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Abstract
The buffet flow field around supercritical airfoils is dominated by self-sustained shock wave oscillations on the suction side 
of the wing. Theories assume that this unsteadiness is driven by a feedback loop of disturbances in the flow field downstream 
of the shock wave whose upstream propagating part is generated by acoustic waves. High-speed particle-image velocimetry 
measurements are performed to investigate this feedback loop in transonic buffet flow over a supercritical DRA 2303 air-
foil. The freestream Mach number is M

∞
= 0.73 , the angle of attack is � = 3.5◦ , and the chord-based Reynolds number is 

Re
c
= 1.9 × 106 . The obtained velocity fields are processed by sparsity-promoting dynamic mode decomposition to identify 

the dominant dynamic features contributing strongest to the buffet flow field. Two pronounced dynamic modes are found 
which confirm the presence of two main features of the proposed feedback loop. One mode is related to the shock wave 
oscillation frequency and its shape includes the movement of the shock wave and the coupled pulsation of the recirculation 
region downstream of the shock wave. The other pronounced mode represents the disturbances which form the downstream 
propagating part of the proposed feedback loop. The frequency of this mode corresponds to the frequency of the acoustic 
waves which are generated by these downstream traveling disturbances and which form the upstream propagating part of 
the proposed feedback loop. In this study, the post-processing, i.e., the DMD, is highlighted to substantiate the existence 
of this vortex mode. It is this vortex mode that via the Lamb vector excites the shock oscillations. The measurement data 
based DMD results confirm numerical findings, i.e., the dominant buffet and vortex modes are in good agreement with the 
feedback loop suggested by Lee.

 * Antje Feldhusen-Hoffmann 
 a.feldhusen@aia.rwth-aachen.de

1 Institute of Aerodynamics and Chair of Fluid Mechanics, 
RWTH Aachen University, Wüllnerstr. 5a, 52062 Aachen, 
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-020-03111-5&domain=pdf


 Experiments in Fluids (2021) 62:66

1 3

66 Page 2 of 17

Graphic abstract

1 Introduction

A typical jet powered aircraft flies at transonic speed such 
that a supersonic region on the suction side of the air-
foil develops which is terminated by a shock wave. For 
increasing Mach numbers or angles of attack, the pressure 
rise across the shock wave might become high enough to 
lead to a shock-induced separation of the boundary layer 
downstream of the shock wave. Within this transonic flight 
regime, highly unsteady flow including self-sustained peri-
odic shock-wave oscillations, i.e., transonic buffet, might 
occur. The shock wave movement is a low frequency/large 
amplitude phenomenon. The resulting unsteady pressure 
distribution leads to unsteady loads acting on the wing 
structure. The aeroelastic response of the wing structure, 
the so-called buffeting, might lead to a critical state for 
the wing structure. To date, the mechanisms sustaining 
the shock-wave oscillations during buffet are not fully 
understood, yet. A detailed understanding of the buffet 
mechanisms are necessary to develop precise predic-
tion methods for the onset of buffet, to shift the buffet 

boundary to higher Mach numbers or angles of attack, and 
to find strategies to damp or even suppress buffet, which 
will enhance the operational performance of an aircraft. 
A comprehensive review on self-sustained shock wave 
oscillations on airfoils at transonic speeds has been given 
by Giannelis et al. (2017).

Despite intensive research, the mechanisms leading to 
buffet are still discussed controversially. Furthermore, the 
existing theories and models are usually restricted to spe-
cial airfoils and flow characteristics.

For supercritical airfoils, a widely recognized descrip-
tion of the self-sustaining shock wave oscillation has been 
given by Lee (1990). His theory gives an explanation for 
self-sustained shock wave oscillations and a method to 
estimate the shock-wave-oscillation frequency for buf-
fet flows around supercritical airfoils where the shock 
wave oscillates sinusoidally on the upper airfoil surface 
and induces a complete boundary-layer separation down-
stream. The basic idea is that disturbances which propa-
gate up- and downstream within the flow field downstream 
of the shock wave form a feedback loop. According to Lee, 
the oscillating shock wave generates large-scale turbulent 
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structures that propagate downstream and generate pres-
sure waves while passing over the sharp trailing edge of 
the airfoil. These pressure waves travel also upstream and 
exchange energy with the shock wave, enhancing its oscil-
latory motion.

Xiao et al. (2006), Deck (2005), and Hartmann et al. 
(2012, 2013a, b), found excellent agreement of their numeri-
cal and experimental results with Lee’s theory.

Hartmann et al. (2013a) refined the feedback model pro-
posed by Lee (1990). The experiments by Hartmann et al. 
(2013a) revealed that the sound waves generated at the trail-
ing edge and presenting the upstream propagating part of 
the feedback loop possess a high frequency which is about 
ten times higher than the shock-wave-oscillation frequency. 
Therefore, there has to be another low-frequency mecha-
nism present in the flow field which forces the shock wave 
to oscillate at a frequency much lower than the trailing-edge 
noise. It is expected by Hartmann et al. (2013a) that the 
sound pressure level (SPL) of the sound waves originating 
at the trailing edge varies with a frequency that corresponds 
to the buffet frequency, i.e., the shock oscillation frequency. 
On the one hand, the relative velocity between the incoming 
flow and the oscillating shock wave is higher when the shock 
wave moves upstream. It triggers stronger disturbances 
which convect downstream towards the trailing edge. Hence, 
acoustic waves of an elevated SPL are generated which force 
the shock wave to move upstream while interacting with it. 
On the other hand, the shock wave is weaker when it moves 
downstream and excites weaker disturbances which convect 
downstream towards the trailing edge. As a consequence, 
acoustic waves with a lower SPL are generated which allow 
the shock wave to move back to its downstream position 
while interacting with it. In other words, the SPL of the 
trailing-edge noise and the frequency of the shock movement 
are supposed to be coupled. The findings of Feldhusen-Hoff-
mann et al. (2018) obtained from wind-tunnel experiments 
confirmed the expected variation of the SPL in the trailing-
edge region of the airfoil during buffet. Crouch et al. (2009) 
performed URANS simulations of the transonic flow around 
a symmetrical NACA 0012 profile for varying freestream 
Mach numbers and angles of attack, and a chord-based 
Reynolds number of Re

c
= 107 . A global stability analysis 

of the transonic airfoil flow was carried out to predict the 
onset of flow instabilities. A set of linearized equations was 
deduced from the Navier–Stokes equations which forms an 
eigenvalue problem governing the complex frequency and 
the shape of the global modes. The origin of buffet was pre-
dicted by the onset of an instability. The stability boundary 
as a function of the Mach number and angle of attack is 
in very good agreement with the boundary obtained from 
experimental data by McDevitt and Okuno (1985) for Mach 
numbers below 0.8. The shape of the fluctuating streamwise 
velocity component of the unstable mode shows a coupled 

movement of the shock wave and the boundary layer down-
stream of the shock wave. On the one hand, the shape of the 
pressure fluctuations of the unstable mode reveals pressure 
perturbations originating near the shock wave foot moving 
upward along the shock wave and finally forward into the 
sonic zone. On the other hand, pressure fluctuations move 
downstream behind the shock wave, intensify, spread around 
the trailing edge, and propagate along the airfoil’s pressure 
side until they enter into the sonic zone upstream of the 
shock wave. The observed pressure wave propagation is 
qualitatively different from the buffet model proposed by 
Lee (1990).

