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Abstract

The buffet flow field around supercritical airfoils is dominated by self-sustained shock wave oscillations on the suction side
of the wing. Theories assume that this unsteadiness is driven by a feedback loop of disturbances in the flow field downstream
of the shock wave whose upstream propagating part is generated by acoustic waves. High-speed particle-image velocimetry
measurements are performed to investigate this feedback loop in transonic buffet flow over a supercritical DRA 2303 air-
foil. The freestream Mach number is M = 0.73, the angle of attack is @ = 3.5°, and the chord-based Reynolds number is
Re, = 1.9 x 10°. The obtained velocity fields are processed by sparsity-promoting dynamic mode decomposition to identify
the dominant dynamic features contributing strongest to the buffet flow field. Two pronounced dynamic modes are found
which confirm the presence of two main features of the proposed feedback loop. One mode is related to the shock wave
oscillation frequency and its shape includes the movement of the shock wave and the coupled pulsation of the recirculation
region downstream of the shock wave. The other pronounced mode represents the disturbances which form the downstream
propagating part of the proposed feedback loop. The frequency of this mode corresponds to the frequency of the acoustic
waves which are generated by these downstream traveling disturbances and which form the upstream propagating part of
the proposed feedback loop. In this study, the post-processing, i.e., the DMD, is highlighted to substantiate the existence
of this vortex mode. It is this vortex mode that via the Lamb vector excites the shock oscillations. The measurement data
based DMD results confirm numerical findings, i.e., the dominant buffet and vortex modes are in good agreement with the
feedback loop suggested by Lee.

P4 Antje Feldhusen-Hoffmann
a.feldhusen @aia.rwth-aachen.de

Institute of Aerodynamics and Chair of Fluid Mechanics,

RWTH Aachen University, Wiillnerstr. 5a, 52062 Aachen,
Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-020-03111-5&domain=pdf

66 Page2of 17

Experiments in Fluids (2021) 62:66

Graphic abstract

mirror, laser

DRA 2303 airfoil model

adaptive wall

Fig. 1
Schematic of the trisonic wind tunnel and the PIV setup
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1 Introduction

A typical jet powered aircraft flies at transonic speed such
that a supersonic region on the suction side of the air-
foil develops which is terminated by a shock wave. For
increasing Mach numbers or angles of attack, the pressure
rise across the shock wave might become high enough to
lead to a shock-induced separation of the boundary layer
downstream of the shock wave. Within this transonic flight
regime, highly unsteady flow including self-sustained peri-
odic shock-wave oscillations, i.e., transonic buffet, might
occur. The shock wave movement is a low frequency/large
amplitude phenomenon. The resulting unsteady pressure
distribution leads to unsteady loads acting on the wing
structure. The aeroelastic response of the wing structure,
the so-called buffeting, might lead to a critical state for
the wing structure. To date, the mechanisms sustaining
the shock-wave oscillations during buffet are not fully
understood, yet. A detailed understanding of the buffet
mechanisms are necessary to develop precise predic-
tion methods for the onset of buffet, to shift the buffet
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Fig. 2
Spectrum of the SP-DMD analysis for y = 533.7 in the physical frequency domain.
Growth/decay rate of DMD modes, eigenvalues on the red line are stable.
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boundary to higher Mach numbers or angles of attack, and
to find strategies to damp or even suppress buffet, which
will enhance the operational performance of an aircraft.
A comprehensive review on self-sustained shock wave
oscillations on airfoils at transonic speeds has been given
by Giannelis et al. (2017).

Despite intensive research, the mechanisms leading to
buffet are still discussed controversially. Furthermore, the
existing theories and models are usually restricted to spe-
cial airfoils and flow characteristics.

For supercritical airfoils, a widely recognized descrip-
tion of the self-sustaining shock wave oscillation has been
given by Lee (1990). His theory gives an explanation for
self-sustained shock wave oscillations and a method to
estimate the shock-wave-oscillation frequency for buf-
fet flows around supercritical airfoils where the shock
wave oscillates sinusoidally on the upper airfoil surface
and induces a complete boundary-layer separation down-
stream. The basic idea is that disturbances which propa-
gate up- and downstream within the flow field downstream
of the shock wave form a feedback loop. According to Lee,
the oscillating shock wave generates large-scale turbulent
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structures that propagate downstream and generate pres-
sure waves while passing over the sharp trailing edge of
the airfoil. These pressure waves travel also upstream and
exchange energy with the shock wave, enhancing its oscil-
latory motion.

Xiao et al. (2006), Deck (2005), and Hartmann et al.
(2012, 2013a, b), found excellent agreement of their numeri-
cal and experimental results with Lee’s theory.

Hartmann et al. (2013a) refined the feedback model pro-
posed by Lee (1990). The experiments by Hartmann et al.
(2013a) revealed that the sound waves generated at the trail-
ing edge and presenting the upstream propagating part of
the feedback loop possess a high frequency which is about
ten times higher than the shock-wave-oscillation frequency.
Therefore, there has to be another low-frequency mecha-
nism present in the flow field which forces the shock wave
to oscillate at a frequency much lower than the trailing-edge
noise. It is expected by Hartmann et al. (2013a) that the
sound pressure level (SPL) of the sound waves originating
at the trailing edge varies with a frequency that corresponds
to the buffet frequency, i.e., the shock oscillation frequency.
On the one hand, the relative velocity between the incoming
flow and the oscillating shock wave is higher when the shock
wave moves upstream. It triggers stronger disturbances
which convect downstream towards the trailing edge. Hence,
acoustic waves of an elevated SPL are generated which force
the shock wave to move upstream while interacting with it.
On the other hand, the shock wave is weaker when it moves
downstream and excites weaker disturbances which convect
downstream towards the trailing edge. As a consequence,
acoustic waves with a lower SPL are generated which allow
the shock wave to move back to its downstream position
while interacting with it. In other words, the SPL of the
trailing-edge noise and the frequency of the shock movement
are supposed to be coupled. The findings of Feldhusen-Hoff-
mann et al. (2018) obtained from wind-tunnel experiments
confirmed the expected variation of the SPL in the trailing-
edge region of the airfoil during buffet. Crouch et al. (2009)
performed URANS simulations of the transonic flow around
a symmetrical NACA 0012 profile for varying freestream
Mach numbers and angles of attack, and a chord-based
Reynolds number of Re, = 107. A global stability analysis
of the transonic airfoil flow was carried out to predict the
onset of flow instabilities. A set of linearized equations was
deduced from the Navier—Stokes equations which forms an
eigenvalue problem governing the complex frequency and
the shape of the global modes. The origin of buffet was pre-
dicted by the onset of an instability. The stability boundary
as a function of the Mach number and angle of attack is
in very good agreement with the boundary obtained from
experimental data by McDevitt and Okuno (1985) for Mach
numbers below 0.8. The shape of the fluctuating streamwise
velocity component of the unstable mode shows a coupled

