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Abstract 
This paper presents the use of light field data, recorded in a snapshot from a single plenoptic camera, for 3-D visualization 
of transparent fluid flows. We demonstrate the transfer of light field deconvolution, a method so far used only in microscopy, 
to macroscopic scales with a photographic setup. This technique is suitable for optically thin media without any additional 
particles or tracers and allows volumetric investigation of non-stationary flows with a simple single camera setup. An experi-
mental technique for the determination of the shift-variant point spread functions is presented, which is a key for applica-
tions using a photographic optical system. The paper shows results from different test cases with increasing complexity. 
Reconstruction of the 3-D positions of randomly distributed light points demonstrates the achievable high accuracy of the 
technique. Gas flames and droplets of a fluorescent liquid show the feasibility of the proposed method for the visualization 
of transparent, luminous flows. The visualizations exhibit high quality and resolution in low-contrast flows, where standard 
plenoptic software based on computer vision fails. Axial resolution depends on the data and is about an order of magnitude 
lower than the lateral resolution for simple point objects. The technique also allows the time-resolved analysis of flow struc-
tures and the generation of 3D3C-velocity fields from a sequence of exposures.

1 Introduction

Fluid flows involve complex three-dimensional structures 
and interactions on different spatial scales, and their volu-
metric investigation and visualization are of utmost interest 
for the understanding of flow physics. Modern techniques 
are often based on tomography, where the volume is recon-
structed from multiple projections under different viewing 
angles. Exploiting flow parameters such as refractive index, 
luminosity or the positions of added tracers allows to derive 
volumetric results from a set of 2D measurements  (Cai 
et al. 2013). Elsinga et al. (2006) brought particle imaging 
velocimetry (PIV) to the third dimension by photographing 
particles within the flow from a number of viewpoints. The 
3-D particle positions were determined using an algebraic 
tomography algorithm, and the shifts between subsequent 

frames of an image sequence led to a three-dimensional, 
three-component velocity field. Anikin et al. (2010) also 
followed a tomographic approach to investigate the chemi-
luminescence emission within flames and to analyze the 
distribution of excited  OH* molecules. In our group, Her-
mann et al. (2016) applied tomography to the measured light 
intensity of a plasma flow, which revealed a pronounced 
asymmetry in the volumetric radiation field at short time 
scales. Halls et al. (2016) and Upton et al. (2011) inves-
tigated 3-D turbulent structures in complex flows by an 
arrangement of high-resolution cameras in combination with 
a tomographic reconstruction method. Atcheson et al. (2008) 
exploited the relation between density and refractive index in 
the hot plume of a flame: They used a background oriented 
schlieren technique (BOS) to monitor the apparent 2-D shifts 
of a background pattern, viewed through the flow by a set 
of cameras, and determined the time-resolved 3-D density 
distribution with the aid of a tomographic reconstruction. 
Tracers are used in the technique described by  Lynch and 
Thurow (2012), where small oil droplets are introduced 
into a turbulent jet. The authors do not use tomography, but 
instead sweep a laser sheet rapidly through the volume, and 
record the illuminated droplets with a high-speed camera to 
yield an almost instantaneous visualization of the flow field.
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All these techniques require a complex measurement 
setup including several cameras, an arrangement of mirrors 
or an elaborated lighting system. This is critical if optical 
access to the flow is limited. In such cases, a technique is 
favorable which operates on data recorded from a single 
viewpoint, and non-stationary flows additionally demand a 
snapshot measurement in a single exposure. An instrument 
for the instantaneous acquisition of 3-D data that has raised 
considerable interest in the field of fluid flow investigations 
is the plenoptic camera (Adelson and Wang 1992; Ng 2006). 
Compared to a conventional photographic camera, it features 
an additional array of microlenses close to the image sensor. 
Incoming light rays are sorted onto different pixels, depend-
ing on their direction, and this additional directional infor-
mation is contained in the raw image. Appropriate decoding 
of the spatio-angular data allows to extract information on 
the depth coordinates within the scene, which permits to 
derive, e.g., 3-D positions of particles within a flow.

In recent years, an increasing number of articles have 
been published that combine three-dimensional plenoptic 
imaging with PIV or particle tracking velocimetry (PTV) 
to yield 3-D, three-component (3D3C) velocity fields of 
particle-loaded flows from single camera data. Lillo et al. 
(2014) used a commercial Raytrix camera and the associ-
ated software RxLive to analyze the evolution of the 3-D 
structure of fuel sprays from an automobile injector, how-
ever, without deriving any velocity data. This was shown, 
e.g., by Chen and Sick (2017), who used the commercial 
Raytrix software RxFlow to perform a PTV analysis of the 
flow field within a combustion engine and computed 3D3C 
values from a plenoptic image sequence. Tan et al. (2020) 
developed a modular plenoptic imaging system that can 
be mounted on various cameras and used it for high-speed 
recording of the flow induced by the propelling motion of 
marine jellyfish in a water tank. Tracer particles allowed 
to derive the three-dimensional flow field. Fahringer and 
Thurow (2018) considerably increased the depth resolution 
of PIV measurements in a particle-seeded flow by using a 
set of multiple plenoptic cameras.

All these publications deal with flows carrying tracer 
particles, which present regions of high local contrast in the 
image. In such cases, algorithms from the field of computer 
vision are very effective in computing depth coordinates, and 
the commercial software RxLive allows to generate depth 
maps of a scene in almost real time. Things are different 
without any particles or other sources of contrast like edges, 
surface textures or patterns. This includes fluid flows where 
no tracers have been added, luminous plasmas or flames 
(without soot particles) in combustion research or mixing 
of fluorescent liquids. Standard correlation-based algorithms 
perform very poorly (Greene and Sick 2013) for such low-
contrast problems, and alternative approaches are required 
to reconstruct the volume of the flow. In this paper, we put 

forward light field deconvolution for the volumetric visuali-
zation of particle-free, transparent, and luminous flows. This 
method has been developed for microscopy applications on 
very small spatial scales, where the special optical properties 
of a microscope prove to be beneficial. We transfer light field 
deconvolution to macroscopic scales using a photographic 
setup (Eberhart and Loehle 2021) and present an experimen-
tal calibration approach, which is required to characterize 
the complex optical system. As a scanless technique operat-
ing on a single snapshot recording, light field deconvolution 
allows the volumetric investigation of non-stationary flows 
under conditions of limited optical access. Measurements 
are performed with a single camera, which eliminates the 
need for complex alignment, image registration and precise 
triggering required for setups with multiple instruments.

The article is organized as follows: After a brief intro-
duction to plenoptic cameras and light field deconvolution 
in Sect. 2, we present our approach for the experimental 
determination of the point spread function (PSF) in Sect. 3, 
which is a key for the calibration of the optical system. 
Using the acquired PSF, we perform light field deconvolu-
tion on test cases recorded by a plenoptic camera: A first 
test on a simple planar stripe pattern shows the robustness 
of the method throughout the field of view. Reconstruction 
of the 3-D positions of a point cloud builds intuition about 
the achievable depth resolution, before testing the method on 
real transparent, luminous flows, an ensemble of gas flames 
and a fluorescent liquid in a water tank. Results are presented 
in Sect. 4, before closing the article by considering compu-
tational aspects in Sect. 1.

2  Background

2.1  Plenoptic imaging

A digital sensor at the image plane of a conventional photo-
graphic camera measures the intensity distribution of light 
transferred by the main lens, and each pixel integrates the 
incident radiation over a certain solid angle. Directional 
information on the light rays is lost as a result of this inte-
gration. A plenoptic camera features an additional array of 
microlenses (MLA), placed at some distance in front of the 
sensor, which allows to additionally capture this lost infor-
mation (Lippmann 1908): Depending on its direction, the 
microlenses distribute incoming light to different locations 
on the image sensor beneath. Even though the image is still 
recorded by a flat, two-dimensional sensor, it now holds 
spatio-angular data, the so-called light field, which defines 
the transport of light energy along rays in space (Ng 2006). 
Information about the third coordinate of the scene is coded 
into the camera’s pixel values. Appropriate decoding of the 
recorded data allows to extract the light field of the object 
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space and to reconstruct its volume. The MLA can be under-
stood as a multiplexer (Wetzstein et al. 2013), distributing 
the depth content of the scene within the camera image, 
or, alternatively, as a transformer (Wender et al. 2015) that 
structures the light field before its acquisition by the sensor. 
An example of a raw image of such a system is given in 
Fig. 1 on the left. Each lenslet creates a circular microimage, 
which is clearly visible in the zoomed-in inset. The overall 
image is structured by an overlay of two coordinate systems, 
an (s, t)-system defining the position of the microimages, 
and a (u, v)-system of the pixel locations within them.

