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Abstract 
This study presents magnetic resonance velocimetry (MRV) Reynolds Stress measurements in a periodic hill channel with 
a hill Reynolds number of Re = 29,500. The velocity encoding scheme is based on the ICOSA6 method with six icosahedral 
encoding directions and multiple encoding values are measured to increase the dynamic range. The full Reynolds stress 
tensor is obtained from a voxel-wise three-dimensional Gaussian fit using the magnitude data of all acquisitions. The MRV 
results are compared to a wall-resolved large eddy simulation and laser Doppler velocimetry measurements conducted in 
the same channel. It is shown that the MRV Reynolds stress data have excellent precision and agree qualitatively with the 
reference data. However, there are apparent systematic deviations. One of the most prominent error contributions is the signal 
attenuation caused by higher orders of motion, which leads to an overestimation of the turbulence level. Another fundamental 
error is identified in the assumption that the turbulence is Gaussian distributed. With the presented reconstruction technique, 
the MRV data are fitted to a statistical model, and depending on the examined flow setup, the Gaussian model can lead to 
considerable errors. Possible ways of how to reduce all identified errors are presented. In summary, this technique enables 
Reynolds stress tensor measurements in complex internal flows with high dynamic range and excellent precision. However, 
several issues need to be resolved to make the turbulence quantification more accurate.
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Graphic abstract

1  Introduction

The measurement of the Reynolds stress tensor (RST) is 
an important topic for the investigation of turbulent wall-
bounded flows, and this can be achieved with magnetic 
resonance velocimetry (MRV) (Haraldsson et al. 2018). 
MRV does not require physical or optical access to the 
flow field, which enables simple experiments in highly 
complex channel geometries. However, previous studies 
reported that MRV-based turbulence measurements have 
possible bias, which limits the use of such data (Elkins 
et al. 2009). The aim of this study is to analyze the sources 

of error in the Reynolds Stress data obtained with MRV 
and to further develop this measurement technique.

Accurate turbulence measurements require a measure-
ment system that has a high dynamic velocity range and has 
low measurement uncertainty. Hot wire anemometry (HWA) 
and laser Doppler velocimetry (LDV) are both point-wise 
(1D) techniques and often serve as the ground truth in tur-
bulence quantification (Shirai et al. 2006; Samie et al. 2018). 
HWA is well suited for velocity measurements with high 
dynamic range, but being an intrusive technique, it comes 
with several experimental challenges. LDV is a non-intru-
sive measurement technique but requires seeding particles in 
the flow. Furthermore, Reynolds Stress measurements with 
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LDV and HWA typically result in low data rates because of 
coincidence filtering, i.e., the same turbulent eddy must be 
detected by multiple channels to obtain the Reynolds shear 
stresses.

Particle image velocimetry (PIV) and particle tracking 
velocimetry (PTV) can provide planar (2D) or volumetric 
(3D) information of turbulence statistics. Compared to HWA 
and LDV, these techniques are known to have relatively high 
random errors which can bias the calculation of the Reyn-
olds Stresses (Wilson and Smith 2013). Several sources of 
error must be carefully compensated for in order to ensure 
sufficient accuracy (Scharnowski et al. 2019). In the case of 
internal flows, velocity measurements with PIV and PTV 
typically require that major parts of the channel walls are 
transparent, and that the refractive index of fluid and chan-
nel material is matched. Full three-dimensional Reynolds 
Stress measurements, which are here termed 3-dimensional 
6-component (3D6C) RST measurements, are typically out 
of reach in these experiments.

The experimental challenges with MRV are entirely dif-
ferent. The working fluid must contain a measurable nuclear 
spin and magnetic susceptibility of the fluid and all sur-
rounding material must not change substantially to avoid 
magnetic field distortions. Also, temperature can affect the 
magnetic properties. Most commonly, MRV experiments are 
comprised of an isothermal water flow through a channel 
made of non-metallic material. The measurable flow veloci-
ties are typically in the range of 0.01–10 m/s but higher or 
lower flow velocities are possible (Elkins and Alley 2007). 
The main advantages of MRV are that it does not require 
optical access or seeding particles.

When it comes to quantifying turbulence, the MRV tech-
nique can benefit from several other factors. A coincidence 
filtering of instantaneous velocity samples as in LDV or 
HWA is not necessary because the MRV data represent the 
velocity spectrum of all water molecules in each voxel, not 
individual tracers. However, there are several sources of 
error that are specific to MRV, and many of these contribu-
tions might not be known yet. According to the authors’ 
knowledge, to date, no study has yet been dedicatedly con-
ducted to investigate the measurement errors in MRV Reyn-
olds Stress data systematically.

This study presents MRV experiments in a periodic 
hill channel with a hill Reynolds number of Re = 29,500. 
A novel routine for data acquisition and data processing is 
used to reduce the measurement uncertainty and to increase 
the dynamic range of the Reynolds Stress measurements. 
The MRV results are compared with a wall-resolved Large 
Eddy Simulation (LES) that was set up to match the experi-
ment. Furthermore, LDV turbulence measurements serve as 
the ground truth. It is shown that the MRV Reynolds Stress 
data have excellent precision and agree qualitatively with the 
reference data sets. However, there are apparent systematic 

deviations, which can be either attributed to the MRV encod-
ing process or they are caused by inaccurate assumptions. 
Alternative measurement and post-processing methods to 
reduce these errors are discussed.

1.1 � Fundamentals and previous studies on MRV 
turbulence quantification

In phase-contrast-based MRV, the voxel-wise mean veloci-
ties are encoded in the signal phase via magnetic field gra-
dients. The design parameter is the first gradient moment 
(m1) of these gradients, which enforces a linear relationship 
between the flow velocity and the signal phase. With the use 
of Fourier velocity encoding, the velocity spectrum within a 
voxel can be sampled (Moran 1982; Callaghan et al. 1988; Li 
et al. 1994; Newling et al. 2004). However, due to the high 
dimensionality of the sampled space (six velocity dimen-
sions comprised of three variance components and three co-
variance components) this method requires long acquisition 
times and may not be feasible for many applied experiments.