movement of the shock wave and the boundary layer down-
stream of the shock wave. On the one hand, the shape of the
pressure fluctuations of the unstable mode reveals pressure
perturbations originating near the shock wave foot moving
upward along the shock wave and finally forward into the
sonic zone. On the other hand, pressure fluctuations move
downstream behind the shock wave, intensify, spread around
the trailing edge, and propagate along the airfoil’s pressure
side until they enter into the sonic zone upstream of the
shock wave. The observed pressure wave propagation is
qualitatively different from the buffet model proposed by
Lee (1990).

In this study, it is attempted to give further insight into the
mechanisms of the buffet phenomenon. The buffet flow field
around a supercritical airfoil is analyzed by dynamic mode
decomposition (DMD). The velocity data are determined in
wind tunnel experiments.

The dynamic mode decomposition (Schmid 2010) is a
data-based technique which decomposes the underlying
sequence of flow data into spatio-temporal coherent struc-
tures, i.e., dynamic modes. Each dynamic mode is associated
with a single characteristic frequency, a growth or decay rate
and an amplitude. On the one hand, DMD can be used for a
reduced-order representation of the flow field, since the full
dynamic system can be projected onto a subspace spanned
by several extracted modes. On the other hand, it is an effec-
tive tool to search for physical mechanisms describing the
underlying flow field evolution. There are many decompo-
sition methods, the most common of which are the proper
orthogonal decomposition (POD) method (Lumley 1967)
and the global stability analysis. The POD modes gener-
ally are multi-frequential and the modes are sorted by their
energy content, which in general does not allow any conclu-
sion about the dynamical importance. The dynamic modes,
however, are orthogonal in time and contain therefore only
a single temporal frequency. Since the dominant features
of the buffet phenomenon are related to characteristic fre-
quencies, the decomposition by DMD is more suitable than
the decomposition by POD. Furthermore, the decay rate of
the dynamic modes reveals transient modes which are less
dynamically important. The global stability analysis relies
on the knowledge of the governing equations of the dynami-
cal system under investigation. It is therefore not appropriate
for the decomposition of experimental data. DMD, however,
relies on the evaluation of time-discrete snapshot flow data
and is therefore suitable to analyze experimental data. The
dynamic modes can be regarded as a generalization of the
global stability modes for nonlinear flow dynamics (Schmid
2010). If the underlying flow is linear or linearized, the
dynamic modes are equivalent to the global modes result-
ing from the global stability analysis (Schmid 2010). This
discussion shows the DMD technique to be an appropri-
ate means for analyzing nonlinear dynamics of flow fields
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which are available as velocity snapshots. The assignment
of dynamic modes to a single frequency will allow the rev-
elation of possible couplings of flow structures. Since the
dynamic modes are associated with a growth or decay rate,
transient quickly decaying modes, which are of less dynami-
cal importance, can be identified. The formalisms of DMD
will be given in Sect. 3.

Since its introduction, DMD has extensively been used
for the investigation of flow fields comprising jets, shock-
wave/turbulent boundary layer interaction, wakes of airfoils
and high-speed trains, wind turbine flow, and thermo-acous-
tic instabilities. These and other examples can be found in
the comprehensive list of Rowley and Dawson (2017) com-
piled in their review on model reduction for flow analysis
and control.

Several researchers applied DMD to the transonic buffet
airfoil flow (Masini et al. 2018; Ohmichi et al. 2018; Kou
and Zhang 2017; Kou et al. 2018; Gao et al. 2017; Popling-
her et al. 2019). In these studies, the input data are pressure
snapshots obtained numerically by unsteady Reynolds-aver-
aged Navier—Stokes equations simulations (URANS) using
the Spalart-Allmaras turbulence model. Masini et al. (2018)
and Ohmichi et al. (2018) analyzed the three-dimensional
shock buffet flow of swept wings. Only a few studies applied
DMD to the two-dimensional shock buffet flow (Kou and
Zhang 2017; Kou et al. 2018; Gao et al. 2017; Poplingher
et al. 2019). The investigations comprise flows around a
NACA 0012 airfoil (Kou and Zhang 2017; Kou et al. 2018;
Gao et al. 2017) and around a supercritical RA16SC1 airfoil
(Poplingher et al. 2019).

Kou and Zhang (2017) and Kou et al. (2018) performed
flow reconstruction and prediction of periodic dynamics
from the initial unstable transient flow solution based on
dynamic modes. Besides the time-invariant mode, they
found dominant modes related to the shock wave movement
and its coupling to the boundary layer. However, the buffet
mechanism was not further examined.

Gao et al. (2017) realized an active control to suppress
buffet in an unstable steady airfoil flow being perturbed by
trailing edge flap oscillations. DMD was used as a com-
plementary tool to detect dominant frequencies and coher-
ent structures. They found the dominant periodic dynamic
modes to result from the shock wave movement and the
respective frequency to be the shock-wave-oscillation fre-
quency or multiples of it. Since the dominant buffet mode
is damped but present under active flow control, the authors
stated that buffet occurs due to a global instability, support-
ing the findings of Crouch et al. (2009).