In the present work, we used a commercial camera Ray-
trix R29 (monochrome, type hr29050MFLCPC), a camera 
of the so-called focused type (Lumbsdaine and Georgiev 
2009), often termed plenoptic 2.0, with a schematic sketched 
on the right of Fig. 1. The main lens forms a miniaturized, 
three-dimensional image of the object world within the cam-
era, which is picked up by the microlenses. They act like a 
large number of miniaturized cameras with varying viewing 
angles and form sharp sub-images of the object on the sensor 
plane. Lenslet focal length f and stand-off b match the dis-
tance a according to the thin-lens equation. The parameter a 
is a function of the object distance, and so the camera’s total 
depth of field can be increased by using an MLA composed 
of lenslets with different focal lengths (Georgiev and Lumb-
sdaine 2012). A Raytrix R29 is such a multifocus plenop-
tic camera with three lenslet types arranged in a hexagonal 
grid (Perwaß and Wietzke 2012). Details of the optical setup 
used in this work are summarized in Table 1.

The plenoptic camera Raytrix R29 was equipped with a 
Nikkor 200 mm f/4 Micro main lens at a working distance 
of 250 mm, which yields a 1:1 magnification. The f-number 
of the microlenses has to match the image-sided f-number 
of the main lens, defined as the distance between its rear 
principal plane and the camera’s imaging plane (Ng 2006; 
Perwaß and Wietzke 2012). This distance changes with 
focus settings, and the aperture of the main lens has to be 
adjusted manually such that the single microimages touch 
without overlapping.

From a photographer’s point of view, the extra angu-
lar information recorded by a plenoptic camera opens the 
intriguing possibility to render 2-D images with different 

perspectives (Levoy and Hanrahan 1996) or different focal 
planes (Isaksen et al. 2000) from a single snapshot. How-
ever, there is an obvious caveat of this technique, as the 
total information that can be captured by an imaging sen-
sor is limited: Irrespective of the type of plenoptic cam-
era, the directional content has to be paid for by trading 
in effective lateral resolution of the sensor for additional 
depth information.

2.2  Volume reconstruction by light field 
deconvolution

Light field deconvolution has been first introduced by 
Broxton et al. (2013) for volumetric investigations under 
a microscope. For an in-depth reading, we refer to the 
original publication and give a brief overview of the tech-
nique in the following.

In general, deconvolution methods are based on a linear 
image formation model according to

Fig. 1  Left: Exemplary raw 
image of a plenoptic camera, 
here a Lytro Illum with color 
sensor. Right: Schematic sketch 
of a plenoptic camera of the 
focused type, used in Raytrix 
models

f

b a

main lens

microlens
array

image sensor

Table 1  Details of used optical setup

Camera Raytrix R29 (hr29050MFLCPC)

Interface Camera Link
Sensor type CCD, monochrome
Sensor size full frame 35mm
Pixel resolution 6576 x 4384 (29MP)
Pixel pitch 5.5 �m
Bit depth 8 bit
Shutter electronic, global
MLA type hexagonal, multi-focus (3 lens types)
MLA f-number 7
MLA pitch 31× 31 pixels
Framerate max. 6 fps
Main lens AF Micro-Nikkor 200 mm 1:4D IF-ED
Working distance 250 mm
Magnification 1:1
f-number 7-8, matching MLA and working distance
Volume sizes max. 36×24×20 mm (x,y,z)
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Here, the recorded image f, with coordinates xi and yi , is 
a convolution of the volume g with the spatial impulse 
response h under consideration of an additional noise term 
n. Lateral object space dimensions are denoted x and y, and 
z is the depth coordinate along the optical axis. If we discre-
tize the problem to be solved on a computer, the image f is 
divided into Np = nxi × nyi pixels and the volume g is made 
up of Nv = nx × ny × nz voxels.

The spatial impulse response is commonly termed Point 
Spread Function (PSF) and defines the spreading of light, 
emitted by a point source, through the optical system onto 
the image plane. It models the blur observed in out-of-focus 
regions, as well as the imaging quality within the focal plane. 
For diffraction-limited systems like ideal microscopes, the 
PSF takes the form of the Airy-pattern, in photographic sys-
tems, it is furthermore affected by various sources of optical 
aberrations (Gross et al. 2005). The MLA within a plenoptic 
camera picks up the PSF of the main lens and generates a 
distinct spot pattern on the sensor beneath, which typically 
spans several microimages. This pattern represents the light 
field PSF and carries information on the 3-D position of 
an isotropic point emitter within the volume (Broxton et al. 
2013).

The PSF of a standard microscope without an MLA is 
shift-invariant, i.e., it does not depend on the position of the 
point source. This is due to the system’s telecentric design, 
but this property is lost when an MLA is inserted into the 
optical path: The pattern of the light field PSF is a function 
of the 3-D position of the point source, so that an emitter 
at (x, y, z) within the volume produces an explicit intensity 
distribution at the (xi, yi) image plane. As a result, the sin-
gle PSF h has to be replaced by a PSF matrix H. For every 
object space position, it holds the generated (xi, yi)-intensity 
distribution:

The image formation of Eq. 1 may be written in a discretized 
form, with the convolution operation expressed via a matrix-
vector multiplication:

Here, the recorded noisy image has been rearranged into a 
column vector � with Np pixels, the volume is contained in 
a column vector � having Nv voxels and the PSF matrix H is 
rearranged to have dimensions Np × Nv.

Deconvolution seeks to revert the image formation process 
given in Eq. 3, effectively trying to use a known PSF as a 
tool to recover the volumetric intensity distribution � from a 
measured image � . However, because the images are noisy, the 
problem is ill-conditioned and a simple inversion of Eq. 1 fails, 

(1)f (xi, yi) = g(x, y, z) ∗ h + n

(2)H = H(xi, yi, x, y, z)

(3)� = H�

as it would result in a severe noise amplification. A solution 
for the volume � is therefore computed by means of iterative 
deconvolution methods, and an overview of common algo-
rithms can be found, e.g., in  (Sage et al. 2017). Light field 
deconvolution has so far relied mostly on the classical Richard-
son–Lucy scheme, which assumes Poisson-distributed noise 
within the measured image. Its iterative update scheme in 
matrix-vector notation, with k being the iteration index, reads

The matrix HT  has the interesting property of defin-
ing a back-projection of single image pixels into the vol-
ume (Broxton et al. 2013), while a forward projection of the 
object space onto the image plane is defined by HT.

In summary, the algorithm computes an error quotient by 
comparing the measured image � to the forward projection of 
the current volume estimate H�k and then backprojects this 
error by means of HT to update the volumetric intensity dis-
tribution. Richardson–Lucy is a maximum-likelihood based 
method and as such tends to over-fit noise at the point of con-
vergence (Sage et al. 2017). This is counterbalanced by stop-
ping the algorithm early, which acts as a pseudo-regulariza-
tion. In our experiments, we found eight iterations to produce 
a good balance between deconvolution, noise amplification, 
and computing time.

Due to the regular arrangement of the lenslets in the MLA, 
the pattern of the light field PSF is periodically repeating upon 
lateral shifts of the point source. This means that only a rep-
resentative sub-matrix of H has to be determined and stored 
in memory, which drastically reduces both the computational 
burden of the reconstruction and the effort required for the 
identification of H. The observed periodicity is, however, only 
given in combination with a shift-invariant PSF of the main 
lens (or the objective in a microscope). This does not hold for 
typical photographic systems, including plenoptic cameras, 
and we will deal with the effect of this imperfection as part 
of the discussed test cases in Sect. 4.1. From the preceding 
paragraph, it is obvious that a PSF matrix H, which accurately 
represents the optical system, is key for successful light field 
deconvolution. In the following, we turn our attention to the 
acquisition of such a matrix for the case of a photographic 
camera, which is optically less well defined than a microscope, 
and where the optical path of the experimental setup may con-
tain additional elements.

