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Abstract 
In order to understand the fundamental measurement capabilities of different flow velocity measurement principles based 
on Mie scattering, a fundamental equation of how to calculate the shot noise limit for a respective signal model is derived. 
The derivation is based on the well-known rules of uncertainty propagation and yields the Cramér–Rao bound without the 
necessity to calculate the Fisher information. The derived equation is next applied to compare the shot noise limit for Doppler 
and time-of-flight principles including laser Doppler anemometry (LDA), planar Doppler velocimetry (PDV), laser-two-focus 
velocimetry (L2F), particle tracking velocimetry (PTV) and particle image velocimetry (PIV). The comparison is performed 
for an identical mean laser power, while two cases are studied in detail: measuring on a single seeding particle as well as 
measuring on multiple seeding particles and averaging. LDA, L2F and PTV/PIV obey a similar shot noise limit. For the case 
of a measurement on multiple seeding particles, the minimal achievable measurement uncertainty is directly proportional to 
the absolute value of the measured velocity component and inversely proportional to the spatial resolution. The respective 
shot noise limit for PDV is almost independent of the measured flow velocity component and the spatial resolution. Since 
PDV is sensitive with respect to a different flow velocity component depending on the observation direction, a comparison 
with the other principles is only reasonable to a certain extent. However, all shot noise limits in case of measuring on multiple 
seeding particles show the expected inverse proportionality to the square root of the total number of detected photons and 
thus also to the square root of the measurement time. Considering a comparable spatiotemporal resolution, an identical mean 
light power and typical measurement configurations, the PDV shot noise limit is the largest. As a final result, it is derived 
that each measurement principle obeys an uncertainty principle between position and the respective component of the wave 
vector, which is in agreement with Heisenberg’s uncertainty principle. Therefore, a common basis is provided to assess the 
fundamental measurement capabilities of Doppler and time-of-flight measurement systems on the basis of what is possible 
within the quantum mechanical constraints.
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Graphic abstract

1 Introduction

1.1  Motivation

When confronted with a flow measurement task, finding the 
proper choice from the huge variety of different measurement 
principles is difficult. Various optical principles exist, which 
enable contactless and fast flow velocity measurements. Even 
hybrid optical measurement methods are known and were, for 
example, proposed by  Grosjean et al. (1997), Förster et al. 
(2000), Wernet (2004) and Willert et al. (2006). However, 
regarding the capabilities of the different optical measurement 
methods, the majority of the studies (aside from some excep-
tions such as Willert et al. 2005; Thacker et al. 2010) deal only 
with a single measurement approach. Benchmark tests, in par-
ticular over more than two different measurement methods, are 
rare or even missing. Furthermore, a flow measurement system 
is typically rated or chosen from what is currently available 
considering technological and economical aspects. In order 
to understand the fundamental measurement capabilities of 
the various optical flow measurement principles—even with 
respect to future technological developments—and to iden-
tify the minimal achievable measurement uncertainty, a sci-
entific study about the fundamental limits of measurability is 
required.

1.2  State of the art

Before reviewing the scientific studies regarding a physical 
lower limit of the measurement uncertainty, the measure-
ment principles are introduced. The present article is focused 
on optical flow measurements based on laser light and Mie 
scattering, because these measurements provide the high-
est signal-to-noise ratio that for instance allows high-speed 
measurements even with MHz rate and imaging capability 
(Thurow et al. 2013). The so-called seeding particles are 
thus added to the fluid (if not naturally present), which are 
sufficiently small to follow the flow with negligible slip but 
at the same time sufficiently large to provide Mie scattering 
(Albrecht et al. 2003). The scattered light intensity for the 
Mie scattering on seeding particles is about 10 to 15 orders 
of magnitude larger than what can be achieved for Rayleigh 
scattering on the fluid molecules (Bohren and Huffman 
2004). As a result, the particle velocity is actually measured 
and, by assuming a negligible slip, is then interpreted as 
the flow velocity. According to the review article (Fischer 
2017a) from 2017, the flow velocity measurement principles 
using Mie scattering can by categorized into Doppler and 
time-of-flight principles. For each category, the developed 
measurement methods are subsequently summarized.

Doppler principles evaluate the frequency change of the 
scattered light from a particle that is caused by a nonzero 
flow velocity relative to the measurement system. The Dop-
pler frequency is the light frequency difference between 
illumination and observation. One technique to measure 
the Doppler frequency directly is to mix the light from 
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illumination and observation, since the intensity of the 
mixed light signal oscillates with the Doppler frequency. 
The latter is thus extracted from the detected intensity of 
the mixed signal using a frequency analysis. An early but 
still state-of-the-art measurement method that is based on 
the direct Doppler frequency measurement is Laser Doppler 
Anemometry (LDA) (Yeh and Cummins 1964). Originally 
introduced as a point measurement device, enhanced LDA 
techniques enabling profile (Czarske 2001) and field meas-
urements (Coupland 2000; Voigt et al. 2008; Meier and Rös-
gen 2012) are also known today. Another Doppler technique 
is to separately measure the frequency of the illuminated 
light and the observed scattered light, and evaluating the 
frequency difference in a second step. The required light 
frequency measures are enabled using an optical filter whose 
spectral transmission has a steep edge that converts changes 
in light frequency to changes in transmitted light intensity. 
The latter is measurable with a photodetector or a camera. 
Respective Doppler measurement methods have been devel-
oped with atomic or molecular filters (Meyers 1995; Charrett 
et al. 2004; Fischer et al. 2007; Müller et al. 2007; Cadel 
and Lowe 2015) and with interferometric filters such as a 
Fabry–Pérot interferometer (Jackson and Paul 1970; Büttner 
et al. 2013), a Michelson interferometer (Smeets and George 
1978; Seiler and Oertel 1983; Landolt and Rösgen 2009) 
and a Mach-Zehnder interferometer (Lu et al. 2009). These 
methods are mostly denominated as Planar Doppler Veloci-
metry (PDV) or Doppler Global Velocimetry (DGV), since 
planar measurements are easily obtained with a light sheet 
illumination and cameras. However, scanning or multiplex-
ing techniques also enable volumetric PDV measurements 
(Fischer et al. 2014, 2015).

Time-of-flight principles directly apply the definition of 
velocity as the derivative of the position with respect to the 
time. Therefore, the change in particle position for a priori 
determined time steps is evaluated, or vice versa, the elapsed 
time when the particle moves over a priori-determined spa-
tial distances. In both cases, position as well as time dif-
ferences need to be measured, but the uncertainty of the 
a priori—determined quantity is usually negligibly small. 
Therefore, one distinguishes between time-of-flight meth-
ods with position measurements and time measurements. 
Note that the differential quotient of the position over time is 
approximated for most of the applications by the difference 
quotient. The measurement method that is based on two time 
measurements is Laser-2-Focus Anemometry (L2F) (Tanner 
1973), where the particle subsequently crosses two parallel 
laser beams and the two particle arrival times are obtained 
from the detected scattered light pulses. The method is 
established for point measurements, but can in principle be 
enhanced toward profile and field measurements with an 
increased number of laser beam pairs and a camera. A more 
popular field measurement method that directly measures 

the time differences of predefined spatial distances is Spatial 
Filter Velocimetry (SFV) (Aizu and Asakura 1987). Instead 
of a spatially structured illumination, SFV uses a receiving 
aperture with a spatially structured sensitivity by applying an 
optical fringe-type absorption filter. Volumetric SFV meas-
urements are also possible (Hosokawa et al. 2013). However, 
the time-of-flight measurement methods that are based on 
position measurements are currently the most popular meth-
ods for optical flow velocity field measurements. Particles 
in a laser light sheet are imaged with a camera for two short 
laser pulses with a predefined pulse separation time. The 
position change of each single particle or a pattern of multi-
ple particle images is then obtained by the cross-correlation 
of sub-images. The method of tracking single particles is 
Particle Tracking Velocimetry (PTV) (Adrian 1991; Maas 
et al. 1993). Tracking a pattern of multiple particle images 
in the interrogation window is Particle Imaging Velocimetry 
(PIV) (Adrian 2005). Several volumetric PTV/PIV measure-
ment methods are known aside from scanning: for instance, 
by using tomography (Scarano 2013), holography (Hinsch 
2002), light field technique (Cenedese et al. 2012; Fahringer 
et al. 2015) and synthetic apertures (Cierpka et al. 2010; 
Belden et al. 2010).

