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Abstract 
The paper presents a comparison of the dissipation rate obtained from numerical differentiation of the time-resolved veloc-
ity, analog differentiation of the hot-wire signal, integration of the velocity derivative spectra obtained from the velocity 
spectra, and the application of a power decay law. Hot-wire measurements downstream of an active-grid provide the time-
resolved velocity with a Taylor Reynolds number in the range of 200–470, turbulence intensities in the range of 5.8–11%, and 
nominal mean velocities of 4, 6, and 8 m s−1 . The dissipation rate calculated using a ninth-order central-difference scheme 
differs at most by ± 4% from the value obtained by analog differentiation. For comparison, a 23rd-order central-difference 
scheme offers negligible (0.02%) difference relative to the ninth-order scheme. Correction for an apparent uncertainty in the 
calibration of the analog differentiator reduces the difference to ± 2.5%. In contrast, integration of the velocity derivative 
spectra obtained from the velocity spectra leads to a dissipation rate 14–45% larger than the corresponding values obtained 
using analog differentiation. Results obtained from the application of a power decay law of turbulence kinetic energy with a 
nonzero virtual origin to determine the dissipation rate deviate by 1.7%, 1.6%, and 3.6% relative to the corresponding values 
obtained from the analog differentiator based on the ensemble average of downstream locations with a ±5.6% scatter about 
the ensemble average.
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Graphic abstract
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1  Introduction

The dissipation rate of turbulence kinetic energy ( � ) plays 
an important role in the study of turbulence. Different 
approaches exist to determine � from hot-wire data, with 
few comparisons made between the different methods. The 
study presented herein focuses on the relative accuracy of 
four approaches to determine the dissipation rate in nearly 
homogeneous isotropic turbulence. Two approaches rely 
upon the definition of the dissipation rate for homogenous 
and isotropic turbulence defined as:

where u = U − U represents the fluctuating component of 
the downstream velocity (U) at a downstream position, x. 
The dissipation rate also depends on the kinematic viscosity 
( � ). The notation ( ) indicates a time average of the quantity. 
Determining the quantity �u

�x
 presents a significant challenge 

in experiments as its direct measure would require placing 
multiple sensors in the flow, which in turn influences the 
measurement. One approach to address this challenge relies 
on measuring the temporal derivative of the velocity 

(
�u

�t

)
 

and utilizing Taylor’s hypothesis defined for low-intensity 
turbulence as:

(1)� = 15�
(
�u

�x

)2

to relate the temporal to the spatial derivative. The appli-
cation of Eq. 2 requires careful consideration of the speed 
at which the eddies propagate downstream as it may dif-
fer from the measured flow velocity (cf. del Álamo and 
Jiménez 2009).

The moderate-intensity turbulence observed in the tur-
bulent flow downstream of an active grid—described in 
Sect. 2—requires a modified form of Taylor’s hypothesis. 
Heskestad (1965) suggests a correction to Taylor’s hypothe-
sis for moderate intensity turbulence and Champagne (1978) 
applies a Taylor series expansion to Heskestad’s correction 
to arrive at the relationship:

using the isotropy ratios defined as Iuv = v2∕u2  and 
Iuw = w2∕u2 . v and w represent the two cross-stream com-
ponents of the fluctuating velocity oriented 90◦ apart in the 
y and z directions, respectively.

The first approach to determine the temporal deriva-
tive of the velocity utilizes an analog differentiator, 
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which directly differentiates the hot-wire voltage signal. 
A second approach uses numerical differentiation of the 
time-resolved velocity to determine the temporal velocity 
derivative (cf. Hearst et al. 2012). Hearst et al. analyze the 
effect of various orders of finite central-difference schemes 
on the corresponding dissipation rate. The authors con-
clude that higher order central-difference schemes result 
in the most accurate prediction of the dissipation rate due 
to the higher order central-difference schemes providing 
less attenuation of the power spectral values at high wave-
numbers compared to the lower order central-difference 
schemes. Hearst et al. recommend the use of a 7-point 
or 9-point central-difference scheme based on balancing 
accuracy with noise amplification. The study herein quan-
titatively assesses the impact of order on the determination 
of the dissipation rate.

A third approach determines the variance of the tem-
poral velocity derivative and the dissipation rate from 
the velocity power spectra, noted by Antonia (2003) and 
Mydlarski and Warhaft (1996), as:

where the one-dimensional wave number ( � ) equals 2�f∕U 
for a frequency f, and E11 represents the spectral density of 
u. Antonia demonstrates that high frequency electronic noise 
in the hot-wire signal leads to a higher calculated dissipation 
rate than expected. The study herein quantifies the influence 
of the noise on the determined dissipation rate when using 
Eq. 4.