MRV turbulence measurements are usually based on a 
priori assumptions on the shape of the intra-voxel velocity 
spectrum in order to significantly reduce the acquisition time 
compared to Fourier velocity encoding. Assuming a Gauss-
ian velocity distribution, the six-dimensional space sampled 
by Fourier velocity encoding can be considerably reduced to 
six individual three-dimensional measurements that differ in 
the applied first gradient moment and one reference meas-
urement (Dyverfeldt et al. 2009; Haraldsson et al. 2018). 
Given the analytic solution of the Fourier transform of a 
Gaussian, the velocity distribution can be directly obtained 
from the magnitude data of these seven measurements.

As the underlying principle, turbulence within a voxel 
leads to a range of signal phases that add up incoherently 
and lead to a signal attenuation, hence decreased magnitude 
values. Similar to velocity-encoding, the signal attenuation 
depends on the direction and magnitude of m1 , which ena-
bles a quantification of the full RST. Note, that turbulence 
measurements in MRV share the same measurement prin-
ciples as diffusion-weighted imaging and diffusion tensor 
imaging, as more medical-focused MR techniques (Le Bihan 
et al. 2001).

The dependencies between signal attenuation, sequence 
parameters and flow turbulence have been applied in early 
studies to derive a measure of the turbulence level in pipe 
flows and free jets (Kuethe 1989; Gao and Gore 1991). A 
more quantitative study was conducted by Gatenby and Gore 
(1994) who found that the signal attenuation also depends 
on the temporal autocorrelation function of the velocity 
changes. They introduce a weighting function that includes 
the Lagrangian integral timescale, which is a measure of 
the average duration of each velocity change. However, 
such timescale is typically not derived easily and requires 
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additional measurements (Kuethe and Gao 1995). Other 
researchers simply overcome this problem by considering 
only cases in which the timescale of the fluctuations is either 
sufficiently small (Newling et al. 2004), or much larger with 
respect to the encoding time (Elkins et al. 2009; Dyerfeldt 
et al. 2006).

Elkins et al. (2009) conclude that most experiments con-
ducted with MRV count to the case that the Lagrangian 
integral timescale is much larger than the encoding time. 
MRV experiments are typically carried out in large-scale 
models in which the flow velocities rarely exceed 1 m/s. 
With encoding times in the order of milliseconds, signal 
attenuation in such flows becomes largely independent of the 
Lagrangian integral timescale, which simplifies the experi-
ment tremendously.

2 � Theory

The central assumption in the applied MRV technique is a 
Gaussian velocity distribution within each voxel. By further 
assuming homogenous flow conditions within a voxel and a 
sufficiently large Lagrangian integral timescale, the corre-
sponding image magnitude S in a voxel can be expressed as:

where k⃗v = 𝛾
[
m1,xm1,ym1,z

]T is the three-component encod-
ing vector, γ is the gyromagnetic ratio, Σ the variance of the 
Fourier transform of the three-dimensional Gaussian veloc-
ity distribution and S0 the signal of a velocity-compensated 
measurement. The parameter Σ−1 yields the RST, which 
contains the variance (Reynolds normal stresses) and co-
variance (Reynolds shear stresses) of the three-component 
velocity fluctuations.

In this study, the RST is obtained from six velocity-
encoded measurements and one velocity-compensated meas-
urement according to the ICOSA6 encoding scheme (Zwart 
and Pipe, 2013; Haraldsson et al. 2018):

where � = (1 + sqrt(5))∕2 and menc
1

 is the applied encod-
ing moment. The velocity encoding axes correspond to the 
vertices of an icosahedron with radius menc

1
 . Compared to 

orthogonal encoding schemes, the measurement efficiency 
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is increased since the non-orthogonal encoding directions in 
the ICOS6 scheme share information, which decreases noise.

However, with a fixed menc
1

 , the relationship between sig-
nal attenuation and turbulence is limited by an upper and 
lower limit. In low-turbulent flow regions, the signal attenu-
ation is often not measurable. Whereas, in the high-turbulent 
areas, the attenuated signal falls below the noise floor. The 
same problem exists for the quantification of the full RST. 
Turbulence in wall-bounded flows is often anisotropic, and 
not all Reynolds Stress components have a similar magni-
tude. Therefore, non-uniform flows with anisotropic turbu-
lence require a high dynamic range to quantify the full tensor 
precisely.

Measurements with multiple menc
1

 have been conducted 
by others to increase the dynamic range of component-wise 
Reynolds Stress measurements (Elkins et al. 2009). In that 
approach, a one-dimensional Gaussian function is fitted onto 
the magnitude data obtained with different menc

1
 to obtain the 

Reynolds Stress component in one encoding direction. A 
similar modification can be realized for the ICOSA6 encod-
ing scheme.

In this study, the dynamic range of the Reynolds Stress 
measurement is increased by measuring multiple icosahedral 
shells with different radius menc

1
 , which are chosen to cover 

the entire range of all Reynolds Stresses in the flow domain. 
The full RST is then obtained by fitting a three-dimensional 
Gaussian function to all menc

1
 shells by the least-squares 

approach. The main difference to the scheme in Elkins et al. 
(2009) is that the RST is obtained from a single three-dimen-
sional data fit compared to six individual data fits, which 
should increase precsision as more data points contribute 
to the data fit.

3 � Methods

The following paragraphs present the flow experiment 
(Sect. 3.1) and describe the MRV routine used to obtain 
2D6C RST data (Sect. 3.2). As reference, measurements 
with LDV (Sect. 3.3) and a wall-resolved LES (Sect. 3.4) 
are conducted in the same flow geometry under identical 
boundary conditions.

3.1 � Experimental setup

Flow measurements were performed in a periodic hill chan-
nel shown in Fig. 1. This test case was chosen because of the 
high non-uniformity and anisotropy of the RST tensor. The 
geometry of the hills is similar to the Ercoftac case 81 “Flow 
over periodic hills”, which is described in Temmerman and 
Leschziner (2001) and Jang et al. (2002).