Poplingher et al. (2019) used DMD of the transonic super-
critical RA16SC1 airfoil flow to find dominant dynamic
modes describing the buffet flow, to reconstruct the flow
field, and to investigate the response of the pre-buffet unsta-
ble flow to excitations with the vertical velocity component.
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The frequencies of the dominant periodic dynamic modes
are multiples of the shock-wave-oscillation frequency and
the mode shapes present pressure gradients in the shock
travel region and in the boundary layer downstream of the
shock wave. The authors stated, however, that trailing edge
vortex shedding cannot be identified with certainty due to
restrictions given by the URANS modeling and the grid
resolution in the wake area. The time—space modal history
of the buffet mode revealed similar pressure propagation
as found by Crouch et al. (2009). The investigation of the
modal excitation showed buffet-like mode shapes oscillat-
ing with a frequency close to that during buffet onset. The
dominant buffet mode is damped but this damping decreases
to zero at buffet onset conditions.

The present study applies DMD to experimental velocity
data of the transonic buffet flow around the supercritical
DRA 2303 airfoil. The analysis evidences individual domi-
nant periodic dynamics of the buffet flow, comprising not
only the shock wave oscillation but also the sharp trailing
edge vortex shedding. The dominant modes are extracted
by combining a priori knowledge of dominant frequencies
resulting from preceding investigations with results from
sparsity-promoting DMD (SP-DMD). Since the transonic
buffet flow exhibits some periodic features, DMD will help
to capture the dominant frequency information and stability
characteristics. In this context, DMD is not used to recon-
struct or predict the flow behavior but to gain further insight
into the mechanisms of buffet.

In contrast to the previously mentioned studies, in this
work measurement data determine the input snapshots for
the DMD analysis of a two-dimensional transonic buf-
fet flow field. The results will show that experimentally
obtained velocity distributions are suitable as input data for
the DMD analysis of this particular flow case. An a priori
investigation is performed to show the sensitivity of the
SP-DMD results with regard to the number of snapshots as
input data. Since the velocity data are recorded by a high
sampling rate, it is possible unlike in the study of Poplingher
et al. (2019) to detect the trailing-edge vortex shedding by
DMD. Other than in the studies (Masini et al. 2018; Ohmichi
et al. 2018; Kou and Zhang 2017; Kou et al. 2018; Gao et al.
2017; Poplingher et al. 2019), in which only indications of
the theory of Crouch et al. (2009) were found, the current
measurement data based DMD results corroborate Lee’s
theory (Lee 1990).

The paper is structured as follows. The Introduction is fol-
lowed by the description of the experimental setup in Sect. 2.
In Sect. 3, the DMD approach is concisely presented. In the
results Sect. 4, some characteristics of the DRA 2303 buffet
flow field, which are known from previous investigations, are
described in Sect. 4.1 to allow a comparison of the former
findings with the results determined by the DMD analysis.
The DMD results of the DRA 2303 airfoil buffet flow are
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Fig. 1 Sketch of the trisonic wind tunnel

given in Sect. 4.2, followed by concluding remarks given
in Sect. 5.

2 Experimental setup
2.1 Wind tunnel

All measurements are performed in the trisonic vacuum stor-
age wind tunnel of the Institute of Aerodynamics, RWTH
Aachen University. A sketch of the tunnel is shown in Fig. 1.
A compressor evacuates four vacuum tanks with an overall
volume of 380 m? downstream of the closed test section.
The air from the tanks is guided through a silica gel based
drier and stored in a settling reservoir upstream of the test
section under ambient conditions. The drier ensures that the
relative humidity of the air is kept below 4% to minimize any
influence of the humidity on the shock wave position (Binion
1988). To initiate a run, the main quick-acting valve down-
stream of the diffuser opens and the air flows through the test
section. The turbulence intensity of the flow entering the test
section is less than 1%. Since the tunnel works intermittently,
the measurement time with stable flow conditions is limited
to two to three seconds depending on the Mach number. The
Mach number can be varied from M = 0.3to M = 4.0,
whereas the Reynolds number depends on the Mach num-
ber and on the ambient conditions in the dry-air reservoir.
Therefore, the unit Reynolds number Re/L is restricted to
the range of 12 x 10 m~! < Re/L < 14 x 10°m™! for the
transonic Mach number regime.

During the run of the tunnel, the instantaneous Mach
number is recorded by unsteady pressure data using a pres-
sure sensor mounted upstream of the test section. When the
desired Mach number is reached a trigger signal is released
with a short delay such that the PIV acquisition starts. This
ensures that the wind tunnel flow is stable during the meas-
urement time.

The test section possesses a square cross section of
0.4m X 0.4 m and a length of 1.41 m. For the investigation of
transonic flows, the flexible upper and lower adaptive walls

of the test section simulate unconfined flow conditions by
solving the 1D-Cauchy integral based on the steady pressure
distribution along each wall measured during the previous
run.

The inflow parameters of the wind tunnel were set to the
freestream Mach number M = 0.73 and the angle of attack
a = 3.5°. The chord-based Reynolds number, which depends
on the Mach number M_, and on the ambient conditions,
was Re, = 1.9 X 10°. Under these conditions the DRA 2303
airfoil model exhibits distinct shock wave oscillations, i.e.,
buffet (Hartmann et al. 2013a).

2.2 Airfoil model

The flow over a supercritical laminar type DRA 2303 pro-
file with a chord length of 0.15 m is measured. It is a two-
dimensional model spanning the complete test section width.
The relative ratio of the airfoil thickness to chord length is
14% which leads to a blockage of about 5% when mounted
inside the adaptive test section. Note that for the wing model
with constant cross-section in the spanwise direction the buf-
fet characteristics differ from those for three-dimensional
wings, where the most severe large-scale unsteadiness
occures at the wing tip and the flow frequencies are approxi-
mately one order of magnitude higher and more broadband
(Roos 1985).