The fourth approach relies on determining � from a 
power decay law of turbulence kinetic energy. The turbu-
lence kinetic energy (q) equals u2 + v2 + w2 . Studies of q 
downstream of passive grids at Taylor Reynolds numbers 
less than 100 and turbulence intensities less than 3% have 
shown that:

where Aq represents the decay coefficient, MU the grid rod 
spacing, xo the virtual origin, and nq the decay exponent. 
Studies by Comte-Bellot and Corrsin (1966), Warhaft and 
Lumley (1978), Mohamed and LaRue (1990), Antonia et al. 
(2003), Lavoie et al. (2005), Krogstad and Davidson (2010), 
Kitamura et al. (2014), and Kamruzzaman et al. (2014) 
found a virtual origin of −2 ≤ xo∕MU ≤ 7.3 and a decay 
exponent of 1.10 ≤ nq ≤ 1.36 for passive grid generated 
turbulence. For active grid generated turbulence, Makita 
and Sassa (1991) determined nq = 1.43 with xo∕MU = −12 
, whereas Mydlarski and Warhaft (1996), Kang et al. (2003), 
and Mordant (2008) assume xo∕MU = 0 to determine 
1.21 ≤ nq ≤ 1.25.
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For homogeneous and isotropic flow upon the applica-
tion of Taylor’s Hypothesis (Tennekes and Lumley 1972; 
Pope 2000):

Combining Eqs. 5 and 6 yields an expression for � as:

Kang et al. (2003), in a flow downstream of an active grid 
for 20 ≤ x∕MU ≤ 48 at Taylor Reynolds numbers ( R� ) 
between 626 and 716, present a comparison of the dissipa-
tion rate obtained using a third-order structure function and 
the corresponding dissipation rate obtained from Eq. 7 with 
xo∕MU = 0 , Aq = 1.80 , nq = 1.25 , and an ensemble aver-
age mean velocity of 11.2 m s−1 . The dissipation rate from 
the third-order structure function differed between 1 and 9% 
when compared to the dissipation from Eq. 7. The study 
reported herein utilizes the Aq and nq determined by Koster 
(2018) for both a zero virtual origin and an optimized vir-
tual origin. Based on the methods of Antonia et al. (2003) 
and Kamruzzaman et al. (2014), Koster (2018) determined 
the virtual origin by finding the value of xo that leads to the 
largest range of downstream positions where �2∕MU(x − xo) 
remains constant, where:

defines the Taylor microscale ( � ). The analysis seeks to 
show that the selection of the virtual origin impacts the cal-
culated dissipation rate obtained from Eq. 7.

In summary, the study presented herein seeks to compare 
the values of the dissipation rate in a flow downstream of 
an active grid using analog and numerical differentiation 
of the time-resolved velocity, the integration of the veloc-
ity derivative power spectrum (Eq. 4), and the dissipation 
rate obtained using a power decay law of turbulence kinetic 
energy (Eq. 7). Section 2 outlines the experimental method 
used to collect the hot-wire data. A discussion of the filtering 
method used to process the data and the numerical differen-
tiation schemes follows in Sect. 3. The study concludes with 
Sect. 4 showing comparisons of the results obtained using 
the four approaches to obtain the dissipation rate.
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2 � Experimental method

The experimental setup consists of a closed return wind tun-
nel, an active grid, and several sensors. The closed return 
wind tunnel has a test section 0.61 m wide by 0.91 m high 
by 6 m long (cf. Selzer 2001; Puga and LaRue 2017). Down-
stream measurements begin 1.778 m from the active grid 
and extend to 5.46 m downstream of grid. The test section 
diverges to account for boundary layer growth, ensuring 
nearly constant nominal velocities of 4, 6, and 8 m s−1 . The 
flow has the turbulence intensity ( � ), integral length scale 
(L), Taylor microscale, Kolmogorov length scale ( � ), and 
Taylor Reynolds number ( R� = U�∕� ) shown in Table 1.

The active grid generates moderate intensity turbulence 
by rotating finned rods at randomly determined rotation 
speed, direction, and rotation period (Fig. 1). Two inde-
pendent Propeller Proto USB boards with P8X32-Q44 

Propeller chips (Parallax Inc.: Rocklin, CA) control 15 
Anaheim Automation 17MD102S-00 stepper motors (Ana-
heim, CA) each. For this experiment, the microcontrollers 
maintain a mean rotation rate of two revolutions per sec-
ond with a 25% variance such that the rods can rotate at 
any speed between 1.5 and 2.5 revolutions per second. 
The period of rotation equals 250 ms with a 50% variance, 
such that the period ranges between 125 and 375 ms. After 
completing the assigned period of rotation in one direc-
tion, the microcontrollers send a new, randomly deter-
mined rotation speed, direction, and rotation period within 
the stated variances. The random rotation rate minimizes 
the amplitude of a 4 Hz spike in the power spectra that cor-
responds to twice the rotation rate (Puga and LaRue 2017).

The collection of the data relies on three sensors. A 
pitot-static tube connected to an MKS Baratron Model 
698A11TRE differential pressure transducer (MSK Instru-
ments: Andover, MA) determines the mean velocity. A 
platinum resistance thermometer (PRT) made by Omega 
Engineering Inc. (Bridgeport, NJ) combined with a custom 
built Wheatstone bridge allows for correcting the hot-wire 
signal for temperature drift in the wind tunnel. The three 
sensors are mounted at the same vertical location on a 
traverse but displaced horizontally by 12 mm on either 
side of the hot-wire.