As a result, different Doppler and time-of-flight principles 
for flow velocity field measurements exist, which are in the 
following represented by LDA as Doppler principle using 
light mixing, PDV as Doppler principle using light filtering, 
L2F as time-of-flight principle based on time measurements 
and PTV/PIV as time-of-flight principle based on position 
measurements.

Regarding a physical lower limit of the measurement 
uncertainty, the error propagation from the naturally fluc-
tuating number of scattered photons was studied for each 
measurement method. The effect of fluctuating number 
of photons is known as photon shot noise, which is a fun-
damental, ultimate and inevitable source of uncertainty. 
Considering non-squeezed monochromatic laser light, the 
number of scattered photons that occur in a certain time 
interval follows a Poisson distribution. Therefore, an uncer-
tainty propagation calculation considering Poissonian noise 
was accomplished for LDA and L2F by Oliver (1980) in 
1980, and Lading and Edwards (1993) studied the extrac-
tion of the velocity information from LDA and L2F signals 
with noise in 1993. McKenzie (1996) investigated the PDV 
measurement uncertainty in 1996 and included an uncer-
tainty propagation calculation for Poissonian noise. Using 
an information theoretic approach, the Cramér–Rao bound 
(CRB) was further calculated for all variants of PDV with 
and without laser frequency modulation by Fischer (2017) in 
2017. The Cramér–Rao bound is obtained from the inverse 
of the Fisher information and equals the minimal achievable 
measurement uncertainty squared for any unbiased estima-
tor. The same information theoretic approach was used to 
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derive the lower uncertainty limit for PTV by Wernet and 
Pline (1993) in 1993. Note that the PTV solution is also 
applicable for PIV when the particle images do not overlap. 
The measurement uncertainty then reduces inversely pro-
portional to the square root of the number of particle images 
in the interrogation window. Furthermore, a first attempt to 
compare the photon shot noise limits of LDA, PDV and L2F 
using a uniform information theoretic approach took place 
in 2010 (Fischer et al. 2010) and was briefly complemented 
with PTV in 2017 (Fischer 2017a). As a result, the mini-
mal achievable measurement uncertainty for LDA, L2F and 
PTV is similar while it is comparably high for PDV because 
the scattered light and the information obtained is attenu-
ated by the light filtering. However, the relation between 
the applied Fisher information calculation (approach by Rao 
1945 and Cramér 1946, see also Casella and Berger 1990) 
and a classical uncertainty propagation calculation using lin-
ear approximation (approach by C. F. Gauß that is included 
in the international guide to the expression of uncertainty 
in measurement Joint Committee for Guides in Metrology 
2008) was not addressed. In particular, it is worth studying 
under which circumstances an uncertainty propagation cal-
culation equals the same flow velocity uncertainty limit as 
the more cumbersome calculation of the Fisher information 
and the Cramér–Rao bound.

Furthermore, the existing comparative studies do not 
focus on the dependency of the shot noise limit on the spati-
otemporal resolution. This dependency is important to assess 
the fundamental measurement capabilities.

Since photons follow the natural laws of quantum 
mechanics, Heisenberg’s uncertainty principle (Heisen-
berg 1927) is another approach to calculate the fundamen-
tal limit of measurement uncertainty due to photon shot 
noise. This physical approach by W. Heisenberg leads to 
the same results as with Poissonian photon distribution 
and information theory (Teich and Saleh 1989), which 
was explicitly proven for LDA and L2F (Fischer 2016). 
The surprise of this comparative study was that aside from 
proportionality factors, an equal limit for the flow velocity 
measurement uncertainty is obtained for L2F and LDA. 
This seems remarkable because LDA as Doppler princi-
ple evaluates the momentum information of the scattered 
photons while L2F as time-of-flight principle evaluates 
the position information of the scattered light photons, 
so from the physical perspective two completely differ-
ent, complementary measurement principles. A broader 
respective study of Heisenberg’s uncertainty principle that 
additionally covers PDV and PTV/PIV is an open task. 
However, the results from Heisenberg’s uncertainty prin-
ciple will be identical with the consideration of a Pois-
sonian photon distribution. The interesting statement of 
Heisenberg’s uncertainty principle is that the product of 
the position uncertainty and the momentum uncertainty 

of a quantum mechanical object (such as the photon) can-
not be reduced below a certain quantum limit. A reduced 
position measurement uncertainty is thus only enabled 
by an increased momentum uncertainty and vice versa. 
This quantum mechanical perspective initiated a uniform 
physical understanding and review of the various optical 
position and shape measurement methods (Pavliček and 
Häusler 2014; Pavliček and Pech 2016; Fischer 2019), but 
the aspect of a fundamental uncertainty relation that ena-
bles the minimization of the flow velocity measurement 
uncertainty at the cost of a maximized uncertainty of a 
complementary quantity has not yet been fully considered 
in a comparative study of LDA, PDV, L2F and PTV/PIV.

1.3  Aim and structure of the article

The first aim of the article is to replace the calculation of 
the Cramér–Rao bound by the more common and simple 
rules of uncertainty propagation and to derive the photon 
shot noise limits for LDA, PDV, L2F and PTV/PIV. The 
second aim is to compare the derived fundamental meas-
urement limits and to understand the respective depend-
ency on the spatiotemporal resolution. The third aim is to 
understand the uncertainty relations for the optical flow 
velocity measurements based on laser Mie scattering, i.e., 
what uncertainty has to be maximized to minimize the 
flow velocity measurement uncertainty?

The considered measurement methods, which represent 
Doppler principles with light mixing and light filtering as 
well as time-of-flight principles with position and time 
measurements, respectively, are described in Sect. 2. In 
the description of the principles, the comparability of the 
different measurement methods is addressed, i.e., funda-
mentally different measurement features are emphasized 
that indicate the uniqueness of each measurement prin-
ciple. As a result, signal models for LDA, PDV, L2F and 
PTV/PIV are derived that are applicable to an uncertainty 
propagation calculation. The uncertainty propagation cal-
culation that yields the minimal achievable measurement 
uncertainty for photon shot noise is presented in Sect. 3. 
The simplified consideration of a single measurand as the 
only unknown quantity allows to apply the uncertainty 
propagation calculation in order to obtain the square root 
of the Cramér–Rao bound as the minimal achievable meas-
urement uncertainty. This finding is applied to calculate 
the shot noise limits of LDA, PDV, L2F and PTV/PIV in 
Sect. 4. In addition, uncertainty relations are identified 
in the results and compared between the different meas-
urement methods. The conclusions are drawn in Sect. 5 
together with a discussion concerning remaining research 
questions.
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2  Measurement principles

A physical signal model for each measurement principle 
is required to calculate the respective shot noise limit. The 
signal modeling is based on several assumptions. Particle 
slip is not part of the following investigation, so that the 
actually measured particle velocity can be assumed to equal 
the flow velocity. Furthermore, the flow velocity compo-
nents are considered as constant during the measurement 
time, because flow acceleration effects on the measurement 
result are not studied here. Flow turbulence is also excluded 
here, i.e., all particles that occur in the measurement vol-
ume have an identical velocity. For the sake of simplicity, 
monodisperse particles and a flow velocity vector with no 
out-of-plane component are further considered. Out-of-plane 
means out of the measurement plane, which is defined by the 
illumination. In order to focus on the fundamental physics 
of each measurement principle, technical aspects regarding 
the photo detection unit (photo detector or camera) and the 
signal digitization are not included in the signal modeling. 
In particular, the discretization of the detected light signal 
(or image) over time (due to sampling) and over space (due 
to camera pixels) is not part of the present study. Finally, the 
signal processing algorithm and its efficiency to precisely 
estimate the flow velocity are not discussed, because the arti-
cle is focused on the comparison of different measurement 
principles using the Cramér–Rao bound. The Cramér-Rao 
bound for any unbiased estimator is independent from the 
signal processing algorithm.

2.1  LDA

A state-of-the-art differential LDA setup is considered as 
depicted in Fig. 1. The original laser beam with the wave-
length � is split into two beams, which are here modeled 
as symmetric Gaussian beams with the 1∕e2-radius 2wbeam . 
Both beams are brought to intersection with the crossing 
angle 2� . The intersection region is the measurement vol-
ume, in which an interference fringe system occurs that 
is observed with a photodetector. The fringe distance is 

dfringe =
�

2 sin �
 . Due to the interference fringe system, the 

intensity distribution is a cosine-type modulation with a 
Gaussian envelope. Considering one seeding particle that 
crosses the fringe system at the arrival time t0 , the detected 
scattered light signal over time t in unit number of photons 
(accumulated over one sampling period �t ) reads

with

The amplitude ALDA is the total number of detected photons, 
which is here defined by a mean photon rate Ṅphoton,LDA mul-
tiplied by the transit time

where 4wfringes = 4wbeam∕ cos � is the (1∕e2)-extension of 
the measurement volume in x-direction and vx denotes the 
respective flow velocity component. The temporal width of 
the Gaussian envelope is thus described by the lateral width 
of the beam intersection region divided by the flow velocity. 
The beat frequency of the signal due to the Doppler effect is 
the Doppler frequency fD . This LDA signal model is shown 
in Fig. 2.