In this study, it is attempted to give further insight into the 
mechanisms of the buffet phenomenon. The buffet flow field 
around a supercritical airfoil is analyzed by dynamic mode 
decomposition (DMD). The velocity data are determined in 
wind tunnel experiments.

The dynamic mode decomposition (Schmid 2010) is a 
data-based technique which decomposes the underlying 
sequence of flow data into spatio-temporal coherent struc-
tures, i.e., dynamic modes. Each dynamic mode is associated 
with a single characteristic frequency, a growth or decay rate 
and an amplitude. On the one hand, DMD can be used for a 
reduced-order representation of the flow field, since the full 
dynamic system can be projected onto a subspace spanned 
by several extracted modes. On the other hand, it is an effec-
tive tool to search for physical mechanisms describing the 
underlying flow field evolution. There are many decompo-
sition methods, the most common of which are the proper 
orthogonal decomposition (POD) method (Lumley 1967) 
and the global stability analysis. The POD modes gener-
ally are multi-frequential and the modes are sorted by their 
energy content, which in general does not allow any conclu-
sion about the dynamical importance. The dynamic modes, 
however, are orthogonal in time and contain therefore only 
a single temporal frequency. Since the dominant features 
of the buffet phenomenon are related to characteristic fre-
quencies, the decomposition by DMD is more suitable than 
the decomposition by POD. Furthermore, the decay rate of 
the dynamic modes reveals transient modes which are less 
dynamically important. The global stability analysis relies 
on the knowledge of the governing equations of the dynami-
cal system under investigation. It is therefore not appropriate 
for the decomposition of experimental data. DMD, however, 
relies on the evaluation of time-discrete snapshot flow data 
and is therefore suitable to analyze experimental data. The 
dynamic modes can be regarded as a generalization of the 
global stability modes for nonlinear flow dynamics (Schmid 
2010). If the underlying flow is linear or linearized, the 
dynamic modes are equivalent to the global modes result-
ing from the global stability analysis (Schmid 2010). This 
discussion shows the DMD technique to be an appropri-
ate means for analyzing nonlinear dynamics of flow fields 
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which are available as velocity snapshots. The assignment 
of dynamic modes to a single frequency will allow the rev-
elation of possible couplings of flow structures. Since the 
dynamic modes are associated with a growth or decay rate, 
transient quickly decaying modes, which are of less dynami-
cal importance, can be identified. The formalisms of DMD 
will be given in Sect. 3.

Since its introduction, DMD has extensively been used 
for the investigation of flow fields comprising jets, shock-
wave/turbulent boundary layer interaction, wakes of airfoils 
and high-speed trains, wind turbine flow, and thermo-acous-
tic instabilities. These and other examples can be found in 
the comprehensive list of Rowley and Dawson (2017) com-
piled in their review on model reduction for flow analysis 
and control.

Several researchers applied DMD to the transonic buffet 
airfoil flow (Masini et al. 2018; Ohmichi et al. 2018; Kou 
and Zhang 2017; Kou et al. 2018; Gao et al. 2017; Popling-
her et al. 2019). In these studies, the input data are pressure 
snapshots obtained numerically by unsteady Reynolds-aver-
aged Navier–Stokes equations simulations (URANS) using 
the Spalart-Allmaras turbulence model. Masini et al. (2018) 
and Ohmichi et al. (2018) analyzed the three-dimensional 
shock buffet flow of swept wings. Only a few studies applied 
DMD to the two-dimensional shock buffet flow (Kou and 
Zhang 2017; Kou et al. 2018; Gao et al. 2017; Poplingher 
et al. 2019). The investigations comprise flows around a 
NACA 0012 airfoil (Kou and Zhang 2017; Kou et al. 2018; 
Gao et al. 2017) and around a supercritical RA16SC1 airfoil 
(Poplingher et al. 2019).

Kou and Zhang (2017) and Kou et al. (2018) performed 
flow reconstruction and prediction of periodic dynamics 
from the initial unstable transient flow solution based on 
dynamic modes. Besides the time-invariant mode, they 
found dominant modes related to the shock wave movement 
and its coupling to the boundary layer. However, the buffet 
mechanism was not further examined.

Gao et al. (2017) realized an active control to suppress 
buffet in an unstable steady airfoil flow being perturbed by 
trailing edge flap oscillations. DMD was used as a com-
plementary tool to detect dominant frequencies and coher-
ent structures. They found the dominant periodic dynamic 
modes to result from the shock wave movement and the 
respective frequency to be the shock-wave-oscillation fre-
quency or multiples of it. Since the dominant buffet mode 
is damped but present under active flow control, the authors 
stated that buffet occurs due to a global instability, support-
ing the findings of Crouch et al. (2009).

Poplingher et al. (2019) used DMD of the transonic super-
critical RA16SC1 airfoil flow to find dominant dynamic 
modes describing the buffet flow, to reconstruct the flow 
field, and to investigate the response of the pre-buffet unsta-
ble flow to excitations with the vertical velocity component. 

The frequencies of the dominant periodic dynamic modes 
are multiples of the shock-wave-oscillation frequency and 
the mode shapes present pressure gradients in the shock 
travel region and in the boundary layer downstream of the 
shock wave. The authors stated, however, that trailing edge 
vortex shedding cannot be identified with certainty due to 
restrictions given by the URANS modeling and the grid 
resolution in the wake area. The time–space modal history 
of the buffet mode revealed similar pressure propagation 
as found by Crouch et al. (2009). The investigation of the 
modal excitation showed buffet-like mode shapes oscillat-
ing with a frequency close to that during buffet onset. The 
dominant buffet mode is damped but this damping decreases 
to zero at buffet onset conditions.

The present study applies DMD to experimental velocity 
data of the transonic buffet flow around the supercritical 
DRA 2303 airfoil. The analysis evidences individual domi-
nant periodic dynamics of the buffet flow, comprising not 
only the shock wave oscillation but also the sharp trailing 
edge vortex shedding. The dominant modes are extracted 
by combining a priori knowledge of dominant frequencies 
resulting from preceding investigations with results from 
sparsity-promoting DMD (SP-DMD). Since the transonic 
buffet flow exhibits some periodic features, DMD will help 
to capture the dominant frequency information and stability 
characteristics. In this context, DMD is not used to recon-
struct or predict the flow behavior but to gain further insight 
into the mechanisms of buffet.