The data presented in this paper come from two differ-
ent hot-wire sensors. For 4 and 6 m s−1 , the hot-wire sen-
sor has a length of 1 mm and a diameter of 5.08 � m, giving 
a nominal length to diameter ratio of 200. To improve 
resolution, the 8 m s−1 experiment used a hot-wire 0.4 mm 
long with a 1.27 � m diameter—with a nominal length to 
diameter ratio of 315. Both sensors have an over-heat ratio 
of 1.75 resulting in the longer sensor having a frequency 
response of 18 kHZ at a mean velocity of 18 m s−1 and 
the shorter sensor having a frequency response of 20 kHz 
at 24 m s−1 , based on the square-wave response. An AA 
Lab Systems (Westminster, CA) AN-1005 constant tem-
perature anemometer (CTA) controls the long sensor and 
a custom build CTA controls the shorter sensor. Valente 
and Vassilicos (2011) demonstrated the AN-1005 produces 
an underestimation of the dissipation rate as a result of an 
issue with the built-in square-wave test in the unit used. 
While the AN-1005 used in this work could have the same 
problem, the analysis focuses on comparing ratios of the 
dissipation rates calculated from the same signal. There-
fore, the different dissipation rates will have the same 
underestimation and cancel out in the ratios presented.

The voltage signal of the CTA undergoes an initial fil-
tering to limit the influence of electronic noise to less than 
3% of the root-mean-square of the time averaged temporal 
velocity derivative ( (�u∕�t)2

0.5

 ). The corner frequency ( fc
)—defined as the 3 dB point—of the filter approximately 
equals 2–4 times the Kolmogorov frequency. The signal 

Table 1   Characteristics of the turbulent flow at different nominal 
velocities

Nominal 
velocity 
(m s−1)

� (%) L (m) � × 10
3 

(m)
� × 10

4 
(m)

R�

4 5.8–11.1 0.119–
0.222

9.84–
14.13

3.07–4.94 193–275

6 6.4–10.6 0.135–
0.177

9.15–
11.65

2.46–3.53 267–363

8 6.9–10.4 0.149–
0.187

8.28–
10.23

2.01–2.73 353–453

Fig. 1   Based on Makita’s 1991 design (Makita and Sassa 1991) as 
implemented by Mydlarski and Warhaft (1996), the grid consists of 
12 vertical and 18 horizontal rods with a diameter of 9.5 mm and a 
spacing ( M

U
 ) of 50.4  mm. One-hundred and eighty-seven diamond 

shaped flaps (34.3  mm edge length and 1.55  mm thickness), center 
mounted to the rods, complete the grid
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then splits into two different paths (Fig. 2) producing the 
time-resolved hot-wire voltage ( EHW ) and the time-resolved 
temporal-derivative of the hot-wire voltage ( �EHW

�t
 ). A meas-

urement-computing 16-bit USB-1608HS (Norton, MA) 
analog-to-digital (A/D) converter sampling at 2.3 times the 
corner frequency over a ±10 volt input range sends the data 
to a personal computer. The amplifiers and analog differ-
entiator have frequency responses of 70 kHz and 18 kHz, 
respectively.

Converting EHW at each downstream position into the 
time resolved velocity, U, follows the temperature-corrected 
form of King’s Law shown in Eq. 9.

In Eq. 9, Tw and Tg equal the average temperature of the 
wire and the temperature of the gas, respectively. A calibra-
tion of the sensors as a function of temperature and velocity 
determine Tw and the correlation exponent (n) based on the 
method of least squares. For 4 m s−1 , Tw = 249.9 ◦ C and 
n = 0.403 . At 6 m s−1 , Tw = 249.9 ◦ C and n = 0.403 . For 
8  m s−1 , Tw = 243.0 ◦ C with the standard value of n = 0.45 . 
A calibration before and after data collection determines 
the calibrations constants AHW and BHW . The data presented 
herein correspond to only data collected where the statis-
tics—mean, variance, skewness, and kurtosis—of the veloc-
ity and velocity derivative differ by less than 2% between the 
two calibrations.

Similarly, for the temporal velocity derivative ( �U∕�t):

where Eq. 10 results from the temporal derivative of Eq. 9.
To ensure the instantaneous flow angles did not exceed 

33◦ for cross-wire measurements, Koster (2018) limited the 
starting point of the analysis to x∕MU values of 60, 75, and 
80 for 4, 6, and 8 m s−1 , respectively. The study presented 
herein utilizes the same starting points. The data consists of 
120 s samples at each downstream position.

(9)
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3 � Filtering and numerical differentiation

The presence of electronic noise in the signal can influence 
the measured value of � and thus impact the comparison 
between the different approaches to calculate the dissipation 
rate. Furthermore, the accurate assessment of the accuracy 
of the numerical differentiation approach to determine the 
dissipation rate depends on the order of the finite central-
difference scheme as noted by Hearst et al. (2012). This sec-
tion discusses the different central-difference schemes used 
to calculate the temporal derivative of the velocity, the noise 
present in the signals, and the digital filtering method imple-
mented to address the electronic noise—which also employs 
numerical differentiation.