The airfoil model is made of two carbon fiber laminate
sandwich shells and incorporates a steel beam inside which
ensures a rigid mounting in the test section. Laminar to tur-
bulent transition is imposed by a 117 pm thick zigzag stripe
located at 5% chord on both suction and pressure side. The
width of the zigzag transition stripe is 5 mm. A photo of the
airfoil model is shown in Fig. 2.

2.3 Particle-image velocimetry

The PIV setup installed at the trisonic wind tunnel is shown
in Fig. 3. Prior to each test run, a Laskin nozzle genera-
tor seeds the dry air inside the tunnel reservoir with poly-
disperse Di-Ethyl-Hexyl-Sebacate (DEHS) droplets with a
mean diameter of less than 1 pm. Inside the test section, the
particles are illuminated by a Nd:YLF Darwin Duo 527-
100-M high-speed laser. Since two oscillators are installed

Fig.2 Photograph of the supercritical DRA 2303 airfoil
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Fig.3 Schematic of the trisonic wind tunnel and the PIV setup [top
view (top), side view (bottom)] with the airfoil model installed

inside a single laser head, very high repetition rates can
be achieved. The pulse width is less than 210 ns, which is
adequate for the underlying flow. The total pulse energy at a
repetition rate of 1 kHz is 60 mJ. The laser is installed out-
side and separated from the tunnel to protect it from tunnel
vibrations. A system of mirrors and a light-sheet optic span
the laser beam and deflect it to the test section. The beam
can enter the test section through a slot in the freestream
chamber. The light of the laser spans a 1 mm thick vertical
streamwise measurement plane in the midspan region of the
airfoil’s suction side.

A Photron Fastcam SAS5 high-speed camera with
1024 x 1024 pixel resolution is used to record the for-
ward scattered light of the seeding particles. The cam-
era is installed perpendicular to the measurement plane.
The images are acquired using the frame straddling tech-
nique and the pulsation of the lasers and the opening of

the camera shutters are synchronized with an ILA GmbH
synchronizer. The sampling frequency is f pry = 4000 Hz.

The correlation of the raw images was performed
using PIVView from ILA GmbH by applying a multi-grid
interrogation method. The correlation was preceded by
a background-subtraction for image pre-processing. The
correlation was followed by a vector outlier detection
using a maximum displacement filter and a dynamic mean
test filter. Table 1 lists the hardware, the settings, and the
resulting data of the PIV setup.

The uncertainty in determining the flow velocity is domi-
nated by the uncertainty in the estimation of the particle
displacement. This is due to the findings that for the given
laser pulse separation time of 9 pus > 1ps the error from the
laser pulse separation time can be neglected (Lazar et al.
2010), and for reliable calibrations the magnification and
calibration uncertainties can also be neglected (dos Santos
et al. 2019). Given that the particle image diameter equals 3
pixels or more and applying multi-pass interrogation algo-
rithms employing image deformation techniques, the typical
error value for the displacement is on the order of 0.1 pixel
(Adrian et al. 2011; Adrian 1986; Raffel et al. 2018; Wester-
weel 1993, 1997, 2000). Thus, a conservative estimation of
the measurement error yields uncertainties of 0.7% in terms
of the incoming flow velocity.

3 Dynamic mode decomposition

In the DMD flow field data, e.g., velocity data v(x, ) are
decomposed into n spatial modes ¢,(x) with the ampli-
tudes a,,, and the complex frequencies 4,

Vw0 = D a,eh, (). (1)

n

The flow field data are collocated from numerical simula-
tions or measurements as a sequence of N snapshots, e.g.,
velocity fields, equispaced in time with the time step Af in
the time interval ¢t = [0, (N — 1)At¢]. The snapshot sequence
is column-wise stored in a data matrix

Table 1 Specifics of the

L. . Hardware and settings
particle-image velocimetry

Resulting data

setup Camera

Lens

Laser

Light-sheet thickness
Laser pulse separation time

foprv
Number of captured buffet cycles

Fastcam SAS Measurement area 0.15<x/c<1.16
Nikkor 85 mm /1.8D Resolution 1024 x 888 pixel
Darwin Duo 527-100-M  Initial window size 96 X 96 pixel

1 mm Final window size 24 x 24 pixel

9us Window overlap 50 %

4000 Hz Final vector spacing  1.78 mm

~ 265
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v, € RM, )

VY= [v, v 5wy

where the subscript denotes the first entry and the super-
script the last entry in the sequence. The spatial dimension
M of the data is typically much larger than the number of
snapshots N, i.e., M > N. A linear mapping is assumed
which is approximately the same over the full sampling
interval

Vi =Av;, i€ {l,...,N-1} 3)
allowing the sequence to be described as a Krylov sequence
(Greenbaum 1997, Trefethen and Bau III 1997)

VN

_ 2
L= [vl,Avl,A Vi, ...

ANy, )

If the snapshots are derived from flow fields with nonlin-
ear dynamics, this assumption is equal to a linear tangent
approximation. The sought characteristics of the dynamical
process described by the sequence V’lV can be extracted from
the matrix A by calculating its eigenvectors and eigenvalues.
However, A is usually hard to determine due to its vast size
of M x M with M > N. Using DMD, a low-order represen-
tation of A is determined which equally captures the dynam-
ics of the snapshot sequence.

Schmid (2010) introduced a robust implementation by
extracting the dynamic characteristics from a ’full and robust’
DMD matrix F,,y € CV~*N~Ibeing a low-dimensional rep-
resentation of the linear intersnapshot operator A on the sub-
space spanned by the basis U

Fy,q = UAU 3)

with (-)* denoting the conjugate transpose of a matrix.
Robustness is achieved by determining U via a singular
value decomposition (SVD) of the snapshot sequence

vVl =Uzwr (6)

The quantities, U € C¥*™-D and W e CV-Dx®W-D
are the left and right singular vectors and the matrix
¥ € CW=DX(N=D contains the singular values of the snap-
shot sequence V’lv -1

The matrix F_ 4 describes the dynamics of the snapshot
sequence, which has originally been described by the matrix
Ain Eq. (3), on the subspace spanned by the basis U such that

Xip1 = FynaX;. @)
The eigenvalue decomposition of the DMD matrix
FyngY = u¥ (8)

yields the so-called Ritz eigenvalues y, and the eigenvec-
tors y,,.