The signal from Eq. (1) is evaluated for instance using 
harmonic analysis to estimate the Doppler frequency. 
Together with the previously determined fringe distance 
dfringe during calibration, the flow velocity component per-
pendicular to the fringes is finally obtained by calculating

Sensitivity: The basic LDA measurement configuration 
yields one flow velocity component at a single point. The 

(1)

st(fD) =
ALDA ⋅ �t√
2�

wfringes

�vx�
exp

⎛⎜⎜⎜⎝
−

(t − t0)
2

2 ⋅
�

wfringes

vx

�2

⎞⎟⎟⎟⎠
⋅

�
1 + cos(2�fD ⋅ (t − t0))

�
,

(2)ALDA = Ṅphoton,LDA ⋅ TLDA.

(3)TLDA =
4wfringes

|vx| ,

(4)vx = fD ⋅ dfringe.

Fig. 1  LDA measurement principle Fig. 2  LDA signal model
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sensitivity direction is perpendicular to fringes, which is in 
the same plane as the two laser beams and perpendicular to 
the optical axis of the illumination. The observation direc-
tion has no effect on the sensitivity direction.

Spatial resolution: The spatial resolution in all three 
dimensions is typically determined by the spatial extension 
of the fringe system (illumination) but might be additionally 
limited by the optical imaging on the photodetection unit 
(observation).

Temporal resolution: The temporal resolution for a single 
particle amounts to TLDA . It depends on the flow velocity 
and the width of the laser beams as well as the beam cross-
ing angle. Note that varying the laser beam width or the 
beam crossing angle will affect the temporal as well as the 
spatial resolution. For a given measurement time T ≫ TLDA 
that allows to observe multiple particles crossing the fringe 
system, an averaging over floor(T∕TLDA) consecutive single 
particle measurements is considered here as the theoretic 
maximum.

2.2  PDV

The flow is continuously illuminated with a laser light 
sheet which represents the measurement plane. Illumina-
tion intensity variations in the observed region of interest 
in the measurement plane are neglected here. The laser has 
a narrow bandwidth and has a stabilized center frequency 
fc = c∕� according to the laser wavelength � and the light 
speed c. To detect the flow velocity-dependent frequency 
change of the light scattered on seeding particles, an imag-
ing system including a beam splitter (here 50 %/50 %) and 
two digital cameras as well as a narrow-band spectral filter 
is applied, see Fig. 3. Half of the scattered photons from 
the illuminated seeding particles in the measurement plane 
are imaged with the reference camera. The other half of 
the scattered photons pass a spectral filter with the spectral 

transmission �(fc + fD) , and the transmitted photons are 
imaged with the signal camera. The symbol fD denotes the 
Doppler frequency shift. Note that the filter bandwidth is 
significantly larger than the bandwidth of the continuous-
wave laser, i.e., the illuminating laser can be considered as 
an ideal laser source with single frequency. As a result, the 
signals from the signal camera and the reference camera 
over time t in unit number of photons (accumulated over 
one sampling period �t ) in the corresponding interrogation 
window (single pixel or superpixel) read for the presence 
of Nparticle,PDV seeding particles 

 with APDV as the total number of scattered photons per seed-
ing particle during the particle transit time TPDV through 
the interrogation window. Note that the number of observed 
seeding particles increases with an increasing size of the 
interrogation window and an increasing light sheet thick-
ness. The mean photon rate Ṅphoton,PDV per seeding particle 
is defined by the relation

with

This PDV signal model is shown in Fig. 4. The symbol 
wtransit denotes the width of the illuminated interrogation 
region with respect to the PDV sensitivity direction o⃗−i⃗|o⃗−i⃗| , and 
v denotes the measured velocity component along the PDV 
sensitivity direction.

The Doppler frequency fD is determined by evaluating 
the ratio st(fD)∕st,ref(fD) = �(fc + fD) , by subtracting the 
laser working point �(fc) and by applying the inverse trans-
mission function that was previously calibrated. The flow 

(5a)st(fD) =
1

2
⋅ Nparticle,PDV ⋅ APDV ⋅

�t

TPDV
⋅ �(fc + fD),

(5b)st,ref(fD) =
1

2
⋅ Nparticle,PDV ⋅ APDV ⋅

�t

TPDV
,

(6)APDV = Ṅphoton,PDV ⋅ TPDV.

(7)TPDV =
wtransit

|v| .

Fig. 3  PDV measurement principle, where the laser light sheet is 
shown in top view. Note that the sensitivity vector is o⃗ − i⃗  . The 
observation direction is shown perpendicular to the light sheet plane 
( ⃗i ⟂ o⃗ ), which is a typical configuration Fig. 4  PDV signal model
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velocity component v along the sensitivity direction o⃗−i⃗

|o⃗−i⃗| 
is then calculated according to the relation (Fischer 2017)

The unit vectors i⃗  and o⃗ describe the direction of illumina-
tion and observation, respectively.

Note that only a classical PDV without laser frequency 
modulation is considered here, since it was already shown in 
(Fischer 2017) that all variants of PDV with laser frequency 
modulation and without laser frequency modulation have 
similar measurement capabilities with respect to the shot 
noise limit.

Sensitivity: The PDV principle provides sensitivity with 
respect to the out-of-plane velocity component. The direc-
tion of sensitivity is o⃗−i⃗|o⃗−i⃗| and thus depends on the illumina-
tion direction and the observation direction. For a typical 
perpendicular arrangement of the light sheet plane and the 
observation, a mixture of in-plane and out-of-plane velocity 
component is measured. The in-plane velocity component 
along the light sheet propagation direction is measurable 
independent of the observation direction when two consecu-
tive Doppler frequency measurements are performed with 
opposite illumination directions and the same observation 
direction (Roehle and Willert 2001). Due to the use of cam-
eras, imaging capability is provided.

Spatial resolution: The out-of-plane spatial resolution is 
usually determined by the illumination, i.e., the light sheet 
thickness. This holds in particular for an observation direc-
tion perpendicular to the light sheet plane, which is a typical 
measurement configuration. The in-plane spatial resolutions 
are then determined by the chosen region of interest in the 
captured frame, which is either a single pixel or an area 
of binned pixels. A perpendicular arrangement between the 
light sheet plane and the observation direction allows the 
highest spatial resolution.

Temporal resolution: Note that multiple particles are 
allowed to be present in the interrogation window of the 
illuminated region and are measured simultaneously. The 
PDV measurement is possible even for overlapping parti-
cle images so that very high seeding particle concentrations 
can be applied. The temporal resolution is thus typically 
determined and adjustable by the camera exposure time T. 
Considering TPDV as the time for a single measurement and 
T > TPDV , an averaging over (T∕TPDV) measurements takes 
place implicitly.

2.3  L2F

The flow is illuminated by two parallel laser beams, see 
Fig. 5. A photodetector is applied to detect the scattered 

(8)v =
𝜆

|o⃗ − i⃗|
⋅ fD.

light from a seeding particle that crosses both laser beams 
in the region of interest. Assuming identical Gaussian 
beam intensity profiles, the sensor signal over the time 
t contains two identical Gaussian pulses at time t1 and t2 
and reads in unit number of photons (accumulated over the 
sampling period �t)

with

The temporal width of the pulses as well as the energy 
content of the pulses scale with the inverse of the sought-
after velocity component vx . Therefore, the total number 
of detected photons AL2F is written as a mean photon rate 
Ṅphoton,L2F multiplied by the transit time

where dbeam is the distance of the two laser beams. The 
temporal pulse half-width is (2w̃beam∕|vx|) , where 2w̃beam 
denotes the 1∕e2-radius of each laser beam. This L2F signal 
model is shown in Fig. 6.