3  Experimental PSF acquisition

Light field deconvolution in the context of microscopy has 
so far relied on simulated PSFs, computed on the basis 
of wave optical theories (Broxton et al. 2013; Prevedel 

(4)�k+1 =
�k

HT�

(

HT �

H�k

)
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et al. 2014; Lu et al. 2019; Stefanoiu et al. 2019). This is 
a meaningful approach for two reasons: First, the opti-
cal system of a microscope is precisely defined and can 
be modeled accurately on a computer. And second, an 
experimental calibration of the matrix H would require to 
position sub-resolution-sized light sources with nanom-
eter accuracy within the measurement volume. The situ-
ation is reversed for a photographic camera: As we do 
not work with a high magnification main lens, the spatial 
accuracy required for positioning the point source is dras-
tically reduced. Photographic lenses, on the other hand, 
are a complex ensemble of multiple optical elements, some 
of them shifting relative to the others to allow focusing, 
including non-circular apertures. A photographic setup 
often involves additional filters or windows, and it is very 
difficult to represent all such influences in a simulation. 
For a plenoptic camera, we therefore propose an experi-
mental approach for the determination of the matrix H, 
which is detailed in the following.

3.1  Definition of an elementary cell

Experimental PSF calibration of a plenoptic camera means 
imaging a point source at a high number of voxel positions. 
As outlined in the preceding section, only a representative 
part of the volume needs to be calibrated due to the periodic-
ity of the light field patterns. We call this part an elementary 
cell, and its size and shape are determined by the arrange-
ment of the microlenses in the MLA. A sketch of the lenslet 
array used in a Raytrix R29 is given in Fig. 2. It is com-
posed of lenses with three different focal lengths, indicated 
by color, which are arranged in a hexagonal grid. The entire 
sensor area can be tiled by repeating copies of the elemen-
tary cell, indicated by a dashed rectangle. With the given 
pixel pitch of the camera, the cell has a size of 95× 55 pixels 
in the x- and y-direction, respectively. This means that for 
each z-plane, the camera’s response to point sources at the 
corresponding 5225 voxel positions has to be determined.

The geometrical boundaries of the elementary cell have 
to be found experimentally in a pre-calibration step.

Here, the point source is shifted in sub-voxel steps, and 
we compare the respective patterns with the one recorded 
at the origin via a cross-correlation. The left of Fig. 3 gives 
the result rx

0a
 for the horizontal x-direction, where maxima 

at around x = 0.5 mm represent borders of the elementary 
cell, where patterns begin to repeat. The camera’s main lens 
is not telecentric, and so the field of view is extending cone-
like into object space. The graph includes measurements 
for a number of different z-values, and cell borders obvi-
ously get wider with increasing distance from the camera. 
Analysis yields the lateral x-width of the elementary cell 
Δx in object space as a function of the depth coordinate z, 
which is plotted on the right of the figure and shows a linear 
dependence. The lateral voxel size is obtained by dividing 
the cell width by the number of positions as sketched in 
Fig. 2, which also defines the single shifts of the point source 
during calibration.

1 2 3

2 3 1 2 3
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y

Fig. 2  Hexagonal layout of the microlens array in an R29 camera. 
Colors indicate three lenslet types with different focal length. The 
rectangle defines the elementary cell used for PSF calibration, with a 
total of 95× 55 positions

Fig. 3  Left: Cross-correlation 
(normalized) of recorded point 
source PSF patterns along the 
horizontal x-axis and the pattern 
recorded at the origin. Colors 
indicate z-depth. Right: X-posi-
tion of peak cross-correlation as 
a function of z-depth
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3.2  Calibration stage

Discretization of the volume and the sensor’s pixel pitch is 
tied together by the magnification of the main lens, which 
means that the voxel size is a function of the chosen focal 
length and the working distance. In the used setup with the 
parameters of Table 1, the magnification is 1, and so the 
pixel pitch translates to a lateral voxel size of 5.5 � m. This 
does not directly correspond to the lateral resolution, which 
is in the order of 100–200 � m and is explained in Sect. 4.2. 
Voxel sizing in the z-direction, i.e., the depth discretization, 
can be chosen freely and determines the number of individ-
ual z-planes that must be considered in the calibration runs.

Positioning has to be very precise in all three dimensions 
and is accomplished in this study by a custom-made trans-
lation stage shown in Fig. 4. It is designed from three indi-
vidual linear micrometer stages, each driven by computer-
controlled stepping motors which a positioning accuracy in 
the order of 1–2 � m, well below the voxel size. The orienta-
tion of the three object space axes is sketched additionally, 
with the origin at the intersection of the optical axis and the 
native object plane (NOP), the focal plane of the main lens.

To represent a spatial impulse, the size of the point source 
has to be below the pixel resolution of the camera. It is real-
ized by a small circular aperture with a diameter of 5� m, 
illuminated from the back by a diffuse LED.

Despite working with a monochrome camera, the wave-
length of light must not be neglected: Due to chromatic aber-
rations at the main lens and especially at the uncorrected 
MLA, different wavelengths generate slightly different 

patterns at the image sensor. This means that the emission 
spectrum of the light source used during calibration should 
ideally match the spectrum of the measurement. The pre-
sent study used gas flames and fluorescent droplets as test 
objects, and analysis of the flame spectrum using an Echelle 
spectrometer (LTB Aryelle 150) revealed a prominent emis-
sion peak at around 516 nm, with a second blueish peak at 
430 nm. Figure 5 shows the measured spectrum together 
with the emission profile of the chosen green LED (Nichia 
NSPG300D), which was used to illuminate the point source 
aperture. The fluorescent dye (fluorescein sodium) for 
the droplet test case has an emission maximum at around 
515 nm and matches well the LED.

3.3  Building the PSF H

While modern digital camera sensors have several millions 
of pixels, the image of a point source is almost entirely 
black, except for the nonzero pixel values of the light field 
PSF patterns. This is to our benefit, as we do not have to 
store the entire images in a huge matrix H, but instead take 
rectangular cutouts around the patterns. This is illustrated 
in Fig. 6 on the left, showing a sample raw image of a point 
source centered on the optical axis. The size of the cutout 
region has to be chosen such that no information within the 
pattern is cropped. From step to step, both the point source 
and the cutout have to be shifted likewise by a pixel- and a 
voxel-width, respectively.

The matrix H is assembled from all images recorded 
by the camera, with the point source located at the voxel 
positions relating to the elementary cell. It is convenient to 
replace the Np × Nv-matrix used in Eq. 3 by the five-dimen-
sional equivalent given in Eq. 2: Every (xi, yi)-slice contains 
the cutout patterns measured at source location (x, y, z).

It is interesting to examine the image that forms when 
we sum up all the (xi, yi)-slices of H that belong to a single 
z-plane. This is shown on the right of Fig. 6, and we notice 

Fig. 4  Computerized three-axes translation stage used for PSF cali-
bration and definition of the coordinate system

Fig. 5  Emission spectra of gas flame and of the LED used for calibra-
tion
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that the result is not circular: It is in fact a nonagonal 
structure and corresponds to the aperture of the main lens, 
which is designed with nine movable blades. This show-
cases the importance of an experimental calibration in the 
case of a photographic system, where the arrangement of 
the optical elements is not precisely known.

With the PSF in its memory-saving, five-dimensional 
form, constructed from the nonzero cut out patterns, the 
backprojection array HT  is no longer a simple transpose 
of H, but requires a more complex procedure. A high pixel 
count of the image sensor and a hexagonal MLA arrange-
ment lead to a high computational effort with the codes 
published in (Prevedel et al. 2014; Lu et al. 2019; Stefa-
noiu et al. 2019). The computing time could be cut drasti-
cally by a new algorithm based on a pure re-arrangement 
of the array elements (Eberhart 2020). Figure  7 shows 
two resulting slices of HT . It is the intensity distribution 
in object space, generated by a single pixel being backpro-
jected through the optical system, on the left side for the 
center pixel, on the right side for an off-axis pixel. Notice 
the fringe pattern due to diffraction by one of the oblique 

aperture blades, which highlights the importance of an 
experimental calibration.