The original test geometry is a 2D problem that can be 
easily modeled in CFD by applying periodic boundary 
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conditions in the span-wise direction. In the experiment, 
however, it would require an extremely wide channel to 
exclude 3D effects. For example, Rapp and Manhart (2011) 
chose a channel width equivalent to 6 channel heights. Such 
a flat rectangular channel would not fit inside the circular 
bore of the MRI scanner, without decreasing the channel 
height and losing resolution.

For this reason, it was decided to update the geometry 
and create a new test case. In this study, the 2D hills were 
placed in a square cross-section channel to intentionally 
incorporate 3D flow effects. The channel height and width 
were 74 mm. All other geometric parameters were scaled 

according to the original test geometry, resulting in a hill 
height of 24.4 mm and a span between consecutive hills 
of 219.4 mm.

Since the nature of the flow problem had already changed, 
i.e., from a 2D problem to a 3D problem, it was also decided 
to increase the Reynolds number from Re = 10,595 to Re 
29,500. This number is based on the hill height and the axial 
bulk flow velocity measured at the hill crests.

The periodic hill channel consists of 15 identical consecu-
tive hills to provide a sufficient periodicity of the flow. All 
measurements were performed between the 12th and 13th 
hill. For comparison, Almeida et al. (1993) and Rapp and 
Manhart (2011) used a channel with 10 consecutive hills 
with measurements conducted between the 6th and 8th hill. 
Since the true periodicity in the experiment by Almeida et al. 
(1993) was found questionable (Temmerman and Leschziner 
2001), the total number of hills was increased here.

The channel is made of hydraulically smooth Polymeth-
ylmethacrylat sheets. The contour of the periodic hills is 
realized with laser-sintered parts made of polyamide powder, 
which were smoothed with sandpaper until the arithmetic 
mean surface roughness was less than 5 μm. Upstream of 
the channel assembly is a cylindrical settling chamber with 
a diameter of 200 mm and a nozzle that smoothly contracts 
the flow to the square cross-section of the periodic hill chan-
nel. A diffusor is placed downstream of the channel to pro-
vide neutral pressure conditions at the outlet. Furthermore, 
screens are placed at the inlet and outlet of the channel sec-
tion to further homogenize the flow boundary conditions.

The flow supply system is comprised of two 5.5 kW cen-
trifugal pumps which run in parallel and are driven by fre-
quency converters. A tank with 1000 l water acts as a buffer 
to keep the fluid temperature stable. The flow rate is moni-
tored with an ultrasound flow rate sensor (Deltawave C-F, 
Systec Controls, Puchheim, Germany) with a total tolerance 
of 1.8 l/min or 1.5% of the measured flow rate, depending on 
which is higher. Also, standard pt100 temperature sensors 
and pressure transducers are installed in the flow loop to 
monitor the flow conditions. The same setup is used for the 
MRV and LDV experiments, including all described com-
ponents. The working fluid is purified water with a small 
concentration of 1 g/l Copper sulfate. This contrast agent 
amplifies the nuclear magnetic resonance signal from the 
water, but at these low concentrations has no measurable 
effects on the fluid mechanical properties relevant to this 
study. After performing the MRV measurements, a small 
amount of Vestosint (Evonik Industries AG, Essen, Ger-
many) with 5 μm particle size was added to the fluid as a 
tracer for the LDV experiments.

Before each measurement, the flow system was kept 
running for several hours until stable flow conditions were 
reached. The final flow rate and fluid temperature are 255 
l/min and 22 °C, which yields the target Reynolds number 

Fig. 1   Schematic of the periodic hill channel (a) and set up of the 
MRV measurement inside the MRI system (b)
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of Re = 29,500. All relevant flow conditions are listed in 
Table 1.

3.2 � MRV measurements

A 2D slice in the symmetry plane of the channel was 
acquired on a 3 T MRI system (Magnetom Tim Trio, Sie-
mens, Germany) with 40 mT/m maximum gradient ampli-
tude and 200 T/m/s maximum gradient slew rate. The field 
of view (FOV) of all MRV acquisitions covered the flow 
between the 12th and 13th hill including several centimeters 
up and downstream of this section. Two receive-only coils 
were placed below and above the measured section. The 
FOV and image resolution are the same for all acquisitions.

The full 6-component RST tensor was measured with 
a custom phase-contrast Gradient Recalled Echo (GRE) 
sequence, employing the gradient design proposed in 
Nishimura et al. (1991). More details on the sequence are 
provided in Schmidt et al. (2020). The velocity encoding 
values on all encoding axes were calculated according to the 
ICOSA6 encoding scheme in Eq. (2). A total of 12 menc

1
 val-

ues were measured to achieve a sufficient signal attenuation 
in all flow regions. The data was averaged over 256 acqui-
sitions to reduce measurement uncertainty to a minimum. 
This was mainly necessary because the turbulence leads to 
inconsistent phase contributions for different k-space lines, 
which in turn manifests itself as highly pronounced ghosting 

artifacts in the image. Additional measurements without 
flow but otherwise identical settings were performed before, 
after and in-between the flow measurements to measure the 
background phase and possible drift. The main acquisition 
parameters is provided in Table 2.

In this study, a voxel size of 1 mm × 1 mm × 6 mm (in x, 
y, z) was chosen as a tradeoff between measurement time 
and spatial accuracy. Note that the voxel size is uniform. 
Unavoidably, there are voxels at the border between flow 
domain and wall material that contain a mixed signal of both 
regions. These voxels still represent the true fluid velocity if 
the signal from the wall material is zero, which is here the 
case. As a result, MRV provides velocity data in the vicinity 
of the walls.