Since the overlap of the pulses is negligible, the sensor 
signal to be solved for the two parameters t1 , t2 can also be 

(9)st(t1, t2) =

2�
i=1

1

2
⋅

AL2F ⋅ 𝛥t√
2𝜋

w̃beam

�vx�
exp

⎛⎜⎜⎜⎝
−

(t − ti)
2

2 ⋅
�

w̃beam

vx

�2

⎞⎟⎟⎟⎠

(10)AL2F = Ṅphoton,L2F ⋅ TL2F.

(11)TL2F =
dbeam

|vx| ,

Fig. 5  L2F measurement principle

Fig. 6  L2F signal model
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written in the form of a combination of two signals i = 1, 2 
with only one parameter ti each:

In practice, the signal st(t1, t2) is evaluated (for instance by 
using an auto-correlation) to directly determine the temporal 
distance (t2 − t1) of the two scattered light pulses. Together 
with the previously calibrated beam distance dbeam , the flow 
velocity component vx perpendicular to the direction of the 
laser beams is then obtained according to the relation

Sensitivity: The described L2F measurement principle in 
its original configuration allows to measure a flow veloc-
ity component at a single point. The sensitivity direction 
is perpendicular to the propagation direction of the illumi-
nating laser beams and lies in the same plane as the two 
laser beams. The observation direction has no effect on the 
sensitivity direction.

Spatial resolution: The spatial resolution along the sen-
sitivity direction (x-direction) is mainly determined by the 
beam distance, while the spatial resolution along the beam 
propagation (y-direction) is determined by the beam diver-
gence or the field of view for the photodetector with respec-
tive optics together with the observation angle. The spatial 
resolution in z-direction, i.e., perpendicular to the measure-
ment plane which is defined by the two laser beams, follows 
from the beam diameter.

Temporal resolution: The temporal resolution for a sin-
gle particle is the transit time TL2F . Thus, it depends on the 
flow velocity and the beam distance. A change of the beam 
distance will affect the temporal and the spatial resolution. 
In case of a given measurement time T that is larger than 
TL2F , an averaging over floor(T∕TL2F) consecutive seeding 
particles is considered here as the theoretic maximal number 
of measurements, which is analogous to LDA.

2.4  PTV/PIV

The flow is illuminated with two sequential light sheet pulses 
. The illuminated plane is the measurement plane and the 
illuminated seeding particles are imaged using an imaging 
system with a camera, see Fig. 7. Note that spatial variations 
of the illumination intensity can occur (Nobach 2011), in 
particular when a Gaussian intensity profile is used for illu-
mination. For the sake of simplicity, a constant illumination 
intensity profile is subsequently assumed in the observation 

(12)st,i(ti) =
1

2
⋅

AL2F ⋅ 𝛥t√
2𝜋

w̃beam

�vx�
exp

⎛
⎜⎜⎜⎝
−

(t − ti)
2

2 ⋅
�

w̃beam

vx

�2

⎞
⎟⎟⎟⎠
.

(13)vx =
dbeam

t2 − t1
.

region. Furthermore, the image quantization due to the lim-
ited pixel size of the camera is neglected in the present study, 
because it is considered a technological limitation depending 
on the available cameras. If the pixel size is near or larger 
than the size of the particle image and cannot be neglected, 
the resulting Cramér–Rao bound is higher than in the present 
study, see (Wernet and Pline 1993) for Poisson noise and 
(Westerweel 1997, 2000) for Gaussian noise. Assuming a 
negligibly small pixel size thus leads to the physically lowest 
possible Cramér–Rao bound and a signal model with a con-
tinuous space variable. As a result, each image of a particle 
in unit number of detected scattered photons (accumulated 
over the area �x ⋅ �y of one pixel) as a function of the in-
plane coordinates x and y can be approximately described 
by the two-dimensional Gaussian function

The position (xi, yi) is the particle position at the time ti of 
the i-th light pulse with i = 1, 2 . The 1∕e2-radius of the par-
ticle image amounts to 2wparticle . The particle image size in 
the units of the original space coordinates is either the true 
particle size or it is increased due to diffraction. The total 
number of detected scattered photons per seeding particle 
is APTV∕2 for each of both images and does not depend on 
the flow velocity. Although APTV can be adjusted directly by 
varying the pulse energy of the laser, the definition

with a mean photon rate Ṅphoton,PTV over the pulse interval 
time

(14)

sx,y(xi, yi) =
1

2
⋅

APTV ⋅ �x ⋅ �y

2�w2
particle

exp

(
−
(x − xi)

2 + (y − yi)
2

2w2
particle

)
.

(15)APTV = Ṅphoton,PTV ⋅ TPTV

(16)TPTV = t2 − t1

Fig. 7  PTV/PIV measurement principle illustrated with one (PTV) 
and for instance three (PIV) seeding particles in the interrogation 
region. The light sheet is shown in side-view, which is the camera 
view when the observation direction is chosen perpendicular to the 
light sheet plane



Experiments in Fluids (2021) 62:37 

1 3

Page 9 of 19 37

is in principle also possible analogous to a continuous illu-
mination, cf. LDA and L2F.

Note that the task of solving Eq.  (14) for the two 
unknown particle coordinates xi , yi can be transformed in 
principle to the task of separately solving one equation for 
each coordinate. By integrating over x or y and multiplying 
with the respective pixel size �x or �y , the separate signals 
in unit number of photons (accumulated over one sample 
size) that do solely depend on xi or yi , respectively, read

The resulting PTV/PIV signal model for the x-coordinate is 
shown in Fig. 8.

In practice, the two sequential particle images accord-
ing to Eq. (14) are cross-correlated to directly determine 
the particle position change (x2 − x1, y2 − y1) during the 
interval time TPTV of the two pulses. Assuming a constant 
flow velocity, the in-plane velocity components then fol-
low from the calculation

Having more than one particle image in the interroga-
tion region, which is the case for PIV in contrast to PTV, 
the measurement procedure remains the same. However, 
the resulting velocity measurement is an average over all 
Nparticle,PIV particles in the interrogation region according to 
the seeding particle concentration.

Sensitivity: The described standard PTV/PIV meas-
urement arrangement has imaging capability and allows 
to measure simultaneously the axial velocity component 
and one lateral velocity component with respect to the 

(17)sx(xi) =
1

2
⋅

APTV ⋅ �x√
2�wparticle

exp

�
−
(x − xi)

2

2w2
particle

�
,

(18)sy(yi) =
1

2
⋅

APTV ⋅ �y√
2�wparticle

exp

�
−
(y − yi)

2

2w2
particle

�
.

(19)vx =
x2 − x1

TPTV
and vy =

y2 − y1

TPTV
.

illumination. Both sensitivity directions result from the 
chosen illumination.

Spatial resolution: A perpendicular arrangement between 
the light sheet plane and the camera direction is a preferred 
measurement configuration, since it allows to achieve a high 
spatial resolution. The spatial resolution along the out-of-
plane direction is then mostly determined by the light sheet 
thickness (illumination path) and typically not by the depth 
of focus of the imaging system (observation path). On the 
contrary, the spatial resolution along the in-plane directions 
is usually determined by the chosen interrogation region 
(observation path) and not by the illumination (PIV). How-
ever, the minimal achievable spatial resolution is determined 
by the particle motion between the two light pulses (PTV).

Temporal resolution: The temporal resolution is given by 
the pulse interval time TPTV and is adjustable by varying the 
temporal distance between both light pulses. Note, however, 
that the pulse interval time is also connected with the mini-
mal achievable spatial resolution that is the particle motion. 
If a measurement time T is possible that is larger than a pulse 
interval time constraint, which follows from a spatial reso-
lution requirement, a theoretic maximum of floor(T∕TPTV) 
measurements can be performed. Furthermore, multiple par-
ticles in the interrogation region can be evaluated simultane-
ously for PIV. Note, however, that the respective averaging 
over multiple measurements according to the derived signal 
model reflects only the case of non-overlapping particle 
images, which is the optimal case.

2.5  Comparison

A key difference between the different measurement princi-
ples is that PDV measures a mixture of in-plane and out-of-
plane velocity component (with respect to the measurement 
plane defined by the illumination), LDA and L2F measure 
the in-plane velocity component transverse to optical axis 
of the illumination and PTV/PIV allows to measure both in-
plane velocity components. Note that this statement holds 
when only a single illumination direction is allowed. On the 
contrary, PDV is the only principle where the sensitivity 
depends on the observation direction. It seems important to 
remind that a reference LDA, in contrast to the differential 
LDA that is considered here, actually has the same capa-
bility. The reason is that PDV and LDA are based on the 
Doppler effect, which is affected by the illumination and 
the observation direction. With the differential LDA setup, 
which is nowadays more common and therefore considered 
here, the influence of the observation direction is eliminated 
by evaluating the difference of two Doppler effects resulting 
from two different illumination directions but one common 
observation direction. Due to the different sensitivity direc-
tion, the PDV measurement capabilities are not one-to-one 

Fig. 8  PTV/PIV signal model over the x-coordinate after integrating 
over the y-coordinate
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comparable with the respective capabilities of LDA, L2F 
and PTV/PIV.