3.1 � Finite central‑difference schemes

The accuracy of the computed dissipation rate depends 
on the order of the central difference scheme (Hearst et al. 
2012). This study herein presents the relative accuracy of 
a 5-point, 9-point, and 23-point finite central-difference 
scheme. The equations to determine the derivative of a 
function f, defined as f ′ , for the nth sample of a discretized 
time-series follows Hearst et al. (2012) for the 5-point and 
9-point finite central-difference schemes. The 23-point finite 
central-difference scheme has the form:

where tn indicates the central point and Δt the spacing of the 
points. The sampling rate determines Δt . Table 2 contains 
the coefficients for Eq. 11 determined by solving the sys-
tem of 23 equations formed from the Taylor-series expan-
sion about tn to the 22nd-order derivative for each of the 23 

(11)

f �
n
(tn)Δt = −af (tn − 11Δt) + bf (tn − 10Δt) − cf (tn − 9Δt)

+ df (tn − 8Δt) − ef (tn − 7Δt) + ff (tn − 6Δt)

− gf (tn − 5Δt) + hf (tn − 4Δt) − if (tn − 3Δt)

+ jf (tn − 2Δt) − kf (tn − Δt) + kf (tn + Δt)

− jf (tn + 2Δt) + if (tn + 3Δt) − hf (tn + 4Δt)

+ gf (tn + 5Δt) − ff (tn + 6Δt) + ef (tn + 7Δt)

− df (tn + 8Δt) + cf (tn + 9Δt) − bf (tn + 10Δt)

+ af (tn + 11Δt)

CTA Four-pole Low-pass 
Bu�erworth Filter

Buck & Gain 
Amplifier

Buck & Gain 
Amplifier

A�enuator

A/D

Analog 
Differen�ator

EHW

A/D

Fig. 2   Signal processing produces �EHW

�t
 and E

HW
 from the same signal, allowing the determination of the temporal derivative of velocity from 

Eq. 10, which requires both variables
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points (cf. Moin 2010). The schemes have truncation errors 
of O(Δt4) , O(Δt8) , and O(Δt22) for the 5-point, 9-point, and 
23-point scheme, respectively.

3.2 � Digital filtering method

The hot-wire signal passes through an analog low-pass But-
terworth filter having a 3 dB frequency set to 2–4 times the 
Kolmogorov frequency as noted in Sect. 2. This filtering 
ensures that the filter has a negligible effect on the digitized 
velocity signal at frequencies at and below the Kolmogorov 
frequency. However, the signal does contain an amount of 
electronic noise. For example, a representative unfiltered 
power spectra of the temporal velocity derivative (Fig. 3) 
shows an increasing power spectra at high frequencies 
instead of a continual decrease—indicating the presence of 
electronic noise. Figure 4 shows a representative unfiltered 
power spectra of the velocity, in which the noise becomes 
less apparent.

The application of a digital filter reduces the high-fre-
quency noise present in the signals. The filtering scheme, 
applied in LabView, follows the iterative approach of Mi 
et al. (2011) with a few modifications. Figure 5 summa-
rizes the process. An initial guess of half the sampling 
rate (S) minus 1 for the corner frequency ( fc , also noted 
as the 3 dB point) of a digital Butterworth filter starts the 
iterative process. Note that the velocity signal ( U(0) ) and 
the temporal derivative of the velocity signal determined 
from analog differentiation ( (�u∕�t)a ) each have a digital 
Butterworth filter but set to the same corner frequency as 
determined by the iterative scheme. The filtered velocity 
signal passes through a numerical differentiator to cal-
culate the temporal derivative of the velocity ( (�u∕�t)n ) 
to determine its variance ( (�u∕�t)2

n
 ). The mean of the fil-

tered velocity signal provides U . Equations 1 and 2 then 
determine the dissipation rate of turbulence kinetic energy 
using the numerically differentiated velocity. Combining 
the calculated � and the kinematic viscosity ( � ) of air in 
Eq. 12 determines the Kolmogorov length scale ( �).

The algorithm then determines the Kolmogorov (1941) fre-
quency ( f� ) defined as:

As noted by Mi et al. (2011), the parameters � , � , and f� 
change after applying the filter. The next iteration sets fc 
equal to the f� determined from the previous iteration. Each 
iteration re-filters the unfiltered velocity signal and temporal 
derivative of the velocity signal determined from analog dif-
ferentiation instead of re-filtering the filtered signal as done 
by Mi et al. (2011). The iteration process concludes when

(12)� =

(
�3

�

) 1

4

(13)f� ≡ U

2��

Table 2   Coefficients for the 
23-point finite central-difference 
equation (Eq. 11) shown to 4 
decimal places

Coefficient Value

a 1.2887 × 10
−7

b 3.1187 × 10
−6

c 3.6384 × 10
−5

d 2.7288 × 10
−4

e 1.4814 × 10
−3

f 6.2217 × 10
−3

g 2.1154 × 10
−2

h 6.0440 × 10
−2

i 1.5110 × 10
−1

j 3.5256 × 10
−1

k 9.1667 × 10
−1

10-4 10-2 100
10-4

100

103

Filtered

Unfiltered

Fig. 3   Temporal velocity derivative power spectra ( ̃E
11

 ) for an 
R� = 438 at x∕M

U
= 91 (8 m s−1 ) demonstrate the difference between 

the unfilter signal (blue) which shows a secondary roll-off resulting 
from noise in the signal and the digitally filtered signal (orange)