3.2.1 � MRV data processing

The image magnitude and phase were reconstructed from 
the multi-channel MRI raw data using coil sensitivity maps 
obtained from the ESPIRiT approach described in Uecker 
et al. (2014). For the reconstruction of the mean velocities, 
the phase data were corrected for background phases by the 
measurements without flow. The velocity vector field was 
then reconstructed from the data corresponding to the two 
lowest menc

1
 values to minimize phase bias from higher orders 

of motion (e.g., acceleration).
The RST was quantified by two different methods. First, 

by fitting a three-dimensional Gaussian distribution to the 
magnitude data of the ICOSA6 encoded measurements with 
all 12 menc

1
 values, normalized by the velocity-compensated 

measurements. Data points with less than 10% normalized 
magnitude were excluded from the fit, to avoid voxels that 
are too close or within the noise floor. These voxels con-
tain rectified noise, which would lead to an underestimation 
of the signal attenuation. For demonstration, the RST was 
also obtained by calculating the three-dimensional Gaussian 

Table 1   Flow and boundary conditions of the periodic hill experi-
ment

Working fluid Water at 22 °C
Flow rate 255 l/min
Bulk flow velocity at the crest of the hills 1.16 m/s
Fluid density 998 kg/m3

Fluid dynamic viscosity 9.54 E-4 Pa s

Table 2   Description of the 
MRV sequence parameters Matrix size (x, y, z) (496 mm, 120 mm, 6 mm)

Spatial encoding type (x, y, z) Frequency, phase, slice
Resolution 1.0 mm × 1.0 mm × 6.0 mm
Echo time 6.3 ms
Repetition time 10.0 ms
RF pulse time bandwidth product 8
RF flip angle 20°
Receiver bandwidth 460 Hz/pixel
Velocity encoding points,menc

1
[2.5, 5, 10, 15, 20, 25, 30, 35, 40, 45, 

50, 60] mT/m·ms2

Velocity encoding time 4.6 ms
Number of velocity encoding directions 6 (ICOSA6) and 1 velocity compensated
Number of averages per encoding point and direction 256 with flow, 4 without flow
Total acquisition time for all averages 7 h 17 min
Minimum sampling time for turbulence statistics 2230 s
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individually for every menc
1

 value, which resembles the 
approach in Haraldsson et al. (2018). All data reconstruc-
tion and post-processing were conducted in Matlab R2018a 
(The Mathworks, Natick, USA).

An important parameter to assess the convergence of 
the turbulence statistics is the total sampling time. The raw 
image data obtained with MRV was reconstructed from 120 
samples (phase encoding steps), each obtained over a read-
out period of 2.2 ms (reciprocal value of the readout band-
width provided in Table 2). Considering that 256 measure-
ments were averaged, the sampling time for each encoding 
point yields 67.6 s. The RST data includes the data from six 
encoding directions. Depending on the position in the flow 
field, a minimum of 33 MRI raw data sets was used for the 
calculation of the RST data, resulting in a minimum sam-
pling time of 2230 s. For comparison, the characteristic con-
vective timescale in the periodic flow is 0.28 s. This number 
describes the ratio of the distance between two consecutive 
hills and the bulk flow velocity in the unobstructed channel. 
As a result, the total sampling time of the MRV measure-
ment is equivalent to a minimum of 7964 convective times, 
which can be considered more than adequate to achieve a 
sufficient convergence of the turbulence statistics.

3.3 � LDV measurements

Using the same flow system as in the MRV experiments, 
the turbulence statistics were measured with LDV using a 
FiberFlow system (Dantec dynamics, Skovlunde, Denmark) 
with a 2-velocity component configuration in coincidence 
mode and 250 mm optics. The LDV measurement volume 
was traversed in the symmetry plane through the same chan-
nel section, which was measured with MRV. The coordinates 
of the traversing system were calibrated by a simple target 
placed in the symmetry plane of the channel at a known 
position. The step size of the traversing system is 0.5 mm in 
y-direction and six lines in x-direction were measured. Due 
to the limited accessibility of the laser beams into the flow 
volume, it was only possible to measure positions that were 
more than 5 mm away from the walls. At each measure-
ment position, LDV data was sampled over 100 s resulting 
in 15,000 to 85,000 valid coincidence samples.

Since the LDV measurement volume is substantially 
smaller in z-direction than the thickness of the MRV meas-
urement slice (6 mm), additional LDV measurements were 
performed at z = − 3 mm and z = 3 mm to examine the flow 
variations inside the MRV measurement volume. The vari-
ations were not measurable, and therefore, only LDV meas-
urements performed at z = 0, were taken for the comparison 
with MRV.

The pure acquisition time of all data points, which were 
used for the comparison with MRV, resulted in more than 15 
h. It is interesting to note that this time is more than double 

the acquisition time of MRV although much less RST data 
points were acquired (1,400 in LDV versus 90,000 in MRV).

3.3.1 � LDV data processing

The LDV processor produced two mean velocity compo-
nents 

(
ux, uy

)
 , and three RST components 

(
u′
x
u′
x
, u′

y
u′
y
, u′

x
u′
y

)
 . 

In addition, two higher statistical moments, the skew and 
kurtosis, were derived from the velocity distribution. The 
velocity samples were weighted by their transit times to 
remove the bias between slow- and fast-moving particles in 
the flow field. The calculation of the velocity moments was 
done in BSA Flow Software (Dantec dynamics, Skovlunde, 
Denmark). Additional computations were conducted in Mat-
lab 2018a (The Mathworks, Natick, USA).

3.4 � LES study

A wall-resolved LES was conducted in the same periodic hill 
geometry to provide a second reference data set for the vali-
dation of the MRV technique. The LES was performed with 
the commercial CFD analysis code, Star-CCM + 2019R2 
(Siemens PLM Software, Plano, USA). The same criteria for 
generating a wall-resolved LES mesh as described in Addad 
et al. (2008) were followed. Furthermore, the Wall-Adapting 
Local Eddy-viscosity (WALE) sub-grid scale (SGS) model 
was used (Addad et al. 2008). The advantage of the WALE 
SGS model is that it does not require an ad-hoc near wall 
damping function but directly handles the wall treatment in 
the LES domain.

Only the span between two hill crests was considered for 
the computational domain. Streamwise periodic boundary 
conditions were used to simulate an infinitely long channel. 
All other boundaries were assumed smooth and the no-slip 
boundary condition was applied at all walls. The Reynolds 
number had a fixed value, which required adjustment of the 
mean pressure gradient over time to keep the mass flux con-
stant. These well-accepted practices are described in more 
detail in Breuer et al. (2009).