The relevant feature for the velocity measurement with 
L2F and LDA is a characteristic size of the illumination 
profile. For L2F, it is the radius of the laser beams, and for 
LDA, it is the fringe distance. The size of the respective 
feature is diffraction-limited according to the illumination. 
The particle size is typically smaller than this feature, but 
the particle size can limit the feature size if it is larger than 
the illumination diffraction limit. The opposite is true for 
PTV/PIV, where the relevant information feature for the 
velocity measurement is the particle image size, which is a 
diffraction-limited observation feature. If the particle size 
is smaller than the diffraction limit, the feature size is lim-
ited according to the diffraction limit. For PDV, the relevant 
information feature is the light wavelength (or the respective 
mean light frequency), which is a characteristic size in axial 
direction, i.e., in the light propagation direction. Therefore, 
both the illumination direction (particle motion with respect 
to the illumination direction) and the observation direction 
(particle motion with respect to the observation direction) 
have an influence on the resulting Doppler effect.

While LDA and L2F optimally operate for a single par-
ticle in the interrogation region, PIV and PDV allow meas-
urements with multiple particles in the interrogation region 
without degrading the sensitivity. In case of PIV, however, 
the particles should not overlap to not degrade the sensitiv-
ity. Therefore, the highest number of simultaneous particle 
velocity measurements (which means the highest seeding 
particle concentration) is possible with PDV.

Regarding the spatiotemporal resolution (in the sensi-
tivity direction), the spatial resolution for LDA and L2F is 
defined by the chosen spatial distribution of the illumination 
while the temporal resolution then follows according to the 
seeding particle motion (transit time). For PTV, the tempo-
ral illumination characteristic sets the temporal resolution, 
and the spatial resolution then follows from the respective 
particle movement. For PDV and PIV, the spatial and the 
temporal resolutions are defined by the illumination and 
observation in space and time.

3  Method of uncertainty propagation 
that yields the Cramér–Rao bound

A measurement signal s̃m in unit number of photons is con-
sidered that depends on a single measurand � and contains 
M uncorrelated samples:

(20)
s̃m = fm(𝜃)

���
=sm

+wm, m = 1,… ,M.

The symbol wm denotes the signal noise. In order to inves-
tigate the shot noise limit, each measurement signal sample 
is assumed to follow a Poissonian distribution, i.e., the vari-
ance of the signal sample s̃m equals the expectation value: 
Var

(
s̃m
)
= E

(
s̃m
)
 . The expectation value is subsequently 

denoted by the symbol sm , i.e., E
(
s̃m
)
= sm . Note that a Pois-

sonian photon distribution minimizes Heisenberg’s uncer-
tainty relation (Saleh and Teich 2007), so that the considered 
case is a quantum mechanical lower limit.

According to the estimation theory of Cramér and Rao, 
the minimal achievable variance for any unbiased estimator 
�̂� of the unknown measurand � reads

for the given signal in Eq. (20) with uncorrelated noise 
(Casella and Berger 1990). The right side of the equation 
is the Cramér–Rao bound, which is identical to the mini-
mal achievable measurement uncertainty squared (Fischer 
and Czarske 2014). Note that the Cramér–Rao bound is the 
information theoretic limit of uncertainty since it follows 
from the inverse of the Fisher information.

In order to derive Eq. (21) using the uncertainty propaga-
tion calculation, the weighted average over the estimations 
�̂�m from each signal sample is considered as the measure-
ment result:

with 1

Var(�̂�m)
 as the optimal weighting factor according to the 

Gauß-Markow theorem. Since the noise wm of the measure-
ment signal is uncorrelated, the estimators �̂�m are uncorre-
lated as well. Therefore, the uncertainty propagation calcula-
tion at first yields

Estimating Var
(
�̂�m

)
 with a second uncertainty propagation 

calculation based on Eq. (20), the relation then reads

(21)
Var

�
�̂�
�
≥

1

∑M

m=1

�
𝜕sm
𝜕𝜃

�2
1

Var(s̃m)

(22)�̂� =

M∑
m=1

�̂�m ⋅

1

Var(�̂�m)

M∑
m=1

1

Var(�̂�m)

,

(23)Var
�
�̂�
�
=

M∑
m=1

Var
�
�̂�m

�
⋅

�
1

Var(�̂�m)

�2

�
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m=1

1

Var(�̂�m)

�2
=

1
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m=1

1

Var(�̂�m)

.

(24)
Var

�
�̂�
�
=

1
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m=1

�
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𝜕𝜃

�2
1

Var(s̃m)

.
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Comparing Eqs. (21) and (24), the uncertainty propagation 
calculation applied to the optimal estimator according to the 
Gauß-Markow theorem directly leads to the Cramér–Rao 
bound.

Since the variance of each signal sample is 
Var

(
s̃m
)
= E

(
s̃m
)
= sm according to the Poissonian noise 

and Eqs. (20),  (24) finally becomes

as the shot noise limit of the measurand �.
For a sufficiently small sampling period, the signal sam-

ples sm can be approximated by a continuous signal (for 
instance over time or space). Considering the continuous 
signal st ≈ sm over the variable t = m ⋅ �t with the sampling 
period �t → dt , the shot noise limit solution in Eq. (25) is 
writable in the integral form

with the measurement interval T = M ⋅ �t . Note that st 
denotes the number of detected photons accumulated over 
one sampling period �t , so that integrating st over t and 
dividing by �t yields the same total number of detected pho-
tons as for summing up sm over m. The result is interpretable 
as the quotient of the noise power spectral density 11

�t

 for one 

photon and an accumulated (optimal weighted) sensitivity. 
Enhancing denominator and numerator of the quotient with 

1

T

1

T
∫ T

0

1

st
dt

 as weighting normalization, the quotient can also be 

considered as an effective noise power spectral density 
divided by the average sensitivity with an optimal 
weighting.

Note that the shot noise limit in Eqs. (25) or (26), respec-
tively, is valid when the measurand is the only unknown 
quantity. Additional unknown quantities can increase the 
minimal achievable measurement uncertainty, and the calcu-
lation of the Cramér–Rao lower bound needs to be enhanced 
using covariances and matrix calculus (Casella and Berger 
1990; Kay 1993). The increased calculation effort is not nec-
essary here, since all enhanced solutions remain bounded by 
the shot noise limit derived in Eqs. (25) and (26). Both for-
mulas thus represent the sought-after ultimate lower bound 
of the minimal achievable measurement uncertainty.

(25)
Var

�
�̂�
�
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1
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m=1

�
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𝜕𝜃

�2
1

sm

(26)
Var

(
�̂�
)
=

1

1

𝛥t
∫ T

0

(
𝜕st
𝜕𝜃

)2
1

st
dt

4  Photon shot noise limit results

The shot noise limit for each measurement principle is 
calculated according to Eq. (26) and the respective sig-
nal model derived in Sect. 2. Here, the integral is evalu-
ated from minus infinity to plus infinity, which implicitly 
implies a sufficiently large measurement time, in particular 
for LDA and L2F. The following discussions are thus always 
focused on the case of a measurement time that is equal 
or larger than the particle transit time. The calculations for 
LDA, L2F and PTV/PIV make use of the integral solution 
∫ ∞

−∞
a ⋅ exp(−z2∕(2b2)) ⋅

z2

b2
dz =

√
2�ab and all calculations 

are straightforward.
For LDA, the signal model from Eq. (1) is applied and 

the resulting variance of the Doppler frequency is converted 
to the corresponding variance of the measured flow velocity 
component by using Eq. (4). Note that a fringe spacing is 
assumed that is significantly smaller than the width of the 
Gaussian envelope. The assumption is plausible, and it is fur-
ther valid for heterodyne LDA setups (Czarske 2006), where 
the cosine signal has an offset frequency. An enhanced study 
for LDA without this assumption is presented in Sobolev and 
Feshenko (2006), but note that Gaussian noise is considered 
there. The resulting Cramér–Rao bound then only differs by 
a different pre-factor and a marginal deviation below seven 
percent.