In contrast to the previously mentioned studies, in this 
work measurement data determine the input snapshots for 
the DMD analysis of a two-dimensional transonic buf-
fet flow field. The results will show that experimentally 
obtained velocity distributions are suitable as input data for 
the DMD analysis of this particular flow case. An a priori 
investigation is performed to show the sensitivity of the 
SP-DMD results with regard to the number of snapshots as 
input data. Since the velocity data are recorded by a high 
sampling rate, it is possible unlike in the study of Poplingher 
et al. (2019) to detect the trailing-edge vortex shedding by 
DMD. Other than in the studies (Masini et al. 2018; Ohmichi 
et al. 2018; Kou and Zhang 2017; Kou et al. 2018; Gao et al. 
2017; Poplingher et al. 2019), in which only indications of 
the theory of Crouch et al. (2009) were found, the current 
measurement data based DMD results corroborate Lee’s 
theory (Lee 1990).

The paper is structured as follows. The Introduction is fol-
lowed by the description of the experimental setup in Sect. 2. 
In Sect. 3, the DMD approach is concisely presented. In the 
results Sect. 4, some characteristics of the DRA 2303 buffet 
flow field, which are known from previous investigations, are 
described in Sect. 4.1 to allow a comparison of the former 
findings with the results determined by the DMD analysis. 
The DMD results of the DRA 2303 airfoil buffet flow are 
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given in Sect. 4.2, followed by concluding remarks given 
in Sect. 5.

2  Experimental setup

2.1  Wind tunnel

All measurements are performed in the trisonic vacuum stor-
age wind tunnel of the Institute of Aerodynamics, RWTH 
Aachen University. A sketch of the tunnel is shown in Fig. 1. 
A compressor evacuates four vacuum tanks with an overall 
volume of 380m3 downstream of the closed test section. 
The air from the tanks is guided through a silica gel based 
drier and stored in a settling reservoir upstream of the test 
section under ambient conditions. The drier ensures that the 
relative humidity of the air is kept below 4% to minimize any 
influence of the humidity on the shock wave position (Binion 
1988). To initiate a run, the main quick-acting valve down-
stream of the diffuser opens and the air flows through the test 
section. The turbulence intensity of the flow entering the test 
section is less than 1%. Since the tunnel works intermittently, 
the measurement time with stable flow conditions is limited 
to two to three seconds depending on the Mach number. The 
Mach number can be varied from M

∞
= 0.3 to M

∞
= 4.0 , 

whereas the Reynolds number depends on the Mach num-
ber and on the ambient conditions in the dry-air reservoir. 
Therefore, the unit Reynolds number Re∕L is restricted to 
the range of 12 × 106 m−1 ≤ Re∕L ≤ 14 × 106 m−1 for the 
transonic Mach number regime.

During the run of the tunnel, the instantaneous Mach 
number is recorded by unsteady pressure data using a pres-
sure sensor mounted upstream of the test section. When the 
desired Mach number is reached a trigger signal is released 
with a short delay such that the PIV acquisition starts. This 
ensures that the wind tunnel flow is stable during the meas-
urement time.

The test section possesses a square cross section of 
0.4m × 0.4m and a length of 1.41m . For the investigation of 
transonic flows, the flexible upper and lower adaptive walls 

of the test section simulate unconfined flow conditions by 
solving the 1D-Cauchy integral based on the steady pressure 
distribution along each wall measured during the previous 
run.

The inflow parameters of the wind tunnel were set to the 
freestream Mach number M

∞
= 0.73 and the angle of attack 

� = 3.5◦ . The chord-based Reynolds number, which depends 
on the Mach number M

∞
 and on the ambient conditions, 

was Re
c
= 1.9 × 106 . Under these conditions the DRA 2303 

airfoil model exhibits distinct shock wave oscillations, i.e., 
buffet (Hartmann et al. 2013a).

2.2  Airfoil model

The flow over a supercritical laminar type DRA 2303 pro-
file with a chord length of 0.15m is measured. It is a two-
dimensional model spanning the complete test section width. 
The relative ratio of the airfoil thickness to chord length is 
14% which leads to a blockage of about 5% when mounted 
inside the adaptive test section. Note that for the wing model 
with constant cross-section in the spanwise direction the buf-
fet characteristics differ from those for three-dimensional 
wings, where the most severe large-scale unsteadiness 
occures at the wing tip and the flow frequencies are approxi-
mately one order of magnitude higher and more broadband 
(Roos 1985).

The airfoil model is made of two carbon fiber laminate 
sandwich shells and incorporates a steel beam inside which 
ensures a rigid mounting in the test section. Laminar to tur-
bulent transition is imposed by a 117 μ m thick zigzag stripe 
located at 5% chord on both suction and pressure side. The 
width of the zigzag transition stripe is 5 mm. A photo of the 
airfoil model is shown in Fig. 2.

2.3  Particle‑image velocimetry

The PIV setup installed at the trisonic wind tunnel is shown 
in Fig. 3. Prior to each test run, a Laskin nozzle genera-
tor seeds the dry air inside the tunnel reservoir with poly-
disperse Di-Ethyl-Hexyl-Sebacate (DEHS) droplets with a 
mean diameter of less than 1 μm . Inside the test section, the 
particles are illuminated by a Nd:YLF Darwin Duo 527-
100-M high-speed laser. Since two oscillators are installed 

dry-air reservoir 
(volume = 165 m  )3

settling chamber 
nozzle

test section 

main 
valve 

vacuum tanks 
(volume = 4 x 95 m  )3

compressor 
(power = 400 kW) 

reservoir valve 

drier

diffuser 

freestream chamber 

Fig. 1  Sketch of the trisonic wind tunnel

Fig. 2  Photograph of the supercritical DRA 2303 airfoil
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inside a single laser head, very high repetition rates can 
be achieved. The pulse width is less than 210 ns, which is 
adequate for the underlying flow. The total pulse energy at a 
repetition rate of 1 kHz is 60 mJ. The laser is installed out-
side and separated from the tunnel to protect it from tunnel 
vibrations. A system of mirrors and a light-sheet optic span 
the laser beam and deflect it to the test section. The beam 
can enter the test section through a slot in the freestream 
chamber. The light of the laser spans a 1 mm thick vertical 
streamwise measurement plane in the midspan region of the 
airfoil’s suction side.

A Photron Fastcam SA5 high-speed camera with 
1024 × 1024 pixel resolution is used to record the for-
ward scattered light of the seeding particles. The cam-
era is installed perpendicular to the measurement plane. 
The images are acquired using the frame straddling tech-
nique and the pulsation of the lasers and the opening of 

the camera shutters are synchronized with an ILA GmbH 
synchronizer. The sampling frequency is fs,PIV = 4000 Hz.