The resulting mesh had 25.6 million cells and 15 near-
wall prism layers to ensure a good near wall resolution. The 
boundary conditions for the CFD analysis and associated 
flow properties were determined from the experimental 
test condition and are listed in Table 1. The Kolmogorov 
timescale of the problem, estimated from a priori RANS 
simulation, is 5.21 ms. This scale was used as a guidance 
for the numerical time step, which was set to 1.00 ms. More 
information about the LES parameters are given in Table 3.

After performing the LES for a physical time of 1 s, the 
turbulent flow was considered developed and the velocity 
data was sampled over a period of 3.5 s, which is equivalent 
to 12.4 convective times. See Sect. 3.1 for the explanation 
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of the convective timescale. It is assumed that with more 
than 12 convection times, the qualitative distribution of tur-
bulence in the flow has become clear enough. However, a 
much longer sampling would be required to achieve fully 
statistically converged results. Due to limited computational 
resources, the LES results were taken as they are and used 
for a qualitative full-field comparison to the MRV data. Note 
that the sampling time is orders of magnitude smaller than 
the minimum sampling time of the MRV data (2230 s) and 
LDV data (100 s).

Both the simulation and the experiment were compared in 
an assumed fully periodic state. Small differences between 
the two data sets may occur due to the surface roughness in 
the experiment and other manufacturing inaccuracies. It is 
assumed that all errors in the boundary conditions are small 
and do not affect the qualitative comparison between MRV 
and LES.

3.4.1 � LES data processing

Since the MRV data produced only results in the symme-
try plane, the same plane was used for the post-processing 
of the LES data. The moments of the velocity field, i.e., 
mean velocity vector and RST, were computed directly from 
velocity samples that were obtained from all grid points in 
the symmetry plane for all time steps. It is worth mentioning 
that the amount of TKE modelled in the SGS of the LES is 
less than 1% of the calculated TKE, which means that most 
of the turbulent eddies are resolved in terms of temporal 
and spatial scales. All processing steps were conducted in 
ParaView 5.0 (Kitware Inc., Clifton Park, NY, USA).

4 � Results

The following paragraphs present the 2D6C RST data in 
the periodic hill channel which was reconstructed from the 
MRV magnitude images. Two MRV reconstruction meth-
ods are compared (Sect. 4.1). The final MRV data is then 

compared to the LES (Sect. 4.2) and LDV data (Sect. 4.3). 
Finally, the errors in the MRV data are analyzed (Sect. 4.4).

4.1 � Comparison of MRV reconstruction methods

Figure 2 illustrates the reconstruction procedure applied in 
this study. Examples of the raw magnitude images are shown 
in Fig. 2 A. The depicted magnitude data corresponds to 
all 12 menc

1
 values for the third row of the encoding matrix 

in Eq. (2). The signal attenuation strongly correlates with 
menc

1
 . Also, it can be seen that the signal attenuation is highly 

non-uniform: The magnitude values in the shear layer down-
stream of the hill start attenuating with low menc

1
 and fall 

quickly below the noise floor for larger encoding values. In 
comparison, signal attenuation in the free stream region is 
only visible for the highest menc

1
 values. For the demonstrated 

case, it is difficult to select a single menc
1

 value that leads to 
sufficient signal attenuation in all flow regions, especially if 
the turbulence range is not known a priori.

This finding is supported quantitatively by Fig. 2b. The 
graph shows the magnitude values for the two marked posi-
tions in Fig. 2a, one in the shear layer (red marker) and one 
in the freestream region (blue marker). Each point corre-
sponds to the mean of the magnitude from all 256 acquisi-
tions. The depicted confidence intervals equal the standard 
deviation of all acquisitions. Overall, the standard deviation 
is lower than 0.03 and the Gaussian behavior is visible in the 
magnitude distribution.

Furthermore, Fig.  2b shows the three-dimensional 
Gaussian fit over all six encoding directions as described in 
Sect. 3.1. Note, that here, only the one-dimensional projec-
tion on the second encoding direction is shown. It can be 
seen that the Gaussian fit matches well with all data points. 
As described in Sect. 3.2.1, all magnitude data points that 
are below 10% of the normalized magnitude were excluded 
from the analysis to avoid data points that contain a magni-
tude bias due to rectified noise.

Figure  2c and d compares the Gaussian fit with the 
case that the three-dimensional Gaussian would be cal-
culated with a single menc

1
 value. For demonstration, 

the Gaussian functions are calculated with the data for 
menc

1
= 15mT

/
m ⋅ ms2 and menc

1
= 45mT

/
m ⋅ms2 . For ease 

of interpretation, the data are shown on a logarithmic scale 
over the square of menc

1
 , since the logarithm of a Gaussian 

function is a linear function. It can be seen that the slope 
of the lines depends strongly on which menc

1
 value is used. 

In the case of high turbulence (orange marker), the Gauss-
ian function corresponding to menc

1
= 45mT

/
m ⋅ms2 leads 

to substantial deviations, which results in up to sevenfold 
underestimation of the RST components compared to the 
Gaussian fit to all 12 menc

1
 values

In summary, the three-dimensional Gaussian fit over all 
12 menc

1
 values and all six encoding directions results in more 

Table 3   Grid resolution for LES and temporal scale and setup

Number of elements 25, 640, 312
Number of prism layers 15
Stretching ratio in boundary wall 1.2
Wall y +   < 1
Kolmogorov timescale 5.21 ms
Time step 1.00 ms
Total simulation time 4.5 s
Total sampling time for turbulence statistics 3.5 s
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stable results with a higher dynamic range as compared to 
the case that individual menc

1
 values are used.

4.2 � Qualitative comparison between MRV and LES 
data

Prior to the comparison between the CFD and MRV results, 
the periodicity of the flow is verified with the MRV data. 
Figure 3b shows the profiles of the velocity magnitude 
uabs =

(
u
2

x
+ u

2

y
+ u

2

z

)1∕2

 and Fig. 3c shows the turbulent 

kinetic energy TKE =
(
u�
x
u�
x
+ u�

y
u�
y
+ u�

z
u�
z

)/
2 at the posi-

tion of the 12th and 13th hill crest. Taking into account the 
1-pixel shift in y-direction between the successive hills, 
which is caused by a slight misalignment of the image axes, 
the corresponding Pearson linear correlation coefficient for 
the velocity magnitude and turbulent kinetic energy is 0.97 
and 0.98. This indicates that the periodic flow is fully devel-
oped at the 12th hill and that the periodic boundary condi-
tions of the LES are indeed valid.