For PDV, the signal model from Eq. (5) is applied, where 
both signals are treated as one concatenated signal with dou-
ble length. The resulting variance of the Doppler frequency 
is then used together with Eq. (8) to determine the corre-
sponding variance of the measurement flow velocity compo-
nent. For L2F, the shot noise limit for both pulse occurrence 
times is determined at first using the signal model from 
Eq. (12). The resulting shot noise limit of the measurement 
flow velocity component is then obtained by an uncertainty 
propagation calculation of the uncorrelated estimations of 
the two occurrence times on the basis of Eq. (13). For PTV/
PIV, the signal model from Eq. (17) is used, and the calcu-
lated variance of the particle position is applied to Eq. (19) 
to yield the shot noise limit for the measured flow velocity 
component. As a result, the calculated shot noise limits read 
in summary 

(27a)Var
(
v̂LDA

)
=

4

𝜋2
⋅

1

ALDA

⋅

(
dfringe

TLDA

)2

,

(27b)

Var
�
v̂PDV

�
= 1 ⋅

1

Nparticle,PDV ⋅ 𝜏 ⋅ APDV

⋅

�√
2𝜆∕�o⃗ − i⃗�
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𝜏
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where the relations from Eqs. (3), (11) and (16) were applied 
to demonstrate the similar structure of the shot noise limits.

It seems remarkable that all identified shot noise limits in 
Eq. (27) have an identical structure although the measure-
ment principles are fundamentally different. The common 
inverse proportionality to the total number of detected pho-
tons A. is no surprise, because this is a well-known charac-
teristic feature for Poisson noise. Note that the expression 
N ⋅ � ⋅ APDV for PDV is the total number of detected photons 
for the signal camera. The numerical pre-factors are one for 
L2F, PDV and PTV/PIV. The pre-factor 4

�2
= 0.41 for LDA 

is also near one, so that no significant difference between the 
different measurement principles exists with respect to the 
pre-factor. The chosen definition of the particle transit time 
with respect to the width of the Gaussian envelope (here: 
the time TLDA that corresponds to the full 1∕e2-width of the 
Gaussian envelope) and the definition of a characteristic 
length (here: the fringe distance dfringe ) are finally responsi-
ble for the resulting value of the pre-factor.

All shot noise limits are directly proportional to the 
square of a characteristic length scale, but the characteristic 
length scale is different for each measurement principle. It 
is the fringe distance dfringe for LDA, the laser wavelength � 
scaled with the inverse of the normalized sensitivity vector 
length �o⃗ − i⃗�∕

√
2 (normalization is with respect to the typi-

cal measurement configuration o⃗ ⟂ i⃗  ) for PDV, the beam 
radius 2w̃beam for L2F and the particle image radius 2wparticle 
for PTV/PIV. Furthermore, the shot noise limits are inversely 
proportional to the square of a characteristic time scale. For 
LDA, L2F and PTV/PIV, this time scale is the transit time 
of the particle to pass the measurement volume, whereas for 
PDV, it is the derivative �� = d�(f )

df
 of the spectral filter trans-

mission divided by the spectral transmission � both evalu-
ated at the mean frequency of the scattered laser light.

4.1  Comparison for measuring a single particle

To determine and compare the shot noise limits for the flow 
velocity measurement with a single seeding particle, the fol-
lowing common conditions are applied to Eq. (27) for the 
sake of comparability:

• A single particle is measured, i.e., Nparticle,PDV = 1.
• The observation direction is perpendicular to the illumi-

nation direction, so that the scattering angle is the same 

(27c)Var
(
v̂L2F

)
= 1 ⋅

1

AL2F

⋅

(
2 w̃beam

TL2F

)2

,

(27d)Var
(
v̂PTV/PIV

)
= 1 ⋅

1

APTV

⋅

(
2wparticle

TPTV

)2

,

for each measurement principle. Note that for PDV, this 
condition o⃗ ⟂ i⃗  means �o⃗ − i⃗� =

√
2.

• All light sources provide the same power on average 
in the measurement region and the working distance 
for illumination and observation, respectively, and 
the numerical aperture is equal. As a result, the mean 
detected photon rate during the measurement time is 
the same for each measurement principle. Therefore, 
the total number of detected photons A. are expressed 
by using Eqs. (2), (6), (10) and (15).

• A comparable spatial resolution (in all three dimen-
sions) and a comparable temporal resolution are con-
sidered. However, the temporal resolution is inversely 
proportional to the flow velocity for a given spatial 
resolution. To describe this behavior, the particle tran-
sit times T. are expressed by Eqs.  (3), (7), (11) and 
(16). Note that this implies an infinitely large measure-
ment time if the measured velocity component becomes 
zero. Since this particular case is not meaningful for a 
practical measurement, the subsequent discussions are 
focused on a nonzero flow velocity component to be 
measured.

The shot noise limits for LDA, PDV, L2F and PTV/PIV 
then read 

Note that for LDA, the ratio 4wfringes∕dfringe is the number 
of fringes. The LDA shot noise limit is thus inversely pro-
portional to the squared number of fringes, which was also 
found in earlier studies regarding Gaussian noise (Sobolev 
and Feshenko 2006).

As a result, each shot noise limit of the measurement 
uncertainty increases with the flow velocity to be meas-
ured. For LDA, L2F and PTV/PIV, the variance lower 
bound is directly proportional to |vx|3 , i.e., to the meas-
urand to the power of three, whereas for PDV, it is only 
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Ṅphoton,LDA

⋅

(
dfringe

)2
(
4wfringes

)3 ,

(28b)Var
�
v̂PDV

�
=

�v� ⋅ 𝜏
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(28d)Var
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|vx|3
Ṅphoton,PTV
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x2 − x1

)3 .
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directly proportional to |v| if the slope �′ of the spectral 
filter transmission and the transmission value � can be 
assumed as constant. The condition �� = const is indeed a 
plausible approximation for a large range of the Doppler 
frequency (as long as the scattered light mean frequency 
remains at the edge of the spectral filter), while � = const 
holds for PDV setups where the laser frequency is adjusted 
accordingly.

The direct proportionality to the square of the respec-
tive characteristic length scale dfringe , � , 2w̃beam and 2wparticle 
is unchanged, while the inverse proportionality to the 
square of the characteristic time scale only remains for 
PDV, when the dependency of �′ and � with respect to the 
flow velocity is neglected. The respective spatial resolu-
tion now occurs in the denominator to the power of three 
for LDA, L2F, PTV/PIV and to the power of one for PDV. 
In the following comparison, an equal spatial resolution 
w = 4wfringes = wtransit = dbeam = x2 − x1 is considered. Note 
that the different measurement principles are compared for a 
similar spatial resolution regarding each dimension. Having 
a radially symmetrical beam profile for LDA, for instance, 
this means to consider L2F beams that are not circular but 
elliptical. The beam dimension perpendicular to the sen-
sitivity direction is then larger than the beam dimension 
in the sensitivity direction. Although such an L2F setup is 
not a typical setup today, it can be realized using cylinder 
lenses and is a fair way to compare the potential of the L2F 
measurement principle with the LDA measurement principle 
for one common spatial resolution (and a comparable data 
rate). Without this consideration of a fully comparable spa-
tial resolution, L2F is known to enable lower measurement 
uncertainties than LDA due to the higher illumination inten-
sity for the case of a comparable illumination light power 
(Beversdorff et al. 1997).

All shot noise limits are inversely proportional to the 
mean photon rate, and an equal mean photon rate Ṅphoton 

is considered in the following comparison. Note that the 
mean photon rate equality is below the PTV capabilities, 
because the laser pulse energy can be accumulated over a 
larger period than the actual measurement time. Thus, the 
pulsed laser at PTV/PIV in principle allows to achieve a 
higher mean photon rate over the measurement time than the 
continuous-wave laser at LDA and L2F. This also holds for 
PDV when a pulsed laser is used for illumination. Although 
below theoretical capabilities, the subsequent comparison 
with an equal photon rate in combination with an equal tem-
poral resolution (measurement time) means a comparison 
with an equal number of detected photons on average, which 
is of high interest. The question is: Which measurement prin-
ciple uses the amount of energy in the most effective way to 
minimize the achievable measurement uncertainty?