The dynamic modes are obtained by multiplying the right
singular vectors of the snapshot sequence VIIV ~! with the

nth eigenvector ¢, := Uy, and their corresponding ampli-
tude based on the first snapshot is given by a, :=z;x; with
{z},...,2}_, ) being the eigenvectors of F; , and x, represent-
ing the initial condition. The snapshots are approximated by a
linear combination of the dynamic modes

N-1
Vi=2an(/4n)i_l¢n’ ie{l,...,.N—-1}, )
n=1

which can be written in matrix form for the discrete snapshot
sequence

[VI,VQ, ;VN_l] = [¢17 ¢2’ ’¢N—1]
L ~ _/ - ~ ~/
yN-1 Liid
1
a, Loy - Mjlv_l
a2 1 MZ ”12\/_1
) N-1
ay_1)\1 py_, Hy_1
N ~ J\ ~~ /
D, =diag{a} Vand (10)

The matrix filled with the geometric progression of the
Ritz eigenvalues is called Vandermonde matrix V4 and
describes the temporal evolution of the modes. The matrix
D, contains the optimized amplitudes based on all snap-
shots a,, of the modes which can be found by minimizing
the objective function

.. . -1
rmngnlzeIIV[lV —®D,V, 7 (1D

with || - || » being the Frobenius norm. For input data from
experiments or numerical simulations contaminated by
noise and/or other uncertainties, the matrix X usually has a
full rank such that the DMD analysis yields the maximum
number of (N — 1) modes and eigenvalues. The classical
optimized DMD generally extracts r < (N — 1) modes with
r being the rank of the matrix X, which results from the
SVD of the snapshot sequence given in Eq. (6). Knowing
the complex quantities {a,, y,,, ¢, }, it follows from Egs. (1)
and (9) that

U, = r,e%n = ehA such that
In(u,)  Rdn(w,)) . Sdn,)) .
An = Aln = Af u +1 At 2 = j’n,r + llln,i'

growth/decay angular frequency

12)
Thus, the real part A, of the complex frequency contains
information about the growth or decay rate of the DMD
mode. The dynamic mode is stable for decaying 4,, i.e.,
A, <0, and unstable for an excited 4,, i.e., for 4. > 0. For
A, = 0, the mode is a stable mode which is present through-
out the whole snapshot sequence. Transient modes, which
do not contribute significantly to the data sequence, are
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characterized by a high decay rate A, < 0 and therefore
by complex Ritz eigenvalues p, with an absolute value of
r, < 1[see Eq. (12)]. Periodic stable Ritz eigenvalues are
characterized by an absolute value of r, = 1. The imagi-
nary part 4; of the complex frequency contains informa-
tion about the temporal periodicity of the DMD mode,
given in the unit [rad]. The frequency in the unit [Hz] is
f =S0n(y,))/2xAt). For 4; = 0, the respective frequency
is zero meaning that the dynamic mode represents the mean
mode. Due to real input data, the Ritz eigenvalues y, with a
non-zero frequency appear as pairs of complex conjugates
of the same frequency and decay or growth rate. Detailed
information on the DMD method and its application can be
found in Schmid (2010) and in recent review papers (Rowley
and Dawson 2017; Taira et al. 2017, 2020).

Identifying the dynamically relevant modes is usually
not straightforward and makes the 'manual’ mode selection
very tedious in practice. The standard approach to select the
dominant dynamic modes by their amplitude a,, is often not
reasonable since transient modes are likely to appear with
artificially high amplitudes as will be shown in the following
section. There exist, however, some pre- and post-processing
approaches to identify dynamically relevant modes, which
can be applied depending on the problem under investigation
and the main objective of the analysis. In this study, DMD
mode selection based on the comparison to the spectral
analyses and on the sparsity-promoting DMD (SP-DMD)
have been applied. They will be explained in the following.

A preceding spectral analysis by, e.g., FFT or the PSD
function of the data, can help to find distinct frequencies,
and thus eigenvalues, which are dominant in the flow field
and should be further analyzed by DMD.

The SP-DMD, introduced by Jovanovic et al. (2014), is
an extension of the standard DMD algorithm which seeks a
subset of DMD modes that have the most substantial influ-
ence on the quality of the approximation of the snapshot
sequence. Note, however, that the SP-DMD also might select
transient modes. The user defines a tradeoff between the
approximation error and the number of extracted modes.
A constraint consisting of a penalty term for the number of
non-zero elements in the amplitude vector a is introduced to
the least-squares problem given in Equation (11) and forces
a sparse solution

N-1
mini;nizellVll\'_l — @DVl +7 ) la,l. (13)
n=1

The parameter y is the positive regularization parameter. The
larger its value, the more zero elements exist in the ampli-
tude vector a. This sparsity structure is fixed in the following
and the optimal amplitudes are computed for the resulting
subset of dynamic modes. Jovanovic et al. (2014) developed
an efficient algorithm to solve the regularized least-squares
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problem given in Eq. (13) which uses the alternating direc-
tion method of multipliers (ADMM). The ADMM algorithm
requests the user to choose a maximum number of iterations,
to set the augmented Lagrangian parameter, or step-size
parameter, p, which also determines the rate of convergence
of the algorithm, and to give the absolute and relative toler-
ances €, and ¢, for the minimization steps. The step-size
parameter p > 0 influences the convergence speed of the
algorithm (Ghadimi et al. 2012). Furthermore, large val-
ues of p diminish the primal residual and augment the dual
residual of the optimization problem and the opposite is true
for small values of p. It has been shown, however, that the
ADMM method converges for all values of p (Boyd et al.
2011). The primal and dual residuals of the optimization
problem can be used to define stopping criteria €, and €,
for the ADMM algorithm (Boyd et al. 2011). The details are
given in Jovanovié et al. (2014). Tu et al. (2014) addressed
the appropriate selection of dominant dynamic modes and
noted that the SP-DMD approach proposed by Jovanovié
et al. (2014) is well suited for the DMD analysis.