Figure 4 shows the comparison between the mean veloc-
ity results from MRV and LES for the symmetry plane. 
While the two data sets show an excellent agreement in the 
ux component, qualitative deviations are visible in the uy and 
uz data, which appear simply because of the smaller depicted 
value range.

Figure 5 shows the comparison of all six Reynolds 
stresses. The LES obtained contours appear noisier 
because the velocity moments have not been fully statisti-
cally converged. The turbulent structures are still visible 
in the averaged data. The MRV data is remarkably smooth, 
which underlines the high stability and dynamic range of 

Fig. 2   Demonstration of the Reynolds Stress data reconstruction. a 
example magnitude images for all 12 menc

1
 values for the third row in 

the encoding matrix in Eq. (2). b normalized image magnitude at a 
position in the freestream region (blue, position marked in a and in 
the shear layer (red, position marked in a. The depicted curves are 

Gaussian fits using the data from all rows in Eq. (2) except for data 
points with low magnitude value (indicated by an asterisk in b. c, d 
Gaussian fits using individual menc

1
 values compared to the Gaussian 

fits in b. The comparison is made on a logarithmic scale to visualize 
the differences

Fig. 3   Verification of the periodicity of the flow based on the MRV 
data. a absolute mean velocity. b turbulent kinetic energy. The solid 
blue profiles represent x = 0, and the dashed blue profiles represent 
x = 219.4 mm
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the three-dimensional Gaussian fit over multiple menc
1

 val-
ues, as explained in Sect. 3.2.1. Overall, the two data sets 
agree well and there are no major qualitative differences 
visible. The same turbulent features appear in both data 
sets, for example, the turbulent region downstream of the 
hill and the strongly anisotropic turbulence at the slope 
upstream of the hill’s crest (visible in u′

z
u′
z
 ). As expected, 

the components u′
x
u′
z
 , u′

y
u′
z
 as well as the mean velocity 

uz are close to zero everywhere in the flow because of 
symmetry.

Small qualitative differences between the two data sets 
can be observed in the shear layer close to the hill. The 
MRV data in Fig. 5 D shows a small region with positive 
values close to the hill crest, which does not appear in the 
LES data. In a qualitative comparison to similar experi-
ments (Rapp and Manhart 2011), it can be concluded that 
this is a measurement error in the MRV data. The LES 
results show the correct behavior.

4.3 � Quantitative comparison between MRV 
and LDV data

Figure 6 shows the quantitative comparisons between 
the available LDV data and the corresponding MRV data 
extracted at the same position in the flow field. The posi-
tion of the extracted lines is shown at the top of Fig. 6. As 
described in Sect. 3.2, MRV captures velocity data directly 
near the wall, whereas LDV requires a certain minimum 

distance due to the restricted optical access. In the regions 
where both data are available, the mean velocity results 
are in very good agreement with the exception of a few 
regions near the crest of the hill. However, these deviations 
should not be given much importance as the maximum 
deviation (0.04 m/s) is only 3% of the axial bulk velocity 
at the crest of the hills.

Larger deviations are visible in the Reynolds Stress data. 
As the most striking feature, it can be seen that the u′

x
u′
x
 

component shows relatively large quantitative deviations in 
the shear layer downstream of the hill: the peak stresses in 
the MRV data are up to 0.06 m2/s2 higher than in the LDV 
data. All positions outside this region show a much higher 
agreement. A similar trend is observed in the Reynolds 
shear stress component u′

x
u′
y
 . In comparison, the u′

y
u′
y
 com-

ponent shows a substantially higher quantitative agreement 
in all flow regions. The values of the peak stresses coincide 
within 0.014 m2/s2. The reasons for the seemingly direction-
dependent behavior are analyzed in the next section.

4.4 � Error contributions in the MRV data

The previous sections showed a good qualitative agreement 
between the MRV and the reference data sets. However, 
some quantitative deviations appeared locally, which are 
here analyzed in detail.

Fig. 4   Qualitative comparison of the three mean velocity components (a–c) obtained from the MRV measurement (left column) and the LES 
(right column)
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4.4.1 � Random errors

In this study, the MRV data was heavily averaged such that 
it can be assumed that the remaining random errors are neg-
ligible. The clean contours in Figs. 4 and 5 and the smooth 
profiles in Fig. 6 suggest this assumption. All deviations 

observed in this study between MRV and LDV results likely 
come from systematic error sources. Note that quantifying 
the random error, hence the measurement uncertainty, is 
a complicated task in this work because of the non-linear 
Gaussian fit of the image magnitude data.

Fig. 5   Qualitative comparison of the six RST components (a–f) obtained from the MRV measurement (left column) and the LES (right column)
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Fig. 6   Quantitative comparison of the LDV data (red) and MRV data (blue) for six lines in the flow field. a, b mean velocity profiles. c–e Reyn-
olds stress profiles. The position of the lines is defined at the top of the figure
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4.4.2 � Temporal filtering caused by the finite encoding 
process

As pointed out by Gao and Gore (1991), Gatenby and Gore 
(1994) and more recently by Elkins et al. (2009), there is 
a lower limit of turbulent timescales that can be measured 
bias-free using the reconstruction technique outlined in 
Sect. 2. Strictly speaking, the relation in Eq. (1) is only valid 
if the Lagrangian integral timescale of the turbulent flow 
is much larger than the duration of the velocity encoding 
process, which is the length of the bipolar velocity encoding 
gradient (see Table 2).

An estimate for the Lagrangian integral timescale is here 
obtained from the LDV velocity statistics. Note that LDV 
obtains the velocity fluctuation from a fixed position in 
space, hence the Eulerian frame of reference. Nonetheless, 
the integral timescales obtained from such measurements 
can serve as a conservative estimate of the lower limit of the 
Lagrangian integral timescale (Shlien and Corrsin, 1974).