The correlation of the raw images was performed 
using PIVView from ILA GmbH by applying a multi-grid 
interrogation method. The correlation was preceded by 
a background-subtraction for image pre-processing. The 
correlation was followed by a vector outlier detection 
using a maximum displacement filter and a dynamic mean 
test filter. Table 1 lists the hardware, the settings, and the 
resulting data of the PIV setup.

The uncertainty in determining the flow velocity is domi-
nated by the uncertainty in the estimation of the particle 
displacement. This is due to the findings that for the given 
laser pulse separation time of 9 μs > 1μs the error from the 
laser pulse separation time can be neglected (Lazar et al. 
2010), and for reliable calibrations the magnification and 
calibration uncertainties can also be neglected (dos Santos 
et al. 2019). Given that the particle image diameter equals 3 
pixels or more and applying multi-pass interrogation algo-
rithms employing image deformation techniques, the typical 
error value for the displacement is on the order of 0.1 pixel 
(Adrian et al. 2011; Adrian 1986; Raffel et al. 2018; Wester-
weel 1993, 1997, 2000). Thus, a conservative estimation of 
the measurement error yields uncertainties of 0.7% in terms 
of the incoming flow velocity.

3  Dynamic mode decomposition

In the DMD flow field data, e.g., velocity data v(x, t) are 
decomposed into n spatial modes �

n
(x) with the ampli-

tudes a
n
 , and the complex frequencies �

n

The flow field data are collocated from numerical simula-
tions or measurements as a sequence of N snapshots, e.g., 
velocity fields, equispaced in time with the time step Δt in 
the time interval t = [0, (N − 1)Δt] . The snapshot sequence 
is column-wise stored in a data matrix

(1)v(x, t) =
∑
n

a
n
e�nt�

n
(x).

M∞

0.
4 

m y,v

M∞

0
.4

 m

z,w

x,u

DRA 2303 airfoil model

lasermirror

lightsheet optics

mirror

adaptive wall

laser

camera

Fig. 3  Schematic of the trisonic wind tunnel and the PIV setup [top 
view (top), side view (bottom)] with the airfoil model installed

Table 1  Specifics of the 
particle-image velocimetry 
setup

Hardware and settings Resulting data

Camera Fastcam SA5 Measurement area 0.15 ≤ x∕c ≤ 1.16

Lens Nikkor 85 mm f/1.8D Resolution 1024 × 888 pixel
Laser Darwin Duo 527-100-M Initial window size 96 × 96 pixel
Light-sheet thickness 1 mm Final window size 24 × 24 pixel
Laser pulse separation time 9 μs Window overlap 50 %
fs,PIV 4000 Hz Final vector spacing 1.78 mm
Number of captured buffet cycles ∼ 265
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where the subscript denotes the first entry and the super-
script the last entry in the sequence. The spatial dimension 
M of the data is typically much larger than the number of 
snapshots N, i.e., M ≫ N  . A linear mapping is assumed 
which is approximately the same over the full sampling 
interval

allowing the sequence to be described as a Krylov sequence 
(Greenbaum 1997; Trefethen and Bau III 1997)

If the snapshots are derived from flow fields with nonlin-
ear dynamics, this assumption is equal to a linear tangent 
approximation. The sought characteristics of the dynamical 
process described by the sequence VN

1
 can be extracted from 

the matrix A by calculating its eigenvectors and eigenvalues. 
However, A is usually hard to determine due to its vast size 
of M ×M with M ≫ N . Using DMD, a low-order represen-
tation of A is determined which equally captures the dynam-
ics of the snapshot sequence.

Schmid (2010) introduced a robust implementation by 
extracting the dynamic characteristics from a ’full and robust’ 
DMD matrix Fdmd ∈ ℂ

N−1×N−1 being a low-dimensional rep-
resentation of the linear intersnapshot operator A on the sub-
space spanned by the basis U

with (⋅)∗ denoting the conjugate transpose of a matrix. 
Robustness is achieved by determining U via a singular 
value decomposition (SVD) of the snapshot sequence

The quantities, U ∈ ℂ
M×(N−1) and W ∈ ℂ

(N−1)×(N−1) 
are the left and right singular vectors and the matrix 
� ∈ ℂ

(N−1)×(N−1) contains the singular values of the snap-
shot sequence VN−1

1
.

The matrix Fdmd describes the dynamics of the snapshot 
sequence, which has originally been described by the matrix 
A in Eq. (3), on the subspace spanned by the basis U such that

The eigenvalue decomposition of the DMD matrix

yields the so-called Ritz eigenvalues �
n
 and the eigenvec-

tors y
n
.

The dynamic modes are obtained by multiplying the right 
singular vectors of the snapshot sequence VN−1

1
 with the 

(2)VN

1
=

[
v1, v2, v3,… , v

N

]
, v

i
∈ ℝ

M ,

(3)v
i+1 = Av

i
, i ∈ {1,… ,N − 1}

(4)VN

1
=

[
v1,Av1,A

2v1,… ,AN−1v1
]
.

(5)Fdmd ≡ U∗AU

(6)VN−1
1

= U�W∗.

(7)x
i+1 = Fdmdxi.

(8)FdmdY = �Y

nth eigenvector �
n
∶= Uy

n
 and their corresponding ampli-

tude based on the first snapshot is given by a
n
∶= z∗

n
x1 with 

{z∗
1
,… , z∗

N−1
} being the eigenvectors of F∗

dmd
 and x1 represent-

ing the initial condition. The snapshots are approximated by a 
linear combination of the dynamic modes

which can be written in matrix form for the discrete snapshot 
sequence

The matrix filled with the geometric progression of the 
Ritz eigenvalues is called Vandermonde matrix Vand and 
describes the temporal evolution of the modes. The matrix 
D

a
 contains the optimized amplitudes based on all snap-

shots a
n
 of the modes which can be found by minimizing 

the objective function

with ‖ ⋅ ‖
F
 being the Frobenius norm. For input data from 

experiments or numerical simulations contaminated by 
noise and/or other uncertainties, the matrix � usually has a 
full rank such that the DMD analysis yields the maximum 
number of (N − 1) modes and eigenvalues. The classical 
optimized DMD generally extracts r ≤ (N − 1) modes with 
r being the rank of the matrix � , which results from the 
SVD of the snapshot sequence given in Eq. (6). Knowing 
the complex quantities {a

n
,�

n
,�n} , it follows from Eqs. (1) 

and (9) that

Thus, the real part �r of the complex frequency contains 
information about the growth or decay rate of the DMD 
mode. The dynamic mode is stable for decaying �r , i.e., 
𝜆r < 0 , and unstable for an excited �r , i.e., for 𝜆r > 0 . For 
�r = 0 , the mode is a stable mode which is present through-
out the whole snapshot sequence. Transient modes, which 
do not contribute significantly to the data sequence, are 