10-4 10-2 100
10-10

10-5

100

Unfiltered

Filtered

Fig. 4   Unlike the power spectra for the temporal derivative of veloc-
ity, the velocity power spectra ( E

11
 ) for R� = 438 at x∕M

U
= 91 

(8  m  s−1 ) does not indicate a significant difference between the fil-
tered (orange) and the unfiltered (blue) spectra



Experiments in Fluids (2021) 62:147	

1 3

Page 7 of 13  147

where i indicates the iteration number and the convergence 
tolerance ( � ) equals 1.0 × 10−3 . Stricter convergence toler-
ances showed statistically insignificant differences in the 
result ( ≪ 0.1%). Figures 3 and 4 show the resulting power 
spectra after applying the filtering method. The results sec-
tion discusses the effect of the order of the Butterworth filter 
and the order of the numerical differentiation on the com-
puted dissipation rate.

4 � Results and discussion

4.1 � Filter type, corner frequency, and integration 
order

The first step in determining the dissipation rate of turbu-
lence kinetic energy requires digital filtering. The selection 
of the corner frequency and the type of low-pass Butterworth 
filter could change the results. Since the determination of 
the corner frequency relies on the numerical differentiation 
of the hot-wire signal, this also plays a role in the filtering 
characteristics. Processing the data using a digital 3-pole, 
5-pole, and 9-pole Butterworth filter for the three differen-
tiation schemes (5-point, 9-point, and 23-point) showed that 

(14)
|f (i)
c

− f (i)
𝜂
|

f
(i)
c

< 𝛿
changing the number of poles has minimal impact. The per-
cent difference relative to the 3-pole Butterworth increased 
by less than 0.5% for the numerically determined � and the 
� from the analog differentiator–henceforth referred to as 
�n and �a , respectively. The percent difference of the ratio 
of �n to �a fell in a range of ± 0.05% relative to the 3-pole 
Butterworth filter. This held true for 4, 6, and 8 m s−1 . There-
fore, increasing the order of the Butterworth filter did not 
significantly change the results. The presented results use 
the digital 3-pole low-pass Butterworth filter.

The filtering scheme uses the iteratively determined Kol-
mogorov frequency as the corner frequency of the Butter-
worth filter. The choice of the Kolmogorov frequency as the 
corner frequency does not have a fundamental justification. 
Therefore, the analysis requires assessing the effect of the 
choice of the corner frequency. Setting the corner frequency 
to 90%, 110%, and 150% of Kolmogorov frequency shows 
at most a 1.62% change in the calculated dissipation rates 
(for both the numerical and analog differentiation). Addi-
tionally, the ratio of �n to �a changes by at most ± 1%. The 
stated percentages represent the change relative to the cor-
ner frequency equal to the Kolmogorov frequency and the 
9-point central-difference scheme. The 5-point and 23-point 
central-difference schemes produced similar results. Since 
the determined dissipation rates and the corresponding ratio 
change by less than 2%, the filtering of the presented results 
uses a corner frequency equal to the Kolmogorov frequency.

Fig. 5   An iterative filtering 
scheme filters the original 
U
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 signal for each 
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After selecting a 3-pole low-pass Butterworth filter with 
a corner frequency equal to the Kolmogorov frequency to 
perform the analysis, the analysis considers the impact of 
the finite central-difference scheme order when calculating 
the temporal velocity derivative. Using the 9-point central 
difference scheme as the reference, a 5-point scheme pro-
duces a ratio of the dissipation rates ( �n∕�a ) at most 0.3% 
smaller than the value using the 9-point scheme. Conversely, 
the 23-point scheme leads to values of �n∕�a at most 0.02% 
larger than those found using the 9-point scheme. The 
small percent differences for both the 5-point and 23-point 
schemes relative to the 9-point scheme indicates that any 
of the three schemes would minimally impact the results. 
However, the 23-point scheme produces percent differences 
at least one order of magnitude smaller than the percent dif-
ferences of the 5-point scheme. To further demonstrate the 
diminishing improvement of the higher order schemes, �n∕�a 
calculated using a 9-pole Butterworth filter with a 23-point 
central difference scheme differs by ± 0.02% relative to the 
3-pole Butterworth filter with a 9-point central-difference 
scheme–both with a corner frequency equal to the Kolmogo-
rov frequency. Consequently, the presented results utilize a 
9-point finite central-difference scheme.

In summary, the following results use digital filtering 
with a 3-pole low-pass Butterworth filter with a corner fre-
quency equal to the Kolmogorov frequency and the numeri-
cal differentiation of the hot-wire signal obtained using a 
9-point central-difference scheme.