Realizing high axial resolutions is one of the main chal-
lenges in 3-D imaging. Deciding on the number of z-planes 
for the calibration is a trade-off between the achievable reso-
lution gain on the one hand, which is subject to the used 
optical system, and the experimental effort and memory 
requirements on the other hand. For computations presented 
in this paper, the object space was discretized with 20 depth 
layers and a spacing of 1 mm. With the size of the elemen-
tary cell sketched in Fig. 2, this required to record the point 
source patterns at a total of 95×55× 20 positions.

3.4  Relation to plenoptic tomography

The background section on plenoptic imaging mentioned the 
possibility to render multiple 2D images with varying view-
points from single-exposure plenoptic data. This establishes 
a close link to tomography, where such series of projections 
under different angles are used as input for 3-D reconstruc-
tion. Both classes of tomographic algorithms, analytical and 

Fig. 6  Left: Spot pattern 
generated by a point source, 
defining a single PSF within 
H. Raw image is monochrome 
with applied color map. Right: 
Summation of all single PSFs 
within one z-slice of the matrix 
H, revealing the nonagon shape 
of the main lens aperture

Fig. 7  Two elements of the 
matrix HT , defining a back-
projection of a pixel value into 
object space. The right image 
reveals diffraction patterns at 
the main lens aperture
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iterative, are based on one or several backprojections of the 
recorded images into the volume, and it is obvious that data 
from a plenoptic camera lend itself to tomographic methods. 
In fact, a number of publications, notably those by Fahringer 
and Thurow (2012) in the framework of PIV analysis of 
particle loaded flows, use tomography to determine three-
dimensional particle positions (Fahringer et al. 2015). Here, 
the authors favor an iterative MART algorithm, which at the 
first glance seems to be much more straightforward than a 
deconvolution approach, as no complex PSF matrix has to 
be determined. However, as demonstrated, e.g., by Levoy 
et al. (2006), deconvolution and tomographic reconstruction 
with a limited number of view angles are formally equiva-
lent, and so these techniques also share similar requirements. 
In tomography, a matrix of weighting coefficients takes the 
place of the PSF and expresses the influence of object space 
voxels on the different image pixels. In a simple form, they 
are found by tracing a ray of light emerging from a single 
pixel throughout the optical system and determining its over-
lap with the volume’s voxels. With a photographic setup, 
recorded images are no simple parallel projections, and the 
weighting matrix has to be found under consideration of the 
optical system. This can be done using simplifying assump-
tions, e.g., replacement of the main lens by a single thin 
lens (Fahringer et al. 2015). This neglects aberrations pre-
sent in the real setup, which can be improved by performing 
an additional calibration step using known targets (Hall et al. 
2018; Fahringer and Thurow 2018). In any case, the weight-
ing matrix is huge, as it links all voxels to all pixels and does 
not exploit the periodicity found in the light field PSFs.

Given the formal similarity of limited angle tomography 
and deconvolution, it could be expected that a tomographic 
approach on plenoptic data may reach a reconstruction qual-
ity comparable to the method presented in this study, with 
similar efforts for calibration and computation. We favor 
light field deconvolution in combination with an experi-
mental PSF due to its precise representation of all actually 
used optical elements and potential aberrations within the 
measurement setup.

4  Results

We used a number of test cases with increasing complexity 
to show light field deconvolution for volumetric visualiza-
tion on macroscopic scales. The first is a cloud of discrete 
luminous points in space, intended to build intuition about 
the achievable spatial resolution of the reconstruction. The 
second case is an arrangement of multiple stationary, trans-
parent gas flames, followed by a fluorescent droplet falling 
into a water pool, which created a time-series of light field 
data. All volume reconstructions were carried out using the 
MATLAB code published by Prevedel et al. (2014), which 

is an implementation of the Richardson–Lucy-based decon-
volution method proposed by Broxton et al. (2013).

It has been pointed out by several authors that sampling of 
the light field by a plenoptic camera is not uniform through-
out the volume, but changes significantly with the depth 
coordinate (Bishop and Favaro 2009; Broxton et al. 2013; 
Stefanoiu et al. 2019). Sampling is especially low in close 
vicinity of the main lens focal plane, which leads to artifacts 
in the reconstruction. We adopted a method and the associ-
ated MATLAB code published by Stefanoiu et al. (2019), 
where an additional smoothing step within the deconvolu-
tion algorithm effectively reduces such artifacts. The cal-
culation of the employed filter kernels requires knowledge 
of optical parameters of the main lens, such as the position 
of the principal planes and the effective focal length, which 
were determined by means of a raytracing simulation using 
Zemax OpticStudio. Before going into details of the respec-
tive results, we need to address an important limiting aspect 
of the used photographic setup, the shift-variance of the 
point spread function, which is discussed in the following.

4.1  Shift‑variant main lens PSF

As outlined in the preceding paragraphs, light field decon-
volution was introduced for microscopic imaging, where 
it takes advantage of the special properties of microscope 
optics. Due to their telecentric design, all ray bundles that 
are captured by the lens have chief rays parallel to the optical 
axis. In consequence, a microscope produces strictly ortho-
graphic views, and a lateral shifting of the object yields no 
parallax (Levoy and Hanrahan 1996): It is not possible to 
examine the object’s side faces by sliding it toward the outer 
limits of the field of view. This has the important implication 
that the PSF of the optical system, without any additional 
microlenses, is shift-invariant and does not depend on the 
lateral x/y-position in object space. This is why the patterns 
of the light field PSF show the discussed periodicity. Even 
though photographic cameras can also be equipped with tel-
ecentric main lenses, this is reserved to special applications, 
as such lenses are extremely bulky and expensive. Using 
a standard photographic lens, it is therefore important to 
assess the effect of the shift-variance of the PSF on volume 
reconstructions by means of light field deconvolution.

Figure 3 demonstrates that the recorded patterns were 
self-repeating after shifting the point source over a certain 
distance, defining the object space boundaries of the elemen-
tary cell. An extension of such measurements toward larger 
shifts along the horizontal x-axis is given in Fig. 8, again 
plotting the cross-correlation with the pattern at the central 
position. The dashed vertical lines mark multiples of the 
width of the elementary cell, defined by the position of the 
first maximum. We observe two things: The overall agree-
ment between the patterns slightly decreases with growing 
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distance from the center, indicated by the red line, and the 
location of the maxima shifts relative to the dashed lines. 
Both effects are due to the variation in the main lens PSF 
with respect to the lateral position.

How do these variations affect the reconstruction qual-
ity? This was addressed by imaging a planar test pattern 
consisting of regular, oblique black and white stripes, which 
spanned the complete field of view of the camera (36 × 
24 mm in object space). The result of the reconstruction, 
using the experimentally acquired PSF matrix H and eight 
iterations of light field deconvolution, is given on the top 

of Fig. 9. An intensity profile was taken along the red line, 
which is plotted on the lower part of the figure and ranges 
over the entire horizontal width of the data. Obviously, the 
intensity does not drop toward the outer rims, and the peaks 
are regularly spaced throughout the plot. This means that the 
reconstruction method is robust concerning the shift-variant 
nature of the main lens PSF, which also demonstrates the 
feasibility of light field deconvolution with our photographic 
setup. This is clearly not a general statement, but is valid for 
the combination of camera, main lens and working distance 
that has been used in the present work. Other optical sys-
tems may well suffer from a more pronounced effect, which 
should be investigated in dedicated examinations.

4.2  Point cloud

A cloud of luminous points in space was created by using the 
motorized stage to position the 5 � m point source, which had 
already been used during calibration, at 200 random coor-
dinates within the depth range of the PSF matrix, and sub-
sequent linear superpositioning of the recorded raw images. 
Such a cloud has the benefit of accurately known point loca-
tions. The volume was again reconstructed by eight itera-
tions of light field deconvolution and is illustrated in Fig. 10. 
On the left, the top row shows x/y slices at different z depths, 
the bottom shows a z/y section of the same volume, and 
the right presents a 3-D rendering of the reconstructed light 
points. The different intensities of neighboring points in the 
lower left image are due to their different x-position, so that 
some have not been sliced through their center. The origin 
of the object space coordinate system is again located in the 
focal plane of the main lens, the native object plane (NOP), 
with the z-axis pointing along the viewing direction of the 
camera. The right of the figure shows a perspective 3-D visu-
alization of the reconstructed volume. Here, little red balls 
mark the actual position of the light points in space, which 
are matched well in all three coordinates.