(9)v
i
=

N−1∑
n=1

a
n
(�

n
)
i−1�

n
, i ∈ {1,… ,N − 1},

(10)

�
v1, v2,… , v

N−1

�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

VN−1

1

=

�
�1,�2,… ,�

N−1

�
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characterized by a high decay rate 𝜆r ≪ 0 and therefore 
by complex Ritz eigenvalues �

n
 with an absolute value of 

r
n
≪ 1 [see Eq. (12)]. Periodic stable Ritz eigenvalues are 

characterized by an absolute value of r
n
= 1 . The imagi-

nary part �i of the complex frequency contains informa-
tion about the temporal periodicity of the DMD mode, 
given in the unit [rad]. The frequency in the unit [Hz] is 
f = ℑ(ln(�

n
))∕(2�Δt) . For �i = 0 , the respective frequency 

is zero meaning that the dynamic mode represents the mean 
mode. Due to real input data, the Ritz eigenvalues �

n
 with a 

non-zero frequency appear as pairs of complex conjugates 
of the same frequency and decay or growth rate. Detailed 
information on the DMD method and its application can be 
found in Schmid (2010) and in recent review papers (Rowley 
and Dawson 2017; Taira et al. 2017, 2020).

Identifying the dynamically relevant modes is usually 
not straightforward and makes the ’manual’ mode selection 
very tedious in practice. The standard approach to select the 
dominant dynamic modes by their amplitude a

n
 is often not 

reasonable since transient modes are likely to appear with 
artificially high amplitudes as will be shown in the following 
section. There exist, however, some pre- and post-processing 
approaches to identify dynamically relevant modes, which 
can be applied depending on the problem under investigation 
and the main objective of the analysis. In this study, DMD 
mode selection based on the comparison to the spectral 
analyses and on the sparsity-promoting DMD (SP-DMD) 
have been applied. They will be explained in the following.

A preceding spectral analysis by, e.g., FFT or the PSD 
function of the data, can help to find distinct frequencies, 
and thus eigenvalues, which are dominant in the flow field 
and should be further analyzed by DMD.

The SP-DMD, introduced by Jovanović et al. (2014), is 
an extension of the standard DMD algorithm which seeks a 
subset of DMD modes that have the most substantial influ-
ence on the quality of the approximation of the snapshot 
sequence. Note, however, that the SP-DMD also might select 
transient modes. The user defines a tradeoff between the 
approximation error and the number of extracted modes. 
A constraint consisting of a penalty term for the number of 
non-zero elements in the amplitude vector a is introduced to 
the least-squares problem given in Equation (11) and forces 
a sparse solution

The parameter � is the positive regularization parameter. The 
larger its value, the more zero elements exist in the ampli-
tude vector a . This sparsity structure is fixed in the following 
and the optimal amplitudes are computed for the resulting 
subset of dynamic modes. Jovanović et al. (2014) developed 
an efficient algorithm to solve the regularized least-squares 

(13)minimize
a

‖VN−1
1

−�D
a
Vand‖2F + �

N−1�
n=1

�a
n
�.

problem given in Eq. (13) which uses the alternating direc-
tion method of multipliers (ADMM). The ADMM algorithm 
requests the user to choose a maximum number of iterations, 
to set the augmented Lagrangian parameter, or step-size 
parameter, � , which also determines the rate of convergence 
of the algorithm, and to give the absolute and relative toler-
ances �abs and �rel for the minimization steps. The step-size 
parameter 𝜌 > 0 influences the convergence speed of the 
algorithm (Ghadimi et al. 2012). Furthermore, large val-
ues of � diminish the primal residual and augment the dual 
residual of the optimization problem and the opposite is true 
for small values of � . It has been shown, however, that the 
ADMM method converges for all values of � (Boyd et al. 
2011). The primal and dual residuals of the optimization 
problem can be used to define stopping criteria �abs and �rel 
for the ADMM algorithm (Boyd et al. 2011). The details are 
given in Jovanović et al. (2014). Tu et al. (2014) addressed 
the appropriate selection of dominant dynamic modes and 
noted that the SP-DMD approach proposed by Jovanović 
et al. (2014) is well suited for the DMD analysis.

4  Results

In this section, the results of the experimental study of the 
DRA 2303 buffet flow field are presented. First, a general 
description of the flow field is given in Sect. 4.1, i.e., the 
main flow features and dominant frequencies are empha-
sized. This overview is used to justify the selection of rel-
evant dynamic modes based on the comparison to spectral 
analyses as mentioned in Sect. 3. Furthermore, this overview 
allows to evaluate whether the dominant features of the buf-
fet flow and the proposed feedback loop (Lee 1990) are cor-
rectly detected by the SP-DMD analysis.

4.1  Description of the DRA 2303 buffet flow field

The main characteristics of the feedback loop proposed 
by Lee (1990) present in the buffet flow field around the 
supercritical DRA 2303 airfoil have been previously 
investigated experimentally by Hartmann et al. (2013a) 
and Feldhusen et al. (2013, 2015) for the same freestream 
conditions of M = 0.73 and � = 3.5◦ . This study is a 
direct continuation of the aforementioned investigations. 
Note that exactly the same data set as in Feldhusen et al. 
(2013) is used. In the following, just a concise descrip-
tion of the primary features is given. Note that the chord 
length of the DRA 2303 airfoil model used by Hartmann 
et al. (2013a) was 200 mm and thereby larger than the 
chord length of the DRA 2303 model used in Feldhusen 
et al. (2013, 2015), and in this study. However, since the 
reduced frequency 𝜔⋆

= 2𝜋fc∕u
∞

 is the same, the results 
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can be compared. A shock wave occurs on the suction side 
of the DRA 2303 airfoil that induces a boundary layer 
separation which extends to the sharp trailing edge. The 
shock wave oscillation frequency fbuffet = 170 Hz is illus-
trated in Fig. 4.