To answer this question, Eq. (28) is evaluated for the 
parameter values listed in Table 1. A spatial resolution of 
w = 100 μm is considered as an example, so that the tem-
poral resolution depends on the flow velocity and is w∕|vx| 
or w/|v|, respectively. The mean photon rate is set to 
Ṅphoton = 1×109s−1 , which corresponds for instance to a 
mean power of 373  pW when the laser wavelength 
amounts to 532 nm. The mean power value is plausible 
since it is the detected light power that was scattered on a 
single particle with micrometer or even sub-micrometer 
dimension. Thus, 100,000

|vx|∕(m∕s)
 photons are detected in total for 

the given spatial and temporal resolution in dependence 
on the flow velocity component vx . The assumed typical 
characteristic length scales are the fringe distance 
dfringe = 10 μm (LDA), the scaled laser wavelength √
2𝜆∕�o⃗ − i⃗� = 𝜆 = 532 nm  (PDV), the beam radius 

2w̃beam = 10 μm  (L2F), the par ticle image radius 
2wparticle = 5 μm (PTV/PIV). Regarding the spectral filter 
at PDV, the transmission � = 0.5 and the slope 
�� = 2.5×10−9 Hz−1 of the transmission curve are applied, 

Table 1  Parameter values 
for the numerical evaluation 
of Eq. (28) in Fig. 9 and the 
numerical evaluation of Eq. (31) 
in Fig. 10

Principle(s) Parameter Symbol Value

For Fig. 9 and Fig. 10
All Spatial resolution w 100 μm
All Mean photon rate Ṅphoton 1×109 s −1

LDA Fringe distance dfringe 10 μm
PDV Laser wavelength � 532 nm
PDV Length of the sensitivity vector |o⃗ − i⃗| √

2

PDV Transmission of the spectral filter � 0.5
PDV Slope of the transmission curve �′ 2.5×10−9 Hz−1

L2F Beam radius 2w̃beam 10 μm
PTV/PIV Particle image radius 2wparticle 5 μm
Only for  Fig. 10
All Temporal resolution T 1 ms
PDV Simultaneously measured number of particles Nparticle,PDV 50
PTV/PIV Simultaneously measured number of particles Nparticle,PIV 5
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which are realistic values for a molecular absorption filter 
filled with iodine gas (Fischer 2017). The finally resulting 
shot noise limits for LDA, PDV, L2F and PTV/PIV are 
shown in Fig. 9 as a function of the respective measurand. 
L2F in principle attains the same shot noise limit as PTV/
PIV, but due to the chosen characteristic length scales, the 
shot noise limit of L2F is here a factor of 2 larger. L2F and 
LDA have similar shot noise limits, which is considered a 
remarkable result since the Doppler principle and the 
time-of-flight measurement principles are complementary 
principles from a physical perspective. Contrary to the 
similar shot noise limits of L2F, LDA and PTV/PIV, how-
ever, the shot noise limit of PDV is larger for flow veloci-
ties below 1.5 km/s (L2F), 2.4 km/s (LDA) and 3 km/s 
(PTV/PIV), respectively. The sensitivity, which is mainly 
determined by the slope of the transmission curve of the 
spectral filter to determine the Doppler frequency, is small 
in comparison with the LDA light mixing approach. How-
ever, a direct comparison of PDV with LDA, L2F and 
PTV/PIV is not possible because PDV measures (at least 
in parts) the out-of-plane velocity component, whereas the 
other measurement principles are only sensitive with 
respect to the in-plane velocity.

Reformulating Eq. (28) by denoting the temporal resolu-
tion with the symbol �T  and the characteristic length scale 
for LDA, L2F, PTV/PIV with the symbol Lx , the uncertainty 

relation connecting the measurement uncertainty with the 
temporal resolution reads for LDA, L2F and PTV/PIV

and for PDV

As a result, an improved temporal resolution means an 
increase in the velocity measurement uncertainty for a con-
stant mean photon rate and a constant characteristic length. 
To minimize the uncertainty products on the left side of the 
formulas, the mean photon rate must be maximized and the 
characteristic length scale must be minimized. In addition, 
for PDV, the slope of the filter transmission curve needs to 
be maximized. Considering the diffraction limit of mono-
chrome light, the characteristic length scale for all measure-
ment principles can be minimized by minimizing the laser 
wavelength. Furthermore, the characteristic length scale 
can be minimized by maximizing the numerical aperture of 
the illumination (LDA, L2F) or observation (PTV/PIV) or 
between illumination and observation (PDV), which repre-
sents a significant difference between the different measure-
ment principles. PTV/PIV can thus cope better than LDA, 
L2F with large working distances for the illumination, while 
LDA and L2F seem in principle more suitable to operate 
with large working distances for the observation.

4.2  Comparison for measuring multiple particles 
with averaging

Two kinds of averaging are possible for the case of measuring 
on multiple particles. Temporal averaging means that an aver-
aging over consecutive measurements on single particles takes 
place during a given measurement time T. As a maximum, the 
averaging is possible over T∕TLDA , T∕TPDV , T∕TL2F , T∕TPTV 
measurement samples, respectively. In addition, PIV and PDV 
enable the simultaneous measurement on multiple particles in 
the interrogation region without disturbance. The latter is true 
for PIV as long as the particle images do not overlap, whereas 
no such constraint exists for PDV. Thus, significantly higher 
seeding particle concentrations can be applied for PDV than 
for PIV. As a result, an average over Nparticle,PIV < Nparticle,PDV 
particles is possible for PIV and PDV.

By applying both kinds of averaging on the shot noise limits 
from Eq. (28) and using the definitions (3), (7), (11), (16), the 
shot noise limits for LDA, PDV, L2F and PTV/PIV read 
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Fig. 9  Calculated measurement uncertainty that is minimal achiev-
able with LDA, PDV, L2F and PTV/PIV due to the shot noise limit 
as a function of the measurand vx and v, respectively. The calculation 
is based on the square root of Eq. (28) and is valid for the measure-
ment with one single particle, with a comparable mean photon rate 
Ṅphoton = 1×109 s −1 as well as with a comparable spatial resolution of 
w = 100 μ m and temporal resolution w∕|vx| or w/|v|, respectively. A 
complete list of the applied parameter values is given in Table 1
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Remember that the previous calculations are based on the 
assumption that the measurement time is equal or larger 
than the particle transit time through the measurement vol-
ume. Thus, the derived shot noise limits in Eq. (31) are only 
applicable for sufficiently large flow velocities. The minimal 
flow velocity follows from the respective spatial resolution 
4wfringes , wtransit , dbeam or x2 − x1 divided by the measurement 
time T.

All shot noise limits are inversely proportional to the 
temporal resolution or the measurement time T. Except for 
PDV, which seems to be velocity-independent, all other 
shot noise limits now show a proportionality to the flow 
velocity squared. Therefore, the shot noise limit for LDA, 
L2F and PTV/PIV can be expressed in the form of a rela-
tive measurement uncertainty, whereas it is an absolute 
measurement uncertainty for PDV. However, note that the 
PDV result does depend on the velocity, if the linear range 
of the spectral filter’s transmission curve is left and the 
laser frequency is not adjusted accordingly. Furthermore, 
all limits are directly proportional to the squared ratio of 
the characteristic length scale to the spatial resolution.

Inserting the same numerical values from Table  1 
already studied in Sect. 4.1 and additionally assuming 
Nparticle,PIV = 5 , Nparticle,PDV = 50 as an example, the shot 
noise limits for the measurement time T = 1 ms are shown 
in Fig. 10 as a function of the measurand vx and v, respec-
tively. According to the considered spatial resolution 
and measurement time, the calculation only applies for 
velocities larger than 0.1 m/s. Furthermore, a best case 
scenario is considered for PDV. The laser frequency is 
always adjusted to measure with the maximal available 
sensitivity at the edge of the spectral filter’s transmission. 
Therefore, the calculated shot noise limit for PDV is veloc-
ity independent.

In comparison with L2F and LDA, the shot noise limit of 
PTV/PIV is the lowest due to the averaging over simultane-
ously measured particles. Being independent on the flow 
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velocity and coping well with an even higher seeding con-
centration, the shot noise limit of PDV becomes lower than 
the shot noise limits of L2F, LDA and PTV/PIV at flow 
velocities > 210 m/s, > 330 m/s and > 950 m/s, respectively.

