurements of the steady and unsteady forces acting 
on a pair of circular cylinders in crossflow for distances 
S/d = 2.8 and 4 were performed from subcritical up to 
ultra-high Reynolds numbers;

• For both distances, the appearance of the drag curves for 
the upstream cylinder Cd

1
(Re) is similar to the behaviour 

of a single circular cylinder;
• The drag curves Cd

2
(Re) of the downstream cylinder 

exhibit the inverse development of that of the upstream 
cylinder;

• For the subcritical range and for Re → 107 , the drag on 
the downstream cylinder decreases significantly; i.e. 
there is a prominent dip. For S/d = 2.8, the drag even 
becomes negative in the subcritical range;

• The drag inversion indicates that the critical distance Sc 
decreases sharply in the supercritical Reynolds number 
range;

• The curve of the Strouhal number St(Re) of the down-
stream cylinder for S/d = 4 is very close to that of a 
single cylinder. For the upper transition range at Re ≈ 1 ×
106 - 7 ×106 , the Strouhal numbers lie for both distances 
between St = 0.22 and 0.24. This is followed by a branch-
ing;

• For Re → 107 and the case S/d = 2.8, the Strouhal number 
dips at St = 0.17, whereas the Strouhal number increases 
up to St = 0.27 for S/d = 4;

• Within the supercritical range, two peaks occur in the 
power spectra for the larger distance S/d = 4. Based on a 
wavelet analysis, we can conclude that the low-frequency 
mode, which does not occur for a single circular cylinder, 
is an interference effect.
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