Fig. 8  Normalized cross-correlation of point source patterns along 
the lateral x-axis and pattern recorded at the origin. With a wider 
x-range than in Fig.  3, it shows a slight decrease in the correlation 
toward the rims due to a shift-variant main lens PSF. Vertical lines 
indicate multiples of the determined width of the elementary cell

Fig. 9  Reconstruction of a planar, regular stripe pattern, spanning the 
entire field of view, to probe the influence of a shift-variant main lens 
PSF. Top: Computed result. Bottom: Intensity profile along the hori-
zontal x-axis (red line), showing no significant falloff toward the rims

Fig. 10  Reconstructed volume 
of a point cloud, generated by 
superposition of single raw 
recordings of a light point at 
200 coordinates in 3-D space. 
Left, top: Lateral xy-slices at 
different depth positions. Left, 
bottom: 2-D slice along the 
depth coordinate z, showing 
a rough estimate of the depth 
resolution. Right: 3-D visualiza-
tion of the point cloud. Little 
red balls mark the precisely 
know, actual positions of the 
points
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It is apparent that both lateral and depth resolution 
decrease with increasing distance from the NOP. A closer 
examination is given in Fig. 11: The left shows lateral 
intensity profiles of reconstructed points at three different 
z-depths, with a shape close to Gaussian. Parts of the decon-
volution algorithm are carried out in the Fourier domain, 
and results are prone to ringing in regions with high local 
contrast, which can be recognized at the wings of the blue 
and green profiles. The non-negativity constraint within the 
Richardson–Lucy scheme reflects negative values onto the 
positive side.

The right of the figure plots these profiles along the depth 
coordinate. Spacing of the data points is here determined 
by the PSF calibration, where a discretization of 1 mm was 
used in z-direction. The dashed lines represent Gaussian 
profiles that have been fitted to the data in order to derive 
FWHM values. Figure 12 shows lateral and axial resolution 
as a function of the depth coordinate, where the FWHM 
values of all points within the respective z-planes were aver-
aged. The lateral FWHM, on the left of the figure, is below 
100 � m in the rear part of the volume and then rises to about 
200 � m toward the front boundary. The FWHM along the 
optical axis, plotted on the right, is 1 mm close to the NOP 
and increases to about 3.5 mm in the front part.

A note on the lateral resolution that can be expected 
within a reconstructed volume: With a 1:1 magnification 
of the optical setup, the lateral voxel size is equivalent 
to the pixel pitch, which is 5.5 � m for the used camera. 
The sensor of a plenoptic camera, however, does not only 

sample spatial data, but also angular information, which 
drastically reduces the lateral resolution. In focused ple-
noptic cameras, like the used Raytrix model, spatial and 
directional sampling is intertwined and changes with 
scene depth. In the worst case, the lenslet pitch of the 
MLA dictates the maximum achievable lateral resolu-
tion, which in our case translates to about 170 � m. Light 
field deconvolution is closely related to superresolution 
approaches  (Bishop and Favaro 2012), but we cannot 
expect to recover details on the scale of the sensor’s pixel 
resolution. Compared to the lateral resolution, the meas-
ured axial resolution is lower by a factor of 10–20. This 
results in a visible elongation of the light points in Fig. 10 
along the z-axis. A poorer depth resolution by comparison 
with the lateral direction is, e.g., also observed in stand-
ard microscopes, due to the three-dimensional structure of 
the diffraction patterns of the optical systems. Light field 
deconvolution of microscope data achieved lateral/axial 
resolution ratios of about 2–6 (Cohen et al. 2014; Preve-
del et al. 2014). The lower axial resolution in the present 
experiment is believed to be by reason of the complex and 
less precise photographic setup, which prevents from using 
theoretical PSFs, but requires an experimental acquisition, 
which adds additional uncertainties and noise. In con-
trast to pure optical measurements, computational imag-
ing and reconstruction also depend on the recorded data 
itself. Very shallow gradients and noisy measurements can 
downgrade the achievable resolution. In this respect, the 
present test case benefits from the clear structure of the 

Fig. 11  Left: Intensity profiles 
of reconstructed points along 
their x-axis at different z-posi-
tions. Profiles closely follow 
Gaussian shapes, and resolution 
is defined as their full width at 
half maximum (FWHM). Right: 
Intensity profiles of the points 
along the depth coordinate z, 
additionally showing fitted 
Gaussian curves

Fig. 12  Lateral (left) and depth 
(middle) resolution of recon-
structed points along the z-axis. 
Note the different orders of 
magnitude. Right: Normalized 
intensities of reconstructed 
points as a function of depth
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singular light points, and the axial resolution is superior 
to the results from the more complex cases, which are 
discussed in the next sections.

Even though the brightness of the light points during 
the measurement was constant throughout the volume, the 
intensity of their reconstruction is also subject to the axial 
position, which is evident from the right of Fig. 10. A closer 
examination is given in the rightmost plot of Fig. 12. The 
intensity drops with increasing distance from the NOP by 
a factor of about ten. This issue needs to be addressed in 
upcoming investigations. We speculate that this is due to 
a reduced fidelity of the raw images toward higher z-coor-
dinates: A larger distance from the NOP means that the 
light from the point source is spread over a larger area 
and a higher number of microimages, with reduced pixel 
intensities. This reduces the signal-to-noise ratio, which 
also applies to the recording of the PSF during calibration. 
A remedy could be an increased bit depth within the raw 
images, which requires a re-programming of the camera.

The reconstruction of a volume filled with discrete points 
or particles is not the prime application of a deconvolution 
approach. Here, algorithms based on stereoscopic principles, 
like the commercial light field software RxLive or RxFlow, 
provide much faster and presumably more accurate results. 
The intention of this test is to demonstrate the achievable 
lateral- and depth resolution under ideal conditions at a 
precisely defined object. It shows the general feasibility of 
the approach and a resolution sufficient for the analysis of 
small-scaled flow structures, before moving on to more real-
istic cases: transparent, luminous flows that do not carry any 
particles or other tracers.

4.3  Gas flames

A propane/butane gas burner, shown on the left of Fig. 13, 
was chosen as a test object. The head of the burner has 
a diameter of 20 mm. It is covered by a slightly convex, 

perforated plate, where the single holes have diameters of 
1 mm are spaced by 2 mm in a hexagonal arrangement and 
generate multiple small flamelets. A part of the burner head 
was covered, as sketched in the figure, so that the flames 
extended over a depth range of about 15 mm. The burner 
was positioned within the z-coordinates of the calibration, 
and the flames were recorded in a single exposure of the 
plenoptic camera (shutter speed 50 ms, gain 10) from a side 
view. The right of Fig. 13 shows the raw image, and the 
zoomed-in region reveals the microimages formed by the 
MLA. This luminous, transparent flow shows only little local 
contrast, so that standard computer vision algorithms largely 
fail (Greene and Sick 2013).

Light field deconvolution (eight iterations) was carried 
out on the same raw image and resulted in a computed volu-
metric emission which is visualized in Fig. 14. The right 
hand side shows, from top to bottom, two lateral xy-slices 
through the volume at different depths and an xz-slice. The 
axes have been scaled for better representation, and values at 
intermediate, non-integer z-positions are interpolated. The 
left of the figure presents a perspective 3-D visualization in 
the form of a maximum intensity projection, additionally 
showing position and orientation of the respective slices.