The broadband shock wave motion is coupled to the 
pulsation of the recirculation region with a small phase 
lag, i.e., the shock wave movement precedes the pulsa-
tion of the boundary layer. When the shock wave moves 
upstream, the size of the recirculation region grows nor-
mal to the airfoil upper surface such that the extension of 
the recirculation region is largest when the shock wave 
is located most upstream. When the shock wave moves 
downstream, the extension of the recirculation region 
diminishes and is smallest when the shock wave is located 
most downstream. The shock wave motion provokes down-
stream propagating disturbances which generate upstream 
traveling disturbances when passing over the trailing edge. 
Following the analysis in Feldhusen et al. (2013), the wave 
propagation characteristics of these upstream propagating 
disturbances in the flow field on the suction side of the 

airfoil are known from the spatio-temporal correlation of 
unsteady flow velocity data

illustrated in Fig.  5a. The fluctuation quantities of the 
absolute velocities U�

n
(t) and U�

m
(t + �) separated by the 

time delay � and located at the positions x
n
∕c = const. and 

varying x
m
∕c along the time-averaged streamline shown in 

Fig. 5b are correlated. The propagation speed of the distur-
bances is determined by the slope of the line connecting the 
high correlation values in the spatio-temporal correlation 
plots and the frequency of the disturbances can be deduced 
from the distance of the periodic pattern of the lines con-
necting high correlation values. This analysis yields distur-
bances propagating upstream with a frequency fTE = 1100 
Hz and a velocity 85m s−1 . These disturbances form the 
upstream propagating part of the suggested feedback loop. 
When reaching the shock wave, they maintain its oscillation. 
Since the frequency of the upstream propagating trailing-
edge noise differs from the frequency of the shock wave 
oscillation, it is assumed (Hartmann et al. 2013a) that the 
trailing-edge noise varies in its strength with a frequency 
corresponding to the shock wave oscillation frequency. 
The stronger sound pressure level forces the shock wave to 
move upstream while a lower sound pressure level allows 
the shock wave to move downstream. The moving shock 
wave causes downstream propagating vortices of different 
strengths depending on the relative velocity of the shock 
wave with respect to the incoming flow. When these vor-
tices pass over the trailing edge, they provoke noise with a 
varying sound pressure level. This closes the proposed feed-
back loop mechanism. Further details of the feedback loop 
mechanisms are discussed, e.g., in Hartmann et al. (2013a) 
and Feldhusen-Hoffmann et al. (2018).

(14)R
nm
(x, �) =

U�

n
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m
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Fig. 4  Amplitude spectrum of the FFT analysis of the signal of a 
pressure transducer located in the shock wave region at x∕c = 0.42 
on the upper side of the DRA 2303 airfoil from Ref. Feldhusen et al. 
(2013). The frequency is given as reduced frequency �∗

= 2�fc∕u
∞

Fig. 5  Correlation of the abso-
lute velocities R

nm
(x, �) along 

a time-averaged streamline 
(Feldhusen et al. 2013)
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4.2  DMD analysis of the DRA 2303 buffet flow

In this section, the dynamic mode decomposition of the 
experimentally determined DRA 2303 transonic buffet flow 
field is presented. The u-velocity field and the v-velocity 
field are arranged on top of each other in a single snapshot 
matrix. Since the range of the velocity data varies widely, the 
data are scaled in a preprocessing step by normalizing them 
with the maximum value of the u- and v-velocity component. 
First, the number of relevant modes is reduced by SP-DMD, 
presented in Sect. 4.2.1. Two dynamically important modes 
which represent main features of the proposed feedback loop 
(Lee 1990), namely the buffet mode and the vortex mode, are 
pointed out in Sects. 4.2.2 and 4.2.3. Finally, further stable 
modes are presented in Sect. 4.2.4.

4.2.1  Reducing the number of modes by SP‑DMD

The appropriate number of snapshots that should be fed into 
the DMD algorithm is determined by balancing the stability 
of the modes and the number of dynamic modes. Transient 
phenomena due to the onset and offset of buffet during the 
start and the shutdown of the flow in the wind tunnel are 
not taken into account in the snapshots for the DMD such 
that the flow field of the snapshots is periodic. Therefore, 
no physically transient modes that are related to the buf-
fet phenomenon are expected to be present in the snapshot 
sequence. On the one hand, there exists a lower limit for the 
number snapshots that should be fed into the DMD algo-
rithm to correctly resolve the low-frequency shock oscilla-
tion motion and on the other hand, the interpretation of the 
DMD results and the extraction of dominant modes becomes 
more complex with an increasing number of snapshots.

As stated in the previous section, transient Ritz eigenval-
ues are characterized by an absolute value of r

n
≪ 1 , i.e., 

they are inside the unit disk when being plotted in the com-
plex plane. Stable Ritz eigenvalues defined by r

n
= 1 accu-

mulate on the unit circle. Figure 6a shows the Ritz eigen-
values plotted in the complex plane together with the unit 
circle for N

z
= 1900 snapshots. Several values for N

z
 have 

been tested. For N
z
= 1600 , the saturation point is reached 

such that for 1600 snapshots or more there is no significant 
decrease of unstable Ritz eigenvalues. To be on the safe side, 
N
z
= 1900 snapshots have been chosen, which corresponds 

to about 80 buffet cycles. These snapshots are not taken from 
the beginning or end but from the intermediate measurement 
time. They are used for the following analysis.

The spectrum of eigenvalues is symmetric with respect to 
the real axis. The eigenvalue (ℜ(�),ℑ(�)) = (1, 0) is associ-
ated with a frequency of zero and represents the time-invariant 
mode, i.e., the mean mode. Since most of the Ritz eigenvalues 
cluster on the unit disk, only a few unstable dynamic modes 
are present in the spectrum. In Fig. 6b, the amplitudes of the 

modes are plotted versus the growth/decay rates. The red line 
marks a growth/decay rate of zero, i.e., stable modes. The 
modes with high amplitudes are associated with high decay 
rates. Since these modes vanish quickly at the beginning of 
the snapshot sequence due to their very high decay rate, they 
are transient. Strongly decaying modes with high amplitudes 
are often present in DMD analyses, see, e.g., (Jovanović et al. 
2014, Fig. 4c) . That is, even when analyzing a stable or peri-
odic flow where no transient flow dynamics are present, this 
artefact of high amplitude quickly decaying modes appears. 
Therefore, these modes are not related to the periodic buf-
fet phenomenon, which is present during the whole snapshot 
sequence. In other words, ranking the relevance of the dynamic 
modes by their amplitude is not reasonable.

Instead, dominant dynamic modes have been extracted by 
SP-DMD (Jovanović et al. 2014). Overall, 100 values in the 
interval [1, 105] for the regularization parameter � for non-
zero amplitudes have been tested. The optimal choice of the 
step-size parameter � is still subject of ongoing research (see, 
e.g. Ghadimi et al. 2012). Here, � = 1 is used as proposed by 
Jovanović et al. (2014). Since the convergence rate was suffi-
cient, an optimization by varying this parameter was not neces-
sary. Boyd et al. (2011) stated �rel = 10−3 or 10−4 as reasonable 
values for the relative tolerance. In this study �rel = 10−4 has 
been chosen. The maximum absolute truncation error was set 
to 10−6.