4.2 � Dissipation rate from the analog differentiator

The observation that hot-wires with a length greater than the 
Kolmogorov length scale have attenuated spectral values at 
high wavernumbers and a corresponding reduced dissipation 
rate (Wyngaard 1968) motivates a correction to the spectra. 
Applying the Wyngaard correction iteratively until the com-
puted dissipation rate changes by less than 1% relative to the 
previous iteration, corrects the data for wire-length aver-
aging. The application of Champagne’s correction (Eq. 3) 
using the ensemble averages—denoted by <>—shown in 
Table 3 with u2 and U at each downstream location corrects 
for the moderate intensity turbulence. Figure 6 shows the 
resulting normalized dissipation rate determined from the 

analog differentiator with a value of 1.568 × 10−5 m2 s−1 for 
the kinematic viscosity of air.

4.3 � Comparison of numerical differentiation 
to analog differentiation

The numerical differentiation determines a dissipation rate 
within ± 4% of the value from the analog differentiation 
(Fig. 7). Furthermore, the numerical differentiation over-
estimates the dissipation rate at 4 and 6 m s−1 , while under-
estimating the dissipation rate at 8 m s−1.

The numerical differentiation over-estimating the dissi-
pation rate does not make physical sense as numerical dif-
ferentiation acts as a low-pass filter (Fig. 8). Therefore, the 
numerical differentiation should attenuate higher frequencies 
while having no effect on lower frequencies. Figure 9 shows 

Table 3   Ensemble average of the isotropy ratios I
uv

 and I
uw

 from 
Koster (2018)

Mean velocity (m s−1) ⟨I
uv
⟩ =

�
v2∕u2

�
⟨I

uw
⟩ =

�
w2∕u2

�

4 1.19 1.06
6 1.09 1.18
8 1.25 1.24

60 70 80 90 100 110 120 130 140 150
x/M

U

0.5

1

1.5

2

2.5

3

3.5

4
10-4

Fig. 6   Dissipation rate normalized by U
3

M
U

 for 4, 6, and 8 m s−1 deter-
mined from the analog differentiator and Eq.  10 corrected for wire 
length averaging and moderate intensity turbulence. The analysis 
does not include data for 6 m s−1 in the range of 90 ≤ x∕M

U
≤ 120 as 

the spectra of the velocity and the temporal velocity derivative show a 
noise peak uncharacteristic of electronic noise and not present in any 
of the other data

60 70 80 90 100 110 120 130 140 150
x/M

U

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Fig. 7   Ratio of �
n
 to �

a
 versus x∕M

U
 for 4, 6, and 8 m s−1 . The jumps 

in the data for a given velocity coincide with changes in the amplifi-
cation of the signal
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the ratio of the temporal velocity derivative power spec-
tra for numerical ( ̃E11,n ) and analog differentiation ( ̃E11,a ) 
shown in Fig. 8. The ratio in Fig. 9 clearly indicates that 
spectral values in the range 0 < 𝜅𝜂 < 0.5 for the numerical 
differentiation have a larger value than the corresponding 
spectral values for the analog differentiation. Additionally, 
the magnitude of the ratio remains relatively constant in this 
range. Therefore, the mismatch must result from uncertainty 
in the amplifier gains.

Averaging the values over the largest extent of the flat 
region in Fig. 9 determines a correction factor of the power 
spectra of the numerical temporal derivative of the veloc-
ity. Applying the correction factor to Ẽ11,n demonstrates how 
the experimental error impacts the ratio of dissipation rates 
(Fig. 10). The experiments at 4 and 6 m s−1 use the same 

channel of the amplifier, whereas 8 m s−1 uses a different 
amplifier. The analysis shows that for 4 and 6 m s−1 , the spectra 
should decrease by 3% on average. Conversely for 8 m s−1 , the 
spectra should increase by 1% on average. After correcting for 
the assumed amplifier gain error, the �n becomes 0–2.5% lower 
than �a (Fig. 10). The scale of Fig. 10 makes it appear that the 
4 m s−1 set has a decaying trend with increasing downstream 
distance but with only a 1% variation.

4.4 � Determination of the dissipation rate obtained 
by integrating the temporal velocity derivative 
spectra obtained from the velocity spectra

The preceding section presented a comparison of the dis-
sipation rates obtained using numerical differentiation and 
analog differentiation. This section presents a comparison 
between the third method of determining the dissipation 
rate—defined by Eq. 4—and the analog differentiation 
method. Antonia et al. (2003) notes that high frequency 
noise plays a role in the magnitude of the determined dis-
sipation rate when using Eq. 4. Consequently, the analysis 
of this method utilizes the unfiltered velocity and analog 
temporal velocity derivative signals. As the application of 
the Wyngaard correction would only amplify the high fre-
quency noise of the unfiltered signal, the analysis uses the 
uncorrected data. Figure 11 shows a comparison between the 
power spectra of the temporal velocity derivative determined 
from the analog differentiator, the numerical differentiator, 
and by multiplying the velocity spectral density by �2 ( �2E11 
in Eq. 4). Additionally, Fig. 11 shows the velocity power 
spectra, E11.