The two xy-slices confirm that overlapping flamelets at 
different z-depths clearly can be discriminated, which indi-
cates a true three-dimensional reconstruction. The dark, 
curved region, also visible in the xz-slice, is due to the con-
vex grid of the burner head. The single flamelets have a 
shape resembling a hollow cone, so that a planar section 
should appear circular or elliptical. The xz-slice of Fig. 14 
shows curved side faces of the little flames which, however, 
do not form a closed oval. We speculate that this is owed 
to the fact that the intensity distribution within the front 
and back faces are very homogeneous with extremely shal-
low gradients, which is challenging to reconstruct. A cer-
tain amount of intensity variation, e.g., due to turbulence, is 
therefore beneficial for volumetric visualization by light field 

Fig. 13  Left: Transparent flames 
of a camping stove, used as a 
test case. As sketched, part of 
the burner head was covered 
during the experiments. Right: 
Raw image recorded by the 
plenoptic camera. The zoomed-
in inset shows the circular 
microimages in a hexagonal 
arrangement



 Experiments in Fluids (2021) 62:165

1 3

165 Page 12 of 16

deconvolution. The axial resolution of the visualization is 
reduced compared to the point cloud test case, and the flame-
lets appear smeared over several millimeters in the depth 
direction. This lowers the possible optical sectioning of the 
volume. Light contributions from out-of-focus regions are to 
some extent still present within selected depth planes, which 
can be regarded as artifacts of the reconstruction. Using 
appropriate spectral band-pass filters during measurement 
and calibration could lead to improved 3-D results due to 
an exactly matching PSF. This also opens the possibility to 
selectively investigate the volumetric distribution of single 
radiating species within a flame.

It should be noted that the flames, though assumed to 
be optically thin, may still affect the path of light through 
their volume, caused by refraction due to gradients of the 
refractive index of the hot air. This also alters the PSF of the 
system which can lead to a lower reconstruction quality. We 
expect to mitigate this effect by incorporating an appropriate 
physical model into the deconvolution process, which is part 
of ongoing research.

4.4  Fluorescent droplet

A fluorescent liquid was prepared by mixing a fluorescent 
dye (fluorescein-sodium) with water and dripping the solu-
tion into a small water pool. This pool was made from black-
ened aluminum with a transparent acrylic front pane and a 
depth of 2 cm along the optical axis of the camera and was 
positioned within the depth coordinates of the PSF calibra-
tion. Illumination with a blueish UV-LED caused fluores-
cence with an emission peak at around 515 nm. Figure 15 
shows a photograph of the resulting luminous turbulent flow, 
taken by a standard color DSLR camera.

A time resolved light field sequence of the flow was 
recorded by the plenoptic camera at a frame rate of 2.5 fps. 

Shutter speed and gain were set to 10 ms and 10, respec-
tively. Similar to gas flames, the fluorescent flow is rather 
foggy and does not provide enough local contrast for stand-
ard reconstruction algorithms. Each raw image was used 
for a volumetric reconstruction by eight iterations of light 
field deconvolution, and results are given in Fig. 16. Here, 
the left column shows a 3-D visualization (maximum inten-
sity projection) of the temporal evolution of the flow, for 
five selected frames at the given points in time. The little 
gray dots in the back are not artifacts but show gas bub-
bles at the rear wall. The straight features that form in the 
rear after 10.8 s show fluorescent dye accumulating at the 
physical edges of the water pool. Despite the low contrast, 

Fig. 14  Left: 3-D visualization 
(maximum intensity projec-
tion) of transparent gas flames 
above a camping stove. Right: 
Two-dimensional slices through 
the volume

Fig. 15  Exemplary photograph (standard color DSLR camera) of a 
flow induced by dropping fluorescent liquid into water
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deconvolution resolves the volumetric nature of the turbulent 
structures with high resolution.

The second column of Fig. 16 shows xy-slices through 
the computed volume at a fixed z-depth for respective time 
points.

Time resolved three-dimensional results in principle also 
allow to derive 3D3C-velocity data of the flow. Particle 
tracking velocimetry (PTV) or particle image velocimetry 
(PIV) techniques determine displacements of tracer particles 
within the flow on a frame-by-frame basis to derive velocity 
vectors. The commercial software RxFlow, e.g., performs a 
PTV analysis of light field data recorded by Raytrix cameras. 
The underlying feature matching algorithms rely on particle 
flows and require a suitably high contrast within the single 
frames.

To explore the potential of a 3D3C flow field analysis in 
the given low-contrast case of the fluorescent droplet, we 
performed an optical flow computation on two consecu-
tive frames of the reconstructed volume. In general, the 
optical flow can be derived for 3-D data, which yields a 
three-dimensional field of displacement vectors, which can 
be interpreted as velocities (Mustafa 2016). In the present 
case, the axial and lateral resolution within the volume is 
very different, and we chose to compute 2D optical flows, 
but at various axial depths. The used method, implemented 
in MATLAB, is based on a modified Horn–Schunck algo-
rithm (Sun et al. 2010). A pre-processing step was used 

which served to alleviate large intensity differences within 
the images by applying a log-transform on the pixel val-
ues (Zhuk et al. 2017). Results of the optical flow computa-
tion are shown in Fig. 17, where. displacement magnitude 
is coded in both color and length of the arrows, plotted over 
monochrome 2D intensity maps of the volume. Velocities 
were calculated based on the pixel displacements, converted 
to object space dimensions, which were divided by the time 
interval between the two frames.

The figure presents two xy-slices, one close to the front 
boundary (top), and the other in the middle of the depth 
range (bottom). They show clear differences in the flow 
fields in both magnitude and orientation. Regions with a 
source/sink-like structure, which would be unphysical in a 
planar flow, are possible in the volumetric case due to mass 
flow in the axial direction.

The setup of the droplet flow is a challenging test case for 
the robustness of the deconvolution approach: Compared to 
the camera calibration, it contains two additional media with 
different refractive indices and their interfaces. Light is emit-
ted in water and propagates through acrylic and air toward 
the main lens, which alters the PSF of the optical system. 
For best results, calibration would have to be done under the 
same conditions, with the point source positioned within 

Fig. 16  Time resolved sequence of a fluorescent droplet in water. 
Left: 3-D visualization (maximum intensity projection). Middle/
Right: 2-D slices at two different fixed z-depths

Fig. 17  2D velocity fields derived from the optical flow between two 
consecutive frames of the light field sequence at depth z=-10 (top) 
and -19 (bottom)
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the water pool. But even with a basic calibration, light field 
deconvolution generates volumetric visualizations of such 
complex transparent fluid flows which are not possible with 
standard algorithms based on computer vision.

5  Conclusion

In this paper, we have demonstrated the application of light 
field deconvolution for the 3-D visualization of transpar-
ent fluid flows on macroscopic scales. A key contribution is 
the development of an experimental calibration technique, 
which allows to acquire the system’s PSF matrix in com-
plex optical setups, involving photographic main lenses 
and other possible elements. As the time-consuming, com-
putationally expensive volume reconstruction is done as a 
post-processing step, the temporal resolution of the method 
is limited alone by the frame rate of the recording system, 
and three-dimensional intensity distributions can be deter-
mined from snapshot data of a single plenoptic camera. We 
have presented results from different test cases, luminous 
flows produced by transparent gas flames and fluorescent 
droplets, which show the capability of the proposed method. 
The achieved lateral object space resolution was in the order 
of 100–200 � m in the best case, whereas the axial resolu-
tion was lower by a factor of 10–20. This creates a visible 
elongation along the depth direction, which has to be taken 
into account in the interpretation of the results. Without 
additional tracers or other sources of high local contrast, 
reconstruction of light field sequences and analysis of the 
optical flow between consecutive frames even allows to 
derive information on the velocity field within the volume, 
even though no particles have been added as in common 
PIV/PTV techniques.

A strength of plenoptic light field deconvolution is its 
simple setup requiring only a single snapshot exposure from 
a single camera, which is highly beneficial for measurements 
with limited optical access like combustion chambers or arc 
jet facilities. This eliminates the need of precise triggering 
of multiple instruments, and the technique is applicable to 
the investigation of fast three-dimensional processes like, 
e.g., turbulent fluid structures.

Appendix: Computational aspects

Light field deconvolution is a computationally intensive 
technique, in terms of both memory requirement and com-
putation time. The PSF array H used in the present study 
holds 95×55× 20 single PSFs with about 150×150 pixels in 
single precision, which requires approximately 9.5 GB. The 
same amount of memory is occupied by the array HT . This 
high number of single PSFs is dictated by the MLA design 

of the R29 camera, with three different lenslet types in a hex-
agonal arrangement. Usage of custom made cameras with a 
dedicated layout of the MLA may alleviate this requirement.