4 Results

In this section, the results of the experimental study of the
DRA 2303 buffet flow field are presented. First, a general
description of the flow field is given in Sect. 4.1, i.e., the
main flow features and dominant frequencies are empha-
sized. This overview is used to justify the selection of rel-
evant dynamic modes based on the comparison to spectral
analyses as mentioned in Sect. 3. Furthermore, this overview
allows to evaluate whether the dominant features of the buf-
fet flow and the proposed feedback loop (Lee 1990) are cor-
rectly detected by the SP-DMD analysis.

4.1 Description of the DRA 2303 buffet flow field

The main characteristics of the feedback loop proposed
by Lee (1990) present in the buffet flow field around the
supercritical DRA 2303 airfoil have been previously
investigated experimentally by Hartmann et al. (2013a)
and Feldhusen et al. (2013, 2015) for the same freestream
conditions of M =0.73 and a = 3.5°. This study is a
direct continuation of the aforementioned investigations.
Note that exactly the same data set as in Feldhusen et al.
(2013) is used. In the following, just a concise descrip-
tion of the primary features is given. Note that the chord
length of the DRA 2303 airfoil model used by Hartmann
et al. (2013a) was 200 mm and thereby larger than the
chord length of the DRA 2303 model used in Feldhusen
et al. (2013, 2015), and in this study. However, since the
reduced frequency w* = 2xfc/u,, is the same, the results
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can be compared. A shock wave occurs on the suction side
of the DRA 2303 airfoil that induces a boundary layer
separation which extends to the sharp trailing edge. The
shock wave oscillation frequency f g = 170 Hz is illus-
trated in Fig. 4.

The broadband shock wave motion is coupled to the
pulsation of the recirculation region with a small phase
lag, i.e., the shock wave movement precedes the pulsa-
tion of the boundary layer. When the shock wave moves
upstream, the size of the recirculation region grows nor-
mal to the airfoil upper surface such that the extension of
the recirculation region is largest when the shock wave
is located most upstream. When the shock wave moves
downstream, the extension of the recirculation region
diminishes and is smallest when the shock wave is located
most downstream. The shock wave motion provokes down-
stream propagating disturbances which generate upstream
traveling disturbances when passing over the trailing edge.
Following the analysis in Feldhusen et al. (2013), the wave
propagation characteristics of these upstream propagating
disturbances in the flow field on the suction side of the

10°

i 18118 ’—~;w o
PRI gl o
V | o
10? =
: L
= 10! H |
: iH
|
10°
10-] -3 -2 -1 0
10 10 10 10

o’[]

Fig.4 Amplitude spectrum of the FFT analysis of the signal of a
pressure transducer located in the shock wave region at x/c = 0.42
on the upper side of the DRA 2303 airfoil from Ref. Feldhusen et al.
(2013). The frequency is given as reduced frequency o* = 2zfc/u,

Fig.5 Correlation of the abso-

airfoil are known from the spatio-temporal correlation of
unsteady flow velocity data

U@ -U (t+ 1)
R0, 7) = ———e— (14)
VUz Uz

illustrated in Fig. 5a. The fluctuation quantities of the
absolute velocities U/(7) and U/ (t + 7) separated by the
time delay 7 and located at the positions x, /c = const. and
varying x,,/c along the time-averaged streamline shown in
Fig. 5b are correlated. The propagation speed of the distur-
bances is determined by the slope of the line connecting the
high correlation values in the spatio-temporal correlation
plots and the frequency of the disturbances can be deduced
from the distance of the periodic pattern of the lines con-
necting high correlation values. This analysis yields distur-
bances propagating upstream with a frequency fry = 1100
Hz and a velocity 85m s~!. These disturbances form the
upstream propagating part of the suggested feedback loop.
When reaching the shock wave, they maintain its oscillation.
Since the frequency of the upstream propagating trailing-
edge noise differs from the frequency of the shock wave
oscillation, it is assumed (Hartmann et al. 2013a) that the
trailing-edge noise varies in its strength with a frequency
corresponding to the shock wave oscillation frequency.
The stronger sound pressure level forces the shock wave to
move upstream while a lower sound pressure level allows
the shock wave to move downstream. The moving shock
wave causes downstream propagating vortices of different
strengths depending on the relative velocity of the shock
wave with respect to the incoming flow. When these vor-
tices pass over the trailing edge, they provoke noise with a
varying sound pressure level. This closes the proposed feed-
back loop mechanism. Further details of the feedback loop
mechanisms are discussed, e.g., in Hartmann et al. (2013a)
and Feldhusen-Hoffmann et al. (2018).

Rum ()

lute velocities R,,,,(x, 7) along
a time-averaged streamline
(Feldhusen et al. 2013)
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used for the correlation.
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4.2 DMD analysis of the DRA 2303 buffet flow

In this section, the dynamic mode decomposition of the
experimentally determined DRA 2303 transonic buffet flow
field is presented. The u-velocity field and the v-velocity
field are arranged on top of each other in a single snapshot
matrix. Since the range of the velocity data varies widely, the
data are scaled in a preprocessing step by normalizing them
with the maximum value of the u- and v-velocity component.
First, the number of relevant modes is reduced by SP-DMD,
presented in Sect. 4.2.1. Two dynamically important modes
which represent main features of the proposed feedback loop
(Lee 1990), namely the buffet mode and the vortex mode, are
pointed out in Sects. 4.2.2 and 4.2.3. Finally, further stable
modes are presented in Sect. 4.2.4.