In Fig. 11, the �2E11 method determines the power spec-
tra of the temporal velocity derivative similar to the analog 
and numerical differentiators up to �� = 0.8 . After �� = 0.8 , 
the �2E11 method amplifies the noise present in the veloc-
ity power spectra ( E11 in Fig. 11). Consequently, the �2E11 
method produces spectra values larger than the analog 

10-3 10-2 10-1 100

10-4

10-2

100

102

Numerical
Differentiation

Analog
Differentiation

Fig. 8   Numerical differentiation acts as a low-pass filter resulting in 
a higher attenuation of the numerically determined temporal velocity 
derivative power spectrum (orange) at large �� as compared to analog 
differentiation (blue) as demonstrated for 4  m  s−1 at x∕M

U
= 81 

( R� = 249)

0 0.25 0.5 0.75 1 1.25 1.5
0.6

0.7

0.8

0.9

1

1.1

Fig. 9   Ratio of the temporal derivative of velocity spectra from 
numerical differentiation to that of analog differentiation does not 
equal one at 𝜅𝜂 < 0.5 , indicating a mismatch between the amplifier 
gains on the velocity and analog differentiator channels as shown for 
4 m s−1 at x∕M

U
= 81 ( R� = 249)

60 80 100 120 140 160
x/M

U

0.96

0.98

1

1.02

1.04

Fig. 10   After correcting for a gain mismatch, the ratio of �
n
 to �

a
 ver-

sus x∕M
U

 becomes less than 1 for 4, 6, and 8 m s−1
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differentiation method beyond �� = 0.8 . The amplification 
of the noise when applying Eq. 4 results in a dissipation 
rate, �int , 14–45% larger relative to �a (Fig. 12). The overall 
characteristics of the spectra in Fig. 11 remain the same for 
different downstream locations and mean velocities.

To further demonstrate the sensitivity of the integration 
method to noise, Fig. 13 shows the ratio of the dissipa-
tion rate from numerical differentiation to the dissipation 
rate from analog differentiation for the unfiltered signals. 
Whereas the integration method leads to an over-estimation 
of the dissipation rate by 14–45%, the numerical differentia-
tion of the unfiltered signal determines � within − 6 to 3% of 
the dissipation rate from analog differentiation. Comparing 
Figs. 7 and 13, the �n∕�a for the unfiltered data decreases 
by at most 0.001–0.04 compared to the filtered data. This 
small change between filtered and unfiltered �n∕�a indicates 
that the integration method over-estimating the dissipation 
rate by 14–45% relative to the analog differentiation results 
from the method’s high sensitivity to high-frequency noise.

To achieve a result from Eq. 4 comparable to numeri-
cal differentiation requires careful treatment of the noise. 
Mydlarski and Warhaft (1996) utilized the integration 
method to determine the dissipation rate and compared 
the value to the dissipation rate calculated from a 5-point 
central-difference scheme (Mydlarski, private communica-
tion: 2019). To minimize the electronic noise in the signal, 
Mydlarski and Warhaft low-pass and high-pass the signal, 
allowing for the amplification of the high-frequency compo-
nents beyond the noise (Mydlarski, private communication: 
2019). With minimal noise in the signal, the integration of 
the velocity spectra by Eq. 4 calculates a dissipation rate 

10-4 10-3 10-2 10-1 100 101
10-4

10-2

100

102

10-10

10-5

100

105

Fig. 11   For 6 m s−1 at x∕M
U
= 126 ( R� = 279 ), the temporal-deriv-

ative of velocity spectrum ( ̃E
11

 ) calculated by  the �2
E
11
(�) method 

(red) shows an influence of noise nearly one decade larger than the 
noise present in the analog (blue) or numerical (orange) differentia-
tion methods. This occurs despite the velocity spectra ( E

11
 , purple) 

not appearing to have a significant amount of noise. The power spec-
tra of the numerical temporal derivative of the velocity indicates the 
filtering affect of numerical differentiation causing the spectral values 
to rapidly decrease starting at �� = 2.5
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Fig. 12   Ratio of �
int

 to �
a
 versus x∕M

U
 for 4, 6, and 8 m s−1
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Fig. 13   Ratio of �
n
 to �

a
 versus x∕M

U
 for 4, 6, and 8  m  s−1 based 

on the unfiltered signals. The figure excludes the 6 m s−1 data at an 
X∕M

U
 of 119 and 120 which fall at �

n
∕�

a
= 1.17 . The jumps in the 

data for a given nominal velocity correspond to changes in the ampli-
fication of the signal and no clear explanation arises for the trend of 
the data
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within 5% of the dissipation rate calculated from the numeri-
cal differentiation (Mydlarski and Warhaft 1996).

4.5 � Influence of the virtual origin on determining 
the dissipation rate

Koster (2018) determined the decay coefficient ( Aq ) and 
the decay exponent ( nq ) using a nonlinear least-squares 
fit of the turbulence kinetic energy (q) with an assumed 
zero virtual origin (Table 4). Additionally, Koster deter-
mined the virtual origin ( xo ), Aq , and nq (Table 5) using the 
method outlined in section 1. The coefficients in Tables 4 
and 5 correspond to a fit of q defined by Eq. 5 without the 
U

2
 scaling—consequently Eq. 7 becomes proportional to 

U instead of U
3
 . The resulting power-law fits for q show a 

similar standard deviation ( �q in Tables 4 and 5), indicat-
ing both a nonzero virtual origin and a zero virtual origin 
result in equal fits to the data. The analysis of this section 

uses the coefficients in Tables 4 and 5 in Eq. 7 and the 
data analyzed by Koster (2018) to determine �PL for com-
parison to �a.