The code published by Prevedel et al. (2014), written in 
MATLAB, takes advantage from parallel computation on 
GPUs and requires a CUDA compatible graphics card. The 
volume of the gas flames example contains 1705×4275× 20 
voxels and was computed on a desktop machine with an Intel 
i7-6700K CPU, 48 GB memory and a Nvidia GeForce 980 
Ti GPU having 6 GB of memory. One iteration of light field 
deconvolution required 2700 s.

A single frame of the fluorescent drop case is made up of 
4235×3039× 20 voxels, and volume reconstruction was done 
on the Vulcan cluster at the High-Performance Computing 
Center Stuttgart (HLRS) of the University of Stuttgart. We 
used a dual socket node with 256 GB of main memory and 
a Nvidia GPU accelerator. Each socket is equipped with 
an 8-core Intel Xeon E5-2667v4 processor with a base fre-
quency of 3.2 GHz. The accelerator is a Nvidia Tesla P100 
with 12 GB of memory. Here, the computation took 2750 s 
per iteration per frame. Computational efforts could also 
be reduced by adjusting the discretization of the volume to 
the spatial resolution than can be achieved in practice. As 
already pointed out by Broxton et al. and others, sampling 
of the light field is not uniform along the optical axis, which 
could be taken into account by sophisticated reconstruction 
and calibration procedures.

Visualization of 3-D intensities was done using 3D Slicer, 
a software developed for medical image processing, and Par-
aView was used for the optical flow vectors.

Acknowledgements This work was funded by the German Research 
Foundation under grant LO 1772/4-1. We appreciate continuous dis-
cussions and ideas within the High Enthalpy Flow Diagnostics Group. 
This work was partially executed within the frame of the German 
SiVeGCS project. The authors gratefully acknowledge access to the 
high-performance computing facility “Vulcan” at HLRS and would 
like to thank the team of HLRS for their kind support.

Author Contributions ME and SL conceptualized and designed the 
research presented in this paper. ME developed hardware components 
and conducted experiments. Implementation of computer code for data 
analysis and modification of existing algorithms was done by ME and 
PO. Visualizations were created by ME. The initial manuscript was 
written by ME and SL. All authors read and approved the final manu-
script. SL acquired funding required for this project.

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 



Experiments in Fluids (2021) 62:165 

1 3

Page 15 of 16 165

otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Adelson E, Wang J (1992) Single lens stereo with a plenoptic camera. 
IEEE Trans Pattern Anal Mach Intell 14(2):99–106. https:// doi. 
org/ 10. 1109/ 34. 121783

Anikin NB, Suntz R, Bockhorn H (2010) Tomographic reconstruction 
of the OH*-chemiluminescence distribution in premixed and dif-
fusion flames. Appl Phys B 100(3):675–694. https:// doi. org/ 10. 
1007/ s00340- 010- 4051-5

Atcheson B, Ihrke I, Heidrich W, Tevs A, Bradley D, Magnor M, Seidel 
HP (2008) Time-resolved 3D capture of non-stationary gas flows. 
ACM Trans Graphics 27(5):1–9.  https:// doi. org/ 10. 1145/ 14090 
60. 14090 85

Bishop T, Favaro P (2009) Plenoptic depth estimation from multiple 
aliased views. In: 12th international conference on computer 
vision, pp 1622–1629. https:// doi. org/ 10. 1109/ ICCVW. 2009. 
54574 20

Bishop T, Favaro P (2012) The light field camera: extended depth of 
field, aliasing, and superresolution. IEEE Trans Pattern Anal 
Mach Intell 34(5):972–986. https:// doi. org/ 10. 1109/ TPAMI. 
2011. 168

Broxton M, Grosenick L, Yang S, Cohen N, Andalman A, Deisseroth 
K, Levoy M (2013) Wave optics theory and 3-D deconvolution 
for the light field microscope. Opt Express 21(21):25418–25439. 
https:// doi. org/ 10. 1364/ OE. 21. 025418

Cai W, Li X, Ma L (2013) Practical aspects of implementing three-
dimensional tomography inversion for volumetric flame imag-
ing. Appl Opt 52(33):8106–8116. https:// doi. org/ 10. 1364/ ao. 52. 
008106

Chen H, Sick V (2017) Three-dimensional three-component air flow 
visualization in a steady-state engine flow bench using a plenop-
tic camera. SAE Int J Engines 10(2):625–635. https:// doi. org/ 10. 
4271/ 2017- 01- 0614

Cohen N, Yang S, Andalman A, Broxton M, Grosenick L, Deisseroth 
K, Horowitz M, Levoy M (2014) Enhancing the performance 
of the light field microscope using wavefront coding. Opt Exp 
22(20):24817–24839. https:// doi. org/ 10. 1364/ OE. 22. 024817

Eberhart M (2021) Efficient computation of backprojection arrays for 
3D light field deconvolution. Opt Exp. Accepted for publication

Eberhart M, Loehle S (2021) Three-dimensional analysis of transparent 
flames by light field deconvolution. J Thermophys Heat Transfer 
35(1):200–205. https:// doi. org/ 10. 2514/1. T6046

Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) 
Tomographic particle image velocimetry. Exp Fluids 41:933–947. 
https:// doi. org/ 10. 1007/ s00348- 006- 0212-z

Fahringer T, Thurow BS (2012) Tomographic reconstruction of a 3-D 
flow field using a plenoptic camera. In: 42nd AIAA fluid dynam-
ics conference, AIAA, pp 2012–2826. https:// doi. org/ 10. 2514/6. 
2012- 2826

Fahringer TW, Thurow BS (2018) Plenoptic particle image velocimetry 
with multiple plenoptic cameras. Meas Sci Technol 29(7). https:// 
doi. org/ 10. 1088/ 1361- 6501/ aabe1d

Fahringer TW, Lynch KP, Thurow BS (2015) Volumetric particle 
image velocimetry with a single plenoptic camera. Meas Sci 
Technol 26(11). https:// doi. org/ 10. 1088/ 0957- 0233/ 26/ 11/ 115201

Georgiev T, Lumbsdaine A (2012) The multifocus plenoptic camera. 
Proc SPIE 8299:829908–829908–11. https:// doi. org/ 10. 1117/ 12. 
908667

Greene ML, Sick V (2013) Volume-resolved flame chemiluminescence 
and laser-induced fluorescence imaging. Appl Phys B 113:87–92. 
https:// doi. org/ 10. 1007/ s00340- 013- 5664-2

Gross H, Singer W, Totzeck M (2005) Handbook of Optical Systems: 
Physical Image Formation, vol 2. Wiley-VCH. https:// doi. org/ 10. 
1002/ 35276 06688

Hall EM, Fahringer TW, Guildenbecher DR, Thurow BS (2018) Volu-
metric calibration of a plenoptic camera. Appl Opt 57(4):914–923. 
https:// doi. org/ 10. 1364/ AO. 57. 000914

Halls BR, Gord JR, Jiang N, Splichenko M, Roy S, Meyer TR (2016) 
High-speed three-dimensional tomographic measurements for 
combustion systems. In: 32nd AIAA aerodynamic measurement 
technology and ground testing conference, AIAA. https:// doi. org/ 
10. 2514/6. 2016- 4027

Hermann T, Loehle S, Fasoulas S, Andrianatos A (2016) Tomo-
graphic optical emission spectroscopy for plasma wind tunnel 
testing. Appl Opt 55(36):10290–10298. https:// doi. org/ 10. 2514/6. 
2016- 3203

Isaksen A, McMillan L, Gortler SJ (2000) Dynamically reparameter-
ized light fields. In: Proceedings of the 27th annual conference 
on computer graphics and interactive techniques, ACM Press/
Addison-Wesley Publishing Co., pp 297–306. https:// doi. org/ 10. 
1145/ 344779. 344929

Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of 
the 23rd annual conference on computer graphics and interactive 
techniques, association for computing machinery, SIGGRAPH 
’96, pp 31–42. https:// doi. org/ 10. 1145/ 237170. 237199

Levoy M, Ng R, Adams A, Footer M, Horowitz M (2006) Light field 
microscopy. ACM Trans Graph 25(3):924–934. https:// doi. org/ 
10. 1145/ 11419 11. 11419 76