Reformulating Eq. (31) by denoting each characteristic 
length scale with the symbol Lx (LDA, L2F, PTV/PIV) or √
2𝜆∕�o⃗ − i⃗� (PDV), respectively, the uncertainty relation 

connecting the measurement uncertainty with the spatial 
resolution wx and the temporal resolution T reads for LDA, 
L2F and PTV/PIV

and for PDV

Eq. (33) is identical with Eq. (30) for Nparticle = 1 , i.e., the 
uncertainty relation is the same in both cases, single and 
multiple particle measurement. Contrary to this, the uncer-
tainty relation for LDA, L2F and PTV/PIV now includes 
the spatial resolution on the left side of Eq. (32) and also 
indicates an increasing uncertainty product with an increase 
in the flow velocity to be measured.
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𝜏 ⋅ Ṅphoton ⋅ Nparticle

⋅

(
𝜏

𝜏�

)2

.

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

flow velocity in m/s

m
ea

su
re

m
en

t u
nc

er
ta

in
ty

 in
 m

/s

 

 

LDA
PDV
L2F
PTV/PIV

Fig. 10  Calculated measurement uncertainty that is minimal achiev-
able with LDA, PDV, L2F and PTV/PIV due to the shot noise limit as 
a function of the measurand vx and v, respectively. The calculation is 
based on the square root of Eq. (31) and is valid for the measurement 
with multiple particles and averaging. Note that a common mean 
photon rate ( Ṅphoton = 1×109 s−1 ) and a comparable spatial resolu-
tion ( w = 100 μm ) and temporal resolution ( T = 1 ms ) are considered 
here. Note further that all parameter values used for the calculation 
are listed in Table 1
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In order to show that the shot noise limit is in agreement 
with Heisenberg’s uncertainty principle, limitations due to 
diffraction are now included in the consideration for LDA, 
L2F and PTV/PIV. The characteristic length scale Lx for 
LDA results from the fringe distance and for L2F from the 
beam radius. Both are illumination features that are lim-
ited in size according to the Gaussian beam characteristics 
(illumination diffraction limit): Lx ∼ �∕ tan(Θx,illumination) 
with the opening angle Θx,illumination of the illumination. 
For PTV/PIV, L is the particle image size, and because of 
being an imaging technique the minimal resolvable size 
follows from Abbe’s law (observation diffraction limit): 
Lx ∼ �∕ sin(Θx,observation) with the opening angle Θx,observation 
of the observation. Dividing Eq. (32) by T ⋅ |vx|2 and apply-
ing the diffraction limit for Lx in the direction of sensitivity 
with the approximation tan(Θx,illumination) ≈ sin(Θx,illumination) 
for sufficiently small respective opening angles Θx yields for 
LDA, L2F and PTV/PIV

In other words (after calculating the square root): The posi-
tion uncertainty �(x) of the measured particles times the 
uncertainty �(kx) of the wave vector component in the direc-
tion of sensitivity is inversely proportional to the square root 
of the total number of detected photons. The uncertainty 
relation holds for PTV/PIV also for �(y) and �(ky) , respec-
tively. The derived result is thus in agreement with Heisen-
berg’s uncertainty principle and other shot noise studies with 
respect to position measurements (Pavliček and Pech 2016).

Regarding PDV with a molecular absorption filter as 
spectral filter, the Doppler broadening of the spectral absorp-
tion due to the moving absorbing molecules has a Gaussian 
shape with a full width at half-maximum that is directly 
proportional to the molecular resonance frequency (Svelto 
2010). Furthermore, the resonance frequency is close to the 
scattered light frequency f. Therefore, it is assumed that the 
maximal slope of the spectral transmission is approximately 
�� ∼ 1∕f  and the working point is at � = 0.5 . Inserting both 
assumptions in Eq. (33), dividing by T and enhancing the 
expression on the left side by the square of the particle tran-
sit time TPDV = wtransit∕|v| (definition see Eq. (7)) results in

The derived uncertainty principle now indicates a rela-
tionship between the position uncertainty �(xtransit) and the 
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uncertainty �(k) of the wave vector component in the direc-
tion of sensitivity. The latter follows since the inverse of the 
particle transit time 1∕TPDV represents a resolution limit �(f ) 
of the light wave frequency f according to the time-frequency 
uncertainty principle. Note that this is not a transverse but an 
axial light property. Furthermore, the relation �(f ) ∼ c ⋅ �(k) 
holds due to the wave number definition k = 2�

�
 and � = c∕f  

with the light speed c. Since the observed light frequency 
depends on the difference between illumination and observa-
tion direction, a scaling factor of |o⃗ − i⃗| = 2 sin

Θ

2
 addition-

ally occurs with Θ = ∠(o⃗, i⃗) as the angle between the obser-
vation vector and the illumination vector (McKenzie 1996). 
As a result, the identified physical uncertainty principle for 
PDV in Eq. (35) has the same structure as for LDA, L2F and 
PTV/PIV in Eq. (34). Both identified uncertainty principles 
obey the same physical law, which is applied to different 
sensitivity directions.

5  Conclusion and outlook

The lower limit of the measurement uncertainty for a signal 
with a single unknown measurand was derived on the basis 
of an efficient estimator according to the Gauß-Markow the-
orem and the well-known rules of uncertainty propagation 
calculation. Inserting Poissonian noise, the shot noise limit 
was then provided for discrete signal samples and continuous 
signals. Note that the restriction to one unknown parameter 
(the measurand) means that an ultimate lower bound for the 
minimal achievable measurement uncertainty is obtained.

The general solution to determine the shot noise limit 
was further applied for LDA, PDV, L2F and PTV/PIV. As a 
result, the shot noise limits for LDA, L2F and PTV/PIV have 
an identical structure. PDV is different because it is the only 
measurement principle that is sensitive with respect to the 
out-of-plane velocity component. Due to the different sensi-
tivity direction and the different measurand, respectively, a 
one-to-one comparison with the other measurement principles 
is difficult. However, a numerical example revealed that the 
minimal achievable measurement uncertainty due to photon 
shot noise is comparably large although the largest number 
of particles can be measured simultaneously. Note that the 
numerical comparison was performed for an identical spati-
otemporal resolution as well as an identical mean photon rate.

The shot noise limits were studied for the case of meas-
uring a single seeding particle and the case of measuring 
multiple seeding particles and averaging. Averaging multi-
ple particle measurements over a given measurement time 
leads to a minimal achievable velocity measurement uncer-
tainty that is directly proportional to the absolute value of 
the velocity (LDA, L2F, PTV/PIV) and that is independ-
ent on the velocity value (PDV), respectively. Studying the 
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dependency on the spatiotemporal resolution, the meas-
urement uncertainty is always inversely proportional to 
the square root of the measurement time that here is the 
temporal resolution. The measurement uncertainty of the 
flow velocity is further inversely proportional to the spatial 
resolution for LDA, L2F, PTV/PIV and it does not depend 
on the spatial resolution for PDV, when an identical mean 
photon rate is considered.

For all measurement principles, the shot noise limit could 
be shown to obey an uncertainty principle that is in agreement 
with Heisenberg’s uncertainty principle and Poisson statistics: 
The product of the position uncertainty (that is the velocity 
uncertainty times the particle observation time in the inter-
rogation region) and the uncertainty of the respective wave 
vector component along the sensitivity direction is inversely 
proportional to the square root of the total number of detected 
photons. As a result, all studied Doppler and time-of-flight 
measurement principles obey the same fundamental limit 
from the perspective of quantum mechanics.

The theoretically identified limits provide a common solid 
basis to assess different laser-based flow velocity measure-
ment systems with respect to what is feasible from the per-
spective of photon shot noise (fundamental physical limita-
tion). Experimental studies must follow in the next step, in 
order to demonstrate shot noise-limited measurements for 
each measurement principle and to validate the theoretical 
findings. Furthermore, the dependency of the scattering light 
power and the signal’s sensitivity on the particle size as well 
as the angular scattering characteristic should be included 
in the estimation of the minimal achievable measurement 
uncertainty in future. Finally, shot noise is typically not the 
only limiting factor for laser-based flow velocity measure-
ments. Another fundamental physical aspect would be to 
compare the measurement capabilities for a non-constant 
flow velocity, which means to consider the effect of an 
accelerated flow and flow turbulence on the flow velocity 
measurement. Furthermore, the signal processing efficiency 
should be included in future comparison studies, because the 
velocity estimation algorithm might not be able to attain the 
Cramér–Rao bound (signal processing limitation). Future 
comparison studies should also include the effect of signal 
quantization over time or space (for PTV see Wernet and 
Pline 1993 for instance), respectively, as well as other una-
voidable error sources such as background light and refrac-
tive index changes in flame flows and two- or multi-phase 
flows. This means to compare the measurement principles 
with respect to current technological as well as application-
driven physical limitations.
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