4.2.1 Reducing the number of modes by SP-DMD

The appropriate number of snapshots that should be fed into
the DMD algorithm is determined by balancing the stability
of the modes and the number of dynamic modes. Transient
phenomena due to the onset and offset of buffet during the
start and the shutdown of the flow in the wind tunnel are
not taken into account in the snapshots for the DMD such
that the flow field of the snapshots is periodic. Therefore,
no physically transient modes that are related to the buf-
fet phenomenon are expected to be present in the snapshot
sequence. On the one hand, there exists a lower limit for the
number snapshots that should be fed into the DMD algo-
rithm to correctly resolve the low-frequency shock oscilla-
tion motion and on the other hand, the interpretation of the
DMD results and the extraction of dominant modes becomes
more complex with an increasing number of snapshots.

As stated in the previous section, transient Ritz eigenval-
ues are characterized by an absolute value of r, < 1, i.e.,
they are inside the unit disk when being plotted in the com-
plex plane. Stable Ritz eigenvalues defined by r,, = 1 accu-
mulate on the unit circle. Figure 6a shows the Ritz eigen-
values plotted in the complex plane together with the unit
circle for N, = 1900 snapshots. Several values for N, have
been tested. For N, = 1600, the saturation point is reached
such that for 1600 snapshots or more there is no significant
decrease of unstable Ritz eigenvalues. To be on the safe side,
N, = 1900 snapshots have been chosen, which corresponds
to about 80 buffet cycles. These snapshots are not taken from
the beginning or end but from the intermediate measurement
time. They are used for the following analysis.

The spectrum of eigenvalues is symmetric with respect to
the real axis. The eigenvalue (R(u), I(u)) = (1,0) is associ-
ated with a frequency of zero and represents the time-invariant
mode, i.e., the mean mode. Since most of the Ritz eigenvalues
cluster on the unit disk, only a few unstable dynamic modes
are present in the spectrum. In Fig. 6b, the amplitudes of the
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modes are plotted versus the growth/decay rates. The red line
marks a growth/decay rate of zero, i.e., stable modes. The
modes with high amplitudes are associated with high decay
rates. Since these modes vanish quickly at the beginning of
the snapshot sequence due to their very high decay rate, they
are transient. Strongly decaying modes with high amplitudes
are often present in DMD analyses, see, e.g., (Jovanovié et al.
2014, Fig. 4c) . That is, even when analyzing a stable or peri-
odic flow where no transient flow dynamics are present, this
artefact of high amplitude quickly decaying modes appears.
Therefore, these modes are not related to the periodic buf-
fet phenomenon, which is present during the whole snapshot
sequence. In other words, ranking the relevance of the dynamic
modes by their amplitude is not reasonable.

Instead, dominant dynamic modes have been extracted by
SP-DMD (Jovanovi¢ et al. 2014). Overall, 100 values in the
interval [1, 10°] for the regularization parameter y for non-
zero amplitudes have been tested. The optimal choice of the
step-size parameter p is still subject of ongoing research (see,
e.g. Ghadimi et al. 2012). Here, p = 1is used as proposed by
Jovanovic et al. (2014). Since the convergence rate was suffi-
cient, an optimization by varying this parameter was not neces-
sary. Boyd et al. (2011) stated €,.; = 1073 or 10~* as reasonable
values for the relative tolerance. In this study €, = 10~ has
been chosen. The maximum absolute truncation error was set
to107°.

Figure 7a shows the degradation of performance with
increasing values of y. The performance loss is given by

”VIIV - ¢Davand”F(7
~ 0.
IVl

l_[loss =100

The performance loss is thus the residual || V’lv - D,V ullp
of the representation of the snapshots VIIV resulting from SP-
DMD normalized by ||V}'||. Note that the output of the
SP-DMD analysis is sensitive to the choice of the regulari-
zation parameter y for non-zero amplitudes, i.e., the num-
ber of non-zero amplitudes N,. Therefore, the approach for
finding a suitable value for the regularization parameter is
driven by the results obtained from Hartmann et al. (2013a)
and Feldhusen et al. (2013). For the simplest case N, = 1,
the time-invariant mode representing the mean mode is
selected by SP-DMD. Up to N, = 19, only low-frequency
modes (f < 50 Hz) are selected. The characteristic buf-
fet frequency fi g = 170 Hz appears for N, > 29. When
the number of non-zero amplitudes N, is further increased,
the frequency spectrum of the selected modes expands to
lower and higher frequencies. For the finally chosen value
of N, = 115, the high frequency of the trailing-edge noise
Jte = 1100 Hz appears for the first time in the DMD spec-
trum. Since the previously determined characteristic fre-
quencies fi 4 = 170 Hz and f;5 = 1100 Hz are present in
the SP-DMD spectrum for N, = 115, these snapshots have
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Fig.6 Spectrum of the 1
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(a) Ritz eigenvalues plotted together with the unit circle (dashed red line); eigenval-
ues on the unit circle are stable throughout the snapshot sequence.
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(b) Dependence of the absolute value of the normalized DMD amplitudes on the
growth/decay rate of the dynamic modes; eigenvalues lying on the red line are
stable throughout the snapshot sequence.

been chosen for the following investigations. This results in
a regularization parameter of y = 533.7, that also defines
the limit below which the number of modes increases rap-
idly (see Fig. 7b), and a performance loss below 10%, i.e.,
I, = 9.3211% (see Fig. 7a).

The spectrum of the SP-DMD analysis for y = 533.7
in the physical frequency domain is given in the plots of
Fig. 8. Since the eigenvalues appear as complex conjugate
pairs with the same frequency, a one-sided representation
with respect to the frequency is sufficient. The amplitudes
a, in Fig. 8a are normalized by the amplitude of the time-
invariant mode a;. The red horizontal line in Fig. 8b marks
a growth/decay rate of zero such that eigenvalues lying
on this line are stable throughout the snapshot sequence.
Since the absolute values of the decay rates are overall
much lower than in the spectrum for the large set of DMD
modes with N, = 1900 given in Fig. 6b, it is evident that

the SP-DMD with N, = 115 excludes the most transient
modes from the spectrum.