Lillo PM, Greene ML, Sick V (2014) Plenoptic single-shot 3D imaging 
of in-cylinder fuel spray geometry. Z Phys Chem 229(4). https:// 
doi. org/ 10. 1515/ zpch- 2014- 0601

Lippmann G (1908) Épreuves réversibles donnant la sensation du 
relief. Journal de Physique Théorique et Appliquée 7. https:// doi. 
org/ 10. 1051/ jphys tap: 01908 00700 82100

Lu Z, Wu J, Qiao H, Zhou Y, Yan T, Zhou Z, Zhang X, Fan J, Dai Q 
(2019) Phase-space deconvolution for light field microscopy. Opt 
Exp 27(13):18131–8145. https:// doi. org/ 10. 1364/ OE. 27. 018131

Lumbsdaine A, Georgiev T (2009) The focused plenoptic camera. In: 
2009 IEEE international conference on computational photog-
raphy (ICCP), pp 1–8. https:// doi. org/ 10. 1109/ ICCPH OT. 2009. 
55590 08

Lynch KP, Thurow BS (2012) 3-D flow visualization of axisymmetric 
jets at reynolds number 6,700 and 10,200. J Visualizationalization 
15:309–319. https:// doi. org/ 10. 1007/ s12650- 012- 0141-2

Mustafa M (2016) A data-driven learning approach to image registra-
tion. PhD thesis, University of Nottingham

Ng R (2006) Digital light field photography. PhD thesis, Stanford 
University

Perwaß C, Wietzke L (2012) Single lens 3D-camera with extended 
depth-of-field. Human Vision and Electronic Imaging XVII, SPIE 
Proceedings 8291:45–59. https:// doi. org/ 10. 1117/ 12. 909882

Prevedel R, Yoon YG, Hoffmann M, Pak N, Wetzstein G, Kato S, 
Schrödel T, Raskar R, Zimmer M, Boyden ES, Vaziri A (2014) 
Simultaneous whole-animal 3D imaging of neuronal activity 
using light-field microscopy. Nat Methods 11:727–730. https:// 
doi. org/ 10. 1038/ nmeth. 2964

Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, Guiet R, 
Vonesch C, Unser M (2017) DeconvolutionLab2: an open-source 
software for deconvolution microscopy. Methods 115:28–41. 
https:// doi. org/ 10. 1016/j. ymeth. 2016. 12. 015

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/34.121783
https://doi.org/10.1109/34.121783
https://doi.org/10.1007/s00340-010-4051-5
https://doi.org/10.1007/s00340-010-4051-5
https://doi.org/10.1145/1409060.1409085
https://doi.org/10.1145/1409060.1409085
https://doi.org/10.1109/ICCVW.2009.5457420
https://doi.org/10.1109/ICCVW.2009.5457420
https://doi.org/10.1109/TPAMI.2011.168
https://doi.org/10.1109/TPAMI.2011.168
https://doi.org/10.1364/OE.21.025418
https://doi.org/10.1364/ao.52.008106
https://doi.org/10.1364/ao.52.008106
https://doi.org/10.4271/2017-01-0614
https://doi.org/10.4271/2017-01-0614
https://doi.org/10.1364/OE.22.024817
https://doi.org/10.2514/1.T6046
https://doi.org/10.1007/s00348-006-0212-z
https://doi.org/10.2514/6.2012-2826
https://doi.org/10.2514/6.2012-2826
https://doi.org/10.1088/1361-6501/aabe1d
https://doi.org/10.1088/1361-6501/aabe1d
https://doi.org/10.1088/0957-0233/26/11/115201
https://doi.org/10.1117/12.908667
https://doi.org/10.1117/12.908667
https://doi.org/10.1007/s00340-013-5664-2
https://doi.org/10.1002/3527606688
https://doi.org/10.1002/3527606688
https://doi.org/10.1364/AO.57.000914
https://doi.org/10.2514/6.2016-4027
https://doi.org/10.2514/6.2016-4027
https://doi.org/10.2514/6.2016-3203
https://doi.org/10.2514/6.2016-3203
https://doi.org/10.1145/344779.344929
https://doi.org/10.1145/344779.344929
https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/1141911.1141976
https://doi.org/10.1145/1141911.1141976
https://doi.org/10.1515/zpch-2014-0601
https://doi.org/10.1515/zpch-2014-0601
https://doi.org/10.1051/jphystap:019080070082100
https://doi.org/10.1051/jphystap:019080070082100
https://doi.org/10.1364/OE.27.018131
https://doi.org/10.1109/ICCPHOT.2009.5559008
https://doi.org/10.1109/ICCPHOT.2009.5559008
https://doi.org/10.1007/s12650-012-0141-2
https://doi.org/10.1117/12.909882
https://doi.org/10.1038/nmeth.2964
https://doi.org/10.1038/nmeth.2964
https://doi.org/10.1016/j.ymeth.2016.12.015


 Experiments in Fluids (2021) 62:165

1 3

165 Page 16 of 16

Stefanoiu A, Page J, Symvoulidis P, Westmeyer G, Lasser T (2019) 
Artifact-free deconvolution in light field microscopy. Opt Exp 
27(22):31644–31666. https:// doi. org/ 10. 1364/ OE. 27. 031644

Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation 
and their principles. In: IEEE conference on computer vision and 
pattern recognition, IEEE. https:// doi. org/ 10. 1109/ CVPR. 2010. 
55399 39. http:// cs. brown. edu/ ~dqsun/ code/ cvpr10_ flow_ code. zip

Tan ZP, Alarcon R, Allen J, Thurow BS, Moss A (2020) Development 
of a high-speed plenoptic imaging system and its application to 
marine biology PIV. Meas Sci Technol 31(5). https:// doi. org/ 10. 
1088/ 1361- 6501/ ab553c

Upton TD, Verhoeven DD, Hudgins DE (2011) High-resolution 
computed tomography of a turbulent reacting flow. Exp Fluids 
50:125–134. https:// doi. org/ 10. 1007/ s00348- 010- 0900-6

Wender A, Iseringhausen J, Goldluecke B, Fuchs M, Hullin MB 
(2015) Light field imaging through household optics. In: Vision, 

modeling & visualization, The Eurographics Association. https:// 
doi. org/ 10. 2312/ vmv. 20151 271

Wetzstein G, Ihrke I, Heidrich W (2013) On plenoptic multiplexing and 
reconstruction. Int J Comput Vis 101(2):384–400. https:// doi. org/ 
10. 1007/ s11263- 012- 0585-9

Zhuk S, Tchrakian T, Akhriev A, Lu S, Hamann H (2017) Dynamic 
cloud motion forecasting from satellite images. In: IEEE 56th 
annual conference on decision and control (CDC). https:// doi. org/ 
10. 1109/ CDC. 2017. 82641 13

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1364/OE.27.031644
https://doi.org/10.1109/CVPR.2010.5539939
https://doi.org/10.1109/CVPR.2010.5539939
http://cs.brown.edu/%7edqsun/code/cvpr10_flow_code.zip
https://doi.org/10.1088/1361-6501/ab553c
https://doi.org/10.1088/1361-6501/ab553c
https://doi.org/10.1007/s00348-010-0900-6
https://doi.org/10.2312/vmv.20151271
https://doi.org/10.2312/vmv.20151271
https://doi.org/10.1007/s11263-012-0585-9
https://doi.org/10.1007/s11263-012-0585-9
https://doi.org/10.1109/CDC.2017.8264113
https://doi.org/10.1109/CDC.2017.8264113

	3-D visualization of transparent fluid flows from snapshot light field data
	Abstract 
	1 Introduction
	2 Background
	2.1 Plenoptic imaging
	2.2 Volume reconstruction by light field deconvolution

	3 Experimental PSF acquisition
	3.1 Definition of an elementary cell
	3.2 Calibration stage
	3.3 Building the PSF H
	3.4 Relation to plenoptic tomography

	4 Results
	4.1 Shift-variant main lens PSF
	4.2 Point cloud
	4.3 Gas flames
	4.4 Fluorescent droplet

	5 Conclusion
	Acknowledgements 
	References