As a well-known relation, the integral timescale equals 
the integral of the temporal autocorrelation function divided 
by the velocity variance. Since the LDV data is measured 
with random samples, a re-sampling of the data is neces-
sary, which is here conducted with arrival-time quantization 
(Damaschke et al. 2018).

Figure 7 depicts the derived integral timescale for a 
stream-wise position shortly downstream of the hill, at 
which relatively short timescales can be expected. The 
smallest integral timescales occur in the shear layer, where 
the estimated values are approximately twofold larger than 
the velocity encoding time of the MRV sequence. Since the 
integral timescale is derived in a very conservative way, 
the true ratio is expected to be larger. Such results sup-
port the assumptions made in Eq. (1) is valid throughout 
most of the flow except for regions closer to the hill, where 
the shear layer is much thinner and the ratio of timescales 
may approach values closer to 1. For this reason, it seems 
unlikely that the filtering effect of the finite encoding process 
is responsible for the large deviations in the u′

x
u′
x
 component.

4.4.3 � Spatial filtering and bias caused by the finite voxel 
size

The formula in Eq. (1) is derived assuming homogeneous 
flow conditions in each voxel. As Kuethe and Gao (1995) 
pointed out, this assumption can produce significant errors 
in flow regions with relatively small spatial scales. In par-
ticular, the variation of the mean velocity within a voxel 
leads to additional intra-voxel phase dispersion that results 
in overestimation of the turbulence quantities. For the pre-
sented experiment, the effect of the voxel size is considered 
small for most of the flow region since the geometry of the 
flow experiment is large compared to the voxel size in x and 

y-direction. Also, the LDV results indicate that the varia-
tions of the Reynolds Stresses and the mean velocities within 
the slice along the z-direction are sufficiently small. Errors 
caused by intra-voxel flow variations are assumed negligible 
for the streamwise flow positions shown in Fig. 6.

More significant errors presumable occur closer to the 
hill crest where the thickness of the shear layer is smaller 
than the voxel size. The comparison to LES data in Fig. 5d 
showed a qualitative deviation in this region, which might 
be related to inhomogeneous flow conditions within these 
voxels.

4.4.4 � Bias caused by higher orders of motion

The MRV method used in this study is based on a GRE 
sequence, which can be considered as the standard technique 
for fluid mechanics experiments with MRV. The weak point 
of this sequence design is the readout gradient, which is 
used for the so-called frequency encoding of the space. In 
comparison to purely phase-encoded sequences known as 
single point imaging (SPI) methods (Emid and Creyghton, 
1985; Mastikhin 1999; Balcom, 1996; Bruschewski et al. 
2019), the readout gradient makes the image phase more 
sensitive to higher orders of motion, which is difficult to 
control. Particularly noteworthy is the sensitivity to accel-
eration, which can be related to the second moment of the 
gradient waveform 

(
m2

)
 . Similar to the velocity dephasing 

related to menc
1

 , signal attenuation also occurs because of 
acceleration dephasing and non-zero m2 . The same effect 
applies to all other orders of motion. For example, a strong 
signal attenuation related to jerk dephasing and the third 
gradient moment m3 could be observed in John et al. (2020).

In the present sequence, m2 and higher gradient moments 
are particularly large for the frequency-encoded x-direction. 
Note that the calculated m2 in the x-direction is 1.8-fold 
larger than in the phase-encoded y-direction and this ratio 
can be larger for higher moments. Also, the acceleration 

Fig. 7   Comparison of the velocity encoding time of the MRV meas-
urement (blue) and the integral timescale obtained from LDV (red) at 
a position inside the shear layer



	 Experiments in Fluids (2021) 62:121

1 3

121  Page 14 of 17

in x-direction is relatively high. These considerations agree 
with the observed deviation between the MRV and LDV 
Reynolds Stress data: All components which depend on the 
fluid motion in the x-direction ( u′

x
u′
x
 and u′

x
u′
y
 ) show large 

deviations, while u′
y
u′
y
 shows much better agreement. There-

fore, it can be assumed that dephasing effects due to higher 
orders of motions are a major error contribution in the pre-
sented MRV data.

While this bias is a significant source of error in the pre-
sented work, its influence may well be lower in other imple-
mentations, especially if SPI methods are used.

4.4.5 � Bias caused by the non‑Gaussian turbulence

As mentioned in Sect. 2, the underlying assumption of the 
MRV reconstruction technique used in this study is that the 
probability of the random velocity fluctuations must follow 
a Gaussian distribution. This assumption is often made, but 
the kind of induced error and its extent is not clear.

Since a Gaussian fit was performed in this work for more 
than two magnitude data points along each direction, it is 
possible to estimate the residual error of the Gaussian fit. 
A qualitative measure is obtained from the residual sum of 
squares of the three-dimensional fit, which is normalized by 
the number of fitted menc

1
 encoding points and the maximum 

value in the flow field. The results are shown in Fig. 8a. 
It can be seen that the distribution of the residual sum of 
squares agrees well with the local deviations between MRV 
and LDV: The highest residual sum of squares occur at posi-
tions with the highest deviations in the Reynolds Stress data 
(see Fig. 6).

Figure 8b and c shows how the MRV data would per-
form if the underlying data was indeed Gaussian distributed. 
For that reason, the LDV data is processed with the same 
assumptions as the MRV data. Hence, the LDV velocity sam-
ples were first fitted onto a Gaussian distribution instead of 
calculating the velocity variance directly. As seen in Fig. 8c, 
the deviation between Gaussian-fitted LDV and MRV data 
is almost non-existent for u′

y
u′
y
 , which is a remarkable result 

and a strong indication that the Gaussian fit is responsible for 
the errors in the MRV data. In the case of u′

x
u′
x
 , the Gaussian-

fitted LDV data is only slightly closer to the MRV data than 
the true LDV data, see Fig. 8b. In this case, other sources of 
errors dominate, and the most dominant one is presumably 
related to higher orders of motion in combination with the 
applied sequence as described in Sect. 4.4.4

5 � Discussion

In theory, the most accurate MRV method for turbu-
lence quantification is Fourier velocity encoding, which 
provides the velocity spectrum within a voxel without 

placing assumptions on the shape of the velocity distribu-
tion (Moran 1982; Callaghan et al. 1988; Li et al. 1994; 
Newling et  al. 2004). However, this method typically 
results in long measurement times when a large number 
of menc

1
 encoding points is used. A less accurate but much 

faster method calculates the Reynolds stresses from a sin-
gle menc

1
 encoding value. The approach presented in this 

study resembles an intermediate step between single menc
1

 
encoding and Fourier velocity encoding, hence, a trade-off 
between measurement accuracy and measurement time.