Figure 7a shows the degradation of performance with 
increasing values of � . The performance loss is given by

The performance loss is thus the residual ‖VN

1
− �D

a
Vand‖F 

of the representation of the snapshots VN

1
 resulting from SP-

DMD normalized by ‖VN

1
‖
F
 . Note that the output of the 

SP-DMD analysis is sensitive to the choice of the regulari-
zation parameter � for non-zero amplitudes, i.e., the num-
ber of non-zero amplitudes N

z
 . Therefore, the approach for 

finding a suitable value for the regularization parameter is 
driven by the results obtained from Hartmann et al. (2013a) 
and Feldhusen et al. (2013). For the simplest case N

z
= 1 , 

the time-invariant mode representing the mean mode is 
selected by SP-DMD. Up to N

z
= 19 , only low-frequency 

modes ( f < 50 Hz) are selected. The characteristic buf-
fet frequency fbuffet = 170 Hz appears for N

z
> 29 . When 

the number of non-zero amplitudes N
z
 is further increased, 

the frequency spectrum of the selected modes expands to 
lower and higher frequencies. For the finally chosen value 
of N

z
= 115 , the high frequency of the trailing-edge noise 

fTE = 1100 Hz appears for the first time in the DMD spec-
trum. Since the previously determined characteristic fre-
quencies fbuffet = 170 Hz and fTE = 1100 Hz are present in 
the SP-DMD spectrum for N

z
= 115 , these snapshots have 

Πloss = 100
‖VN

1
− �D

a
Vand‖F

‖VN

1
‖
F

%.
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been chosen for the following investigations. This results in 
a regularization parameter of � = 533.7 , that also defines 
the limit below which the number of modes increases rap-
idly (see Fig. 7b), and a performance loss below 10% , i.e., 
Πloss = 9.3211% (see Fig. 7a).

The spectrum of the SP-DMD analysis for � = 533.7 
in the physical frequency domain is given in the plots of 
Fig. 8. Since the eigenvalues appear as complex conjugate 
pairs with the same frequency, a one-sided representation 
with respect to the frequency is sufficient. The amplitudes 
a
n
 in Fig. 8a are normalized by the amplitude of the time-

invariant mode a1 . The red horizontal line in Fig. 8b marks 
a growth/decay rate of zero such that eigenvalues lying 
on this line are stable throughout the snapshot sequence. 
Since the absolute values of the decay rates are overall 
much lower than in the spectrum for the large set of DMD 
modes with N

z
= 1900 given in Fig. 6b, it is evident that 

the SP-DMD with N
z
= 115 excludes the most transient 

modes from the spectrum.

4.2.2  The buffet mode

In the following, the dominant characteristic modes of the 
transonic DRA 2303 buffet flow are identified and analyzed. 
The dynamics of the buffet flow is identified by selecting the 
DMD modes whose growth or decay rates are close to zero.

In the range of the characteristic buffet frequency 
fbuffet = 170 Hz, there is one marginally stable mode in 
Fig. 8b. This mode will be referred to as the buffet mode. 
Its decay rate is nearly zero and its respective frequency 
is f = 171.56 Hz. The reconstruction of the buffet mode 
for the first time step is given in Fig. 9. The contours show 
the scaled dynamic mode, i.e., the spatial distribution �(x) 
of the mode scaled by the respective amplitude a. The 

Fig. 6  Spectrum of the 
optimized DMD analysis for 
N
z
= 1900

(a)

(b)
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u-velocity component of the mode (Fig. 9a) reveals that not 
only the shock motion is included in the buffet mode but also 
the pulsating recirculation region. Whereas the u-velocity 
component of the buffet mode is dominated by the shock 
wave motion and the pulsation of the recirculation region, 
the w-velocity component of the mode (Fig. 9b) has sign 
changes in the streamwise direction, which indicates a wave-
like movement of the recirculation region.

The coupling between the shock wave motion and the 
pulsation of the recirculation region is further analyzed by 
examining the time-space modal history of the u-velocity 
component of the buffet mode in Fig. 10 for five charac-
teristic stages of one oscillation cycle. Note that only the 
temporal reconstruction of the buffet mode is shown with-
out superposing the mean mode. Therefore, the contours 
in the shock wave region do not indicate the speed of the 
shock wave motion, but the flow velocity in this area. At 
the first stage (Fig. 10a), there is a negative superimposed 
velocity in the shock region, meaning that the shock is 
located most upstream. The negative superimposed flow 
velocity in the recirculation region indicates a pronounced 
separation. When the shock moves downstream (Fig. 10b), 
the flow in the recirculation region accelerates first at the 
shock foot. At the third stage (Fig. 10c), the shock wave 
is located most downstream since there is a superimposed 

positive velocity in the shock region. Higher velocities of 
the flow in the recirculation region show that the sepa-
ration of the boundary layer is less pronounced. At a 
later time (Fig. 10d), the shock wave travels upstream. 
The shock speed reduces and the flow in the recircula-
tion region decelerates first at the shock foot. The shock 
motion and location cause the change of the extension of 
the recirculation region. Finally, the shock wave reaches 
again its most upstream position (Fig. 10e). The finding 
from Fig. 10, that variations related to the length scale of 
the recirculation region start at the shock foot, substanti-
ates the result from Fig. 9 that the recirculation region 
grows and diminishes in a wave-like manner.

The u-velocity component of the buffet mode presents 
the main characteristics of the buffet flow directly visible in 
Schlieren images, see e.g. (Hartmann et al. 2012). Regarding 
the proposed feedback mechanism (Lee 1990), the pulsation 
of the recirculation region directly influences the sound pres-
sure level interacting with the shock wave. Due to a larger 
separation region, the sound waves generated at the trailing 
edge undergo stronger refractions such that their sound pres-
sure level weakens in comparison to a narrow separation 
region.

4.2.3  The vortex mode

In the SP-DMD mode spectra of Fig. 8, one pronounced 
mode can be found at the frequency of the sound waves 
originating at the sharp trailing edge fTE = 1100 Hz which 
will be referred to as the vortex mode since the trailing-
edge sound is produced by vortices passing over it. The 
growth rate of the vortex mode is near zero, indicating 
that this mode is marginally unstable, i.e., very slowly 
growing. As it is shown in the contour plots in Fig. 11, 
the reconstruction of the vortex mode consists of vortical 
structures primarily in the region of the flow recirculation. 
In the context of the proposed feedback mechanism (Lee 
1990), these vortices present the downstream propagating 
part. They are produced by the moving shock wave, travel 
downstream, and pass over the trailing edge. Due to the 
interaction of this unsteady flow field with the trailing-
edge sound is emitted. For this vortex-driven sound, the 
perturbation of the vorticity–velocity cross product, the 
so-called Lamb vector, is the major sound source (Ewert 
and Schröder 2003). The strength of the moving shock 
wave depends on the relative velocity between the mov-
ing shock wave and the incoming flow (Gibb 1988), i.e., 
the shock strength increases while moving upstream. A 
stronger shock wave triggers stronger vortex roll-up such 
that the strength of the downstream propagating vortices 
varies. The measured w-velocity component of the buffet 
mode (see Fig. 9b) indicates that the vortices might be 
modulated in their strength by a frequency corresponding 
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Fig. 7  Performance of the SP-DMD algorithm as a function of the 
regularization parameter � , the value for � defined in Fig. 7a is indi-
cated by the red dots
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to the buffet frequency. Finally, vortices with changing 
strength will generate trailing-edge noise of a varying 
sound-pressure level which will maintain the shock wave 
movement. Note that the buffet mode and the vortex mode 
still exist for a perturbed snapshot data matrix.