With a xo∕MU equal to zero in Eq. 7 with the coef-
ficients shown in Table 4, the ratio of the dissipation rate 
from the power law ( �PL ) to �a decreases with increasing 
downstream distance (Fig. 14). Conversely, the ensemble 
average of the ratios nearly equal one: 0.971, 1.005, and 
1.024 for 4, 6, and 8 m s−1 , respectively. Using a least-
squares fit to determine a linear fit of the data as:

determines the slope, m, of �PL∕�a (Table 6). Additionally, 
Table 6 shows the standard deviation ( � ) of the experimental 
data minus the value predicted by the linear fit.

Unlike the results of a zero virtual origin which showed a 
clear negative trend, the nonzero virtual origin results in the 
data scattering about the ensemble average of 0.983, 1.016, 
and 1.036 for 4, 6, and 8 m s−1 , respectively (Fig. 15). The 
data scatters within ± 5.6% of the ensemble average for the 
three nominal velocities. Table 6 shows the slope (m) of a 
linear fit to the data and the standard deviation ( � ) of the 
data minus the fit.

When comparing the slopes of the linear fits for a zero 
and a nonzero virtual origin, the assumption of a zero virtual 

(15)
�PL

�a
= m

x

MU

+ b

Table 4   Coefficients for Eq. 7 with an assumed zero virtual origin

Velocity (m s−1) 4 6 8

A
q

73.475 240.281 368.465
n
q

1.492 1.525 1.456
�
q
× 10

2 2.35 2.56 2.31

Table 5   Coefficients for Eq. 7 with a nonzero virtual origin

Velocity (m s−1) 4 6 8

A
q

4759.085 14,398.419 103,709.663
n
q

2.238 2.228 2.409
x
o
∕M

U
− 39.41 − 46.16 − 67.88

�
q
× 10

2 2.27 2.88 2.12
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Fig. 14   Ratio between the dissipation rate calculated from the power 
law with a zero virtual origin ( �

PL
 ) and the analog differentiation ( �

a
 ) 

versus x∕M
U

 for 4, 6, and 8 m s−1

Table 6   Comparison of the slope and standard deviation for linear fits 
of �

PL
∕�

a
 with a zero and nonzero virtual origin

Velocity 
(m s−1)

x
o

M
U

= 0
x
o

M
U

≠ 0

m ×103 � × 10
2 m ×103 � × 10

2

4 − 3.6 1.64 − 0.062 1.73
6 − 3.1 2.13 − 0.35 2.03
8 − 3.71 1.76 − 0.34 2.04
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Fig. 15   Ratio between the dissipation rate calculated from the power 
law with a calculated virtual origin ( �

PL
 ) and the analog differentia-

tion ( �
a
 ) versus x∕M

U
 for 4, 6, and 8 m s−1.
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origin leads to a slope at least 8 times larger than the cor-
responding slope for a nonzero virtual origin. The linear 
fits for a zero and a nonzero virtual origin produce similar 
� values at a given mean velocity, indicating that either fit 
represents the data. However, the power law should produce 
a dissipation rate equal to the dissipation rate from analog 
differentiation, regardless of downstream location. Although 
scatting about the ensemble average, only the power law 
with a nonzero virtual origin produces a nearly constant 
ratio of the dissipation rate. Therefore, self-consistency only 
occurs with the determination of the proper virtual origin.

5 � Conclusion

This work presented a comparison of the dissipation rate 
determined from four different methods, with the analog 
differentiation method used as a basis of comparison. The 
analysis relied on hot-wire data taken downstream of an 
active-grid in a flow with nominal mean velocities of 4, 6, 
and 8 m s−1 . The first method utilizes a ninth-order central-
difference scheme to numerically differentiate the temporal 
velocity signal. The resulting dissipation rate falls within 
± 4% of the value determined from the analog differentia-
tion. The second method relies on integrating the velocity 
power spectra to determine the dissipation rate. The analysis 
showed the method has a high sensitivity to noise in the 
signal and produces a dissipation rate 14–45% larger than 
the value determined from analog differentiation. The final 
method relies on a power law of the dissipation rate deter-
mined by Koster (2018). The analysis shows that while a 
zero virtual origin and an optimized virtual origin produce 
qualitatively similar results, a zero virtual origin does not 
produce a dissipation rate consistent with the value deter-
mined from analog differentiation; specifically, the resulting 
dissipation rate had a negative trend with downstream loca-
tion. An optimized virtual origin produces a nearly constant 
ratio of the dissipation rates with values of 0.983, 1.016, and 
1.036 based on the ensemble average of downstream loca-
tions for 4, 6, and 8 m s−1 , respectively. The data scatters 
within ± 5.6% of the ensemble average.
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