The presented method and the single menc
1

 encoding 
method share the same principles. Both techniques are 
based on the relation in Eq. (1), which describes the veloc-
ity spectrum as a Gaussian distribution. With this model, 

Fig. 8   Influence of the Gaussian assumption on the MRV data recon-
struction. A: residual sum of squares of the Gaussian fit in the MRV 
data, normalized by the number of fitted menc

1
 encoding points and the 

maximum value. b, c Visualization of the error caused by the Gauss-
ian assumption by comparing the MRV data (blue), the LDV data 
(red), and the LDV results obtained from Gaussian-fitted raw data 
(green)
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the Reynolds stress data can be obtained from the attenu-
ated signal in each voxel, which reduces the measurement 
time substantially compared to Fourier velocity encod-
ing. However, the two reconstruction steps, i.e., Gaussian 
assumption and correlation with signal attenuation, are 
responsible for various types of measurement errors. Other 
errors arise from the parameters and design of the pulse 
sequence. In principle, all the identified error contribu-
tions can be resolved, or at least substantially reduced, by 
Fourier velocity imaging in combination with a purely-
phase encoded pulse sequence (Callaghan et al. 1988; 
Newling et al. 2004). However, such a technique is often 
not applicable due to the very long measurement time.

5.1 � Achieved improvements using the presented 
method

The presented method improves the dynamic range and 
precision of the single menc

1
 method. Based on the ICOSA6 

encoding scheme used in Haraldsson et al. (2018), the 
encoding process applied here is comprised of six encod-
ing directions and multiple encoding values. For each 
voxel, all six RST components are derived from a single 
three-dimensional Gaussian fit. Such measurements take 
longer than Reynolds stress measurements with a single 
menc

1
 value, but they have several advantages:

•	 The dynamic range is increased in comparison to the 
RST reconstruction from a single menc

1
 value (see Fig. 2 

B + C).
•	 The quality of the Gaussian data fit may provide infor-

mation on non-Gaussian turbulence (see Fig. 8a), which 
could not be determined from a single menc

1
 value.

•	 The measurement efficiency (data and precision per 
time) is higher than the RST reconstruction from 
individual encoding directions because information 
is shared between encoding directions in the ICOS6 
method (Zwart and Pipe 2013).

With the current method, Reynolds stress data can be 
obtained in highly complex flow geometries with low 
uncertainty in an acceptable time. It should be noted that 
in this study the Reynolds stresses in a strongly non-uni-
form flow were reconstructed from only 12 menc

1
 values. 

A Fourier velocity encoded measurement would require 
a much higher number of encoding points to achieve the 
same velocity resolution.

5.2 � Recommendations for further developments

The identification of the two major error contributions, 
higher orders of motion dephasing and non-Gaussian tur-
bulence, opens up new research possibilities. In addition, 
several other minor issues and potentials were identified 
in this study. Future research may focus on these points:

•	 Improved statistical model: The effect of a non-Gauss-
ian distribution is a known problem in Diffusion Ten-
sor imaging. A common method is to perform a one-
step Taylor series expansion of the exponent in Eq. 
(1), which adds another parameter to the curve fit and 
accounts for a non-zero excess kurtosis (Jensen et al. 
2005). This method could be applied here to reduce the 
bias by non-Gaussian turbulence.

•	 Noise compensation techniques. The rectified noise 
in the voxels leads to an overestimation of the signal 
intensity, which becomes significant if the signal is 
close or smaller than the noise floor. For this reason, 
these data points were excluded from the data fit in 
this study (see Fig. 2 B + D). Using these points would 
increase the dynamic range of the measurement.

•	 Quantifying the statistical error in the final data. The 
uncertainty estimation must consider the image noise 
and the uncertainty of the data fit.

Furthermore, the findings of this work are linked to the 
highly anisotropic and inhomogeneous turbulence in the 
investigated setup. The error contributions may differ in 
other setups and therefore further studies are needed to 
investigate in how far these findings can be generalized.

6 � Conclusion

This study presented MRV Reynolds Stress measurements 
in a periodic hill channel with a hill Reynolds number of 
Re = 29,500. A novel measurement routine was applied, in 
which MRV data sets are measured with multiple encoding 
points and encoding directions. A three-dimensional Gauss-
ian fit over all data sets yields all six Reynolds Stresses. 
The MRV results were compared to a wall-resolved LES. 
Furthermore, LDV turbulence measurements conducted in 
the same channel served as the ground truth.

It was shown that the MRV Reynolds Stress data have 
excellent precision and agree qualitatively with the reference 
data sets. However, there are apparent systematic deviations. 
One of the most prominent error contributions is the sig-
nal attenuation caused by higher orders of motion, which 
depends on the setup and on the type and parameters of 
the MRV method. A fundamental error was also identified 
in the common assumption that the turbulence is Gaussian 
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distributed. With the presented reconstruction technique, the 
MRV data are fitted to a statistical model, and depending 
on the examined flow setup, the Gaussian model can lead 
to considerable errors. Possible ways how to reduce these 
errors were presented.

In summary, the presented MRV method enables rapid 
turbulence measurements in complex internal flows. Com-
pared to other experimental techniques such as HWA, LDV, 
PIV, and PTV, measurements can be carried out much more 
easily as no optical or physical access is required. However, 
there are several sources of error that are specific to MRV 
and further development work is required.
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