4.2.4  Further stable modes

In Fig. 8b, further marginally stable periodic modes with 
a low decay rate which are more stable than the vortex 

mode indicated as mode 1 to mode 4 are present. The cor-
responding contours of the u- and w-velocity component 
are plotted in Figs. 12, 13, 14 and 15. Mode 1 has a low 
frequency of 64 Hz. It possesses the highest amplitude of 
all selected marginally stable periodic modes, followed 
by the buffet mode. The reconstruction of the u-velocity 
component of mode 1 includes the shock wave and the 
recirculation region, and the reconstruction of the w-veloc-
ity component of mode 1 reveals vortical structures such 
that overall, the reconstruction of mode 1 is very similar 

Fig. 8  Spectrum of the SP-
DMD analysis for � = 533.7 in 
the physical frequency domain; 
red dots highlight various 
modes
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Fig. 9  Contours of the u- and 
w-velocity component of 
the DMD buffet mode with 
f = 171.56 Hz
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to the reconstruction of the buffet mode. Mode 2 and 
mode 3 illustrated in Figs. 13 and 14 are very similar to 
each other. Their frequency is 244 Hz and 253 Hz. Their 

reconstructions include the shock wave and the recircula-
tion region in the u-velocity component of mode 2, and 
pronounced vortical structures. Mode 4 has a frequency of 

Fig. 10  Contours of the u-veloc-
ity component of temporal 
reconstruction with the DMD 
buffet mode in one buffet cycle; 
Δtbuffet = 1∕fbuffet = 1∕170 Hz
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(a) Time instant t; shock wave in most up-
stream position x/c = 0.42.
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(b) Time instant t+1/4∆tbuffet; shock wave
moves downstream.
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(c) Time instant t+1/2∆tbuffet; shock wave
in most downstream position x/c = 0.47.
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(d) Time instant t+3/4∆tbuffet; shock wave
moves upstream.

0  0.2 0.4 0.6 0.8 1  1.2
x/c [-]

0   

0.2 

0.4 

0.6 

0.8 

z/
c 

[-]

(e) Time instant t+∆tbuffet; shock wave in
most upstream position x/c = 0.42.
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Fig. 11  Contours of the u- 
and w-velocity component of 
the DMD vortex mode with 
f = 1100  Hz
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(a) u-velocity component.
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1511 Hz and the corresponding spatial structures plotted 
in Fig. 15 are vortices in the separated boundary layer. Its 
amplitude is low compared to the other selected margin-
ally stable modes, followed only by the vortex mode (see 
Fig.8a). Since the frequency and spatial distribution of 
mode 4 and the vortex mode are similar, it is supposed 
that they contribute to the same phenomenon of vortex 
roll-up inside the separated shear layer. Whereas further 
investigations are needed to clarify the role of mode 1, it 
is supposed that modes 2 and 3 contribute to the overall 

buffet dynamics without characterizing any additional 
dynamic phenomena.

5  Conclusion

The transonic buffet flow field around a supercritical DRA 
2303 airfoil model has experimentally been investigated by 
particle-image velocimetry measurements. For the first time, 
the experimentally obtained velocity data of a buffet flow 

Fig. 12  Contours of the u- and 
w-velocity component of DMD 
mode 1

0  0.2 0.4 0.6 0.8 1  1.2
x/c [-]

0   

0.2 

0.4 

0.6 

0.8 

z/
c 

[-]

(a) u-velocity component.
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(b) w-velocity component.
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Fig. 13  Contours of the u- and 
w-velocity component of DMD 
mode 2
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(a) u-velocity component.
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(b) w-velocity component.
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Fig. 14  Contours of the u- and 
w-velocity component of DMD 
mode 3
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(a) u-velocity component.

0  0.2 0.4 0.6 0.8 1  1.2
x/c [-]

0   

0.2 

0.4 

0.6 

0.8 

z/
c 

[-]

(b) v-velocity component.
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field are further processed to perform a sparsity-promoting 
dynamic mode decomposition (SP-DMD).

The physics of the buffet phenomenon around the DRA 
2303 airfoil was thoroughly discussed, e.g., in Hartmann 
et al. (2013a) and in Feldhusen-Hoffmann et al. (2018), sup-
porting the buffet model by Lee (1990). This model assumes 
that the shock wave oscillations are driven by an acoustic 
feedback loop consisting of a downstream propagating part 
represented by shock induced vortices and an upstream prop-
agating part represented by sound waves which are generated 
when the downstream moving vortices pass over the trailing 
edge. The shock wave movement is supposed to be sustained 
by a varying SPL of the sound waves interacting with it.

From the previous studies, two dominant frequencies, the 
low frequency of the shock wave oscillation and the high 
frequency of the vortex shedding, are known. Using the pre-
sent SP-DMD analysis these frequencies could be assigned 
to their spatial structures. The low-frequency buffet mode 
captures the coupling of the shock wave oscillation and the 
pulsation of the recirculation region. The downstream loca-
tion of the shock wave is associated with a less pronounced 
separation of the boundary layer than the upstream loca-
tion. Changes in the velocity of the flow in the recircula-
tion region start at the shock foot and convect downstream 
towards the sharp trailing edge. This leads to a wave-like 
up- and down motion of the recirculation region, also visible 
in the w-velocity component of the buffet mode. Hartmann 
et al. (2013a) argued that the changing size of the recircula-
tion region enhances the variation of the trailing-edge noise 
SPL. For a larger recirculation region, they found a lower 
wall-normal gradient of the streamwise velocity component 
indicating a lower vorticity which is the main driving mech-
anism of noise. Furthermore, the locally generated sound 
waves are weakened while propagating upstream since they 
undergo stronger interactions and refractions when the 
recirculation region is larger. This supports the idea of Lee 
(1990) and Hartmann et al. (2013a) that during buffet, the 
shock wave is forced to oscillate by the trailing-edge noise 
of varying SPL. Furthermore, the DMD substantiates the 

existence of the high-frequency vortex mode that excites the 
shock oscillations via the Lamb vector.

Four further marginally stable periodic modes have been 
identified. It is supposed that they are not related to addi-
tional singular physical features.

In brief, the study shows that experimentally obtained 
velocity distributions are suitable for the DMD analysis of 
the 2D buffet flow and can be used for the future analysis of 
3D buffet flow. Since the velocity data are recorded by a high 
sampling rate, buffet generated trailing-edge vortex shedding 
is detected by measurement data based DMD, which was 
not discussed in the literature, yet. The experimental results 
confirm numerical findings, i.e., the dominant buffet and 
vortex modes are in good agreement with the feedback loop 
suggested by Lee (1990).
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