4.2.2 The buffet mode

In the following, the dominant characteristic modes of the
transonic DRA 2303 buffet flow are identified and analyzed.
The dynamics of the buffet flow is identified by selecting the
DMD modes whose growth or decay rates are close to zero.

In the range of the characteristic buffet frequency
Jousier = 170 Hz, there is one marginally stable mode in
Fig. 8b. This mode will be referred to as the buffet mode.
Its decay rate is nearly zero and its respective frequency
is f = 171.56 Hz. The reconstruction of the buffet mode
for the first time step is given in Fig. 9. The contours show
the scaled dynamic mode, i.e., the spatial distribution ®(x)
of the mode scaled by the respective amplitude a. The
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(b) Number of non-zero amplitudes.

Fig.7 Performance of the SP-DMD algorithm as a function of the
regularization parameter y, the value for y defined in Fig. 7a is indi-
cated by the red dots

u-velocity component of the mode (Fig. 9a) reveals that not
only the shock motion is included in the buffet mode but also
the pulsating recirculation region. Whereas the u-velocity
component of the buffet mode is dominated by the shock
wave motion and the pulsation of the recirculation region,
the w-velocity component of the mode (Fig. 9b) has sign
changes in the streamwise direction, which indicates a wave-
like movement of the recirculation region.

The coupling between the shock wave motion and the
pulsation of the recirculation region is further analyzed by
examining the time-space modal history of the u-velocity
component of the buffet mode in Fig. 10 for five charac-
teristic stages of one oscillation cycle. Note that only the
temporal reconstruction of the buffet mode is shown with-
out superposing the mean mode. Therefore, the contours
in the shock wave region do not indicate the speed of the
shock wave motion, but the flow velocity in this area. At
the first stage (Fig. 10a), there is a negative superimposed
velocity in the shock region, meaning that the shock is
located most upstream. The negative superimposed flow
velocity in the recirculation region indicates a pronounced
separation. When the shock moves downstream (Fig. 10b),
the flow in the recirculation region accelerates first at the
shock foot. At the third stage (Fig. 10c), the shock wave
is located most downstream since there is a superimposed
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positive velocity in the shock region. Higher velocities of
the flow in the recirculation region show that the sepa-
ration of the boundary layer is less pronounced. At a
later time (Fig. 10d), the shock wave travels upstream.
The shock speed reduces and the flow in the recircula-
tion region decelerates first at the shock foot. The shock
motion and location cause the change of the extension of
the recirculation region. Finally, the shock wave reaches
again its most upstream position (Fig. 10e). The finding
from Fig. 10, that variations related to the length scale of
the recirculation region start at the shock foot, substanti-
ates the result from Fig. 9 that the recirculation region
grows and diminishes in a wave-like manner.

The u-velocity component of the buffet mode presents
the main characteristics of the buffet flow directly visible in
Schlieren images, see e.g. (Hartmann et al. 2012). Regarding
the proposed feedback mechanism (Lee 1990), the pulsation
of the recirculation region directly influences the sound pres-
sure level interacting with the shock wave. Due to a larger
separation region, the sound waves generated at the trailing
edge undergo stronger refractions such that their sound pres-
sure level weakens in comparison to a narrow separation
region.

4.2.3 The vortex mode

In the SP-DMD mode spectra of Fig. 8, one pronounced
mode can be found at the frequency of the sound waves
originating at the sharp trailing edge frz = 1100 Hz which
will be referred to as the vortex mode since the trailing-
edge sound is produced by vortices passing over it. The
growth rate of the vortex mode is near zero, indicating
that this mode is marginally unstable, i.e., very slowly
growing. As it is shown in the contour plots in Fig. 11,
the reconstruction of the vortex mode consists of vortical
structures primarily in the region of the flow recirculation.
In the context of the proposed feedback mechanism (Lee
1990), these vortices present the downstream propagating
part. They are produced by the moving shock wave, travel
downstream, and pass over the trailing edge. Due to the
interaction of this unsteady flow field with the trailing-
edge sound is emitted. For this vortex-driven sound, the
perturbation of the vorticity—velocity cross product, the
so-called Lamb vector, is the major sound source (Ewert
and Schroder 2003). The strength of the moving shock
wave depends on the relative velocity between the mov-
ing shock wave and the incoming flow (Gibb 1988), i.e.,
the shock strength increases while moving upstream. A
stronger shock wave triggers stronger vortex roll-up such
that the strength of the downstream propagating vortices
varies. The measured w-velocity component of the buffet
mode (see Fig. 9b) indicates that the vortices might be
modulated in their strength by a frequency corresponding
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Fig.8 Spectrum of the SP-
DMD analysis for y = 533.7 in
the physical frequency domain;
red dots highlight various
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Fig.9 Contours of the u- and 0.8 0.8
w-velocity component of
the DMD buffet mode with 0.6 0.6
f=171.56 Hz
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(a) u-velocity component. (b) w-velocity component.

to the buffet frequency. Finally, vortices with changing
strength will generate trailing-edge noise of a varying
sound-pressure level which will maintain the shock wave
movement. Note that the buffet mode and the vortex mode
still exist for a perturbed snapshot data matrix.

4.2.4 Further stable modes

In Fig. 8b, further marginally stable periodic modes with
a low decay rate which are more stable than the vortex

-0 -8 -6 4 -2 0 2 4

mode indicated as mode 1 to mode 4 are present. The cor-
responding contours of the u- and w-velocity component
are plotted in Figs. 12, 13, 14 and 15. Mode 1 has a low
frequency of 64 Hz. It possesses the highest amplitude of
all selected marginally stable periodic modes, followed
by the buffet mode. The reconstruction of the u-velocity
component of mode 1 includes the shock wave and the
recirculation region, and the reconstruction of the w-veloc-
ity component of mode 1 reveals vortical structures such
that overall, the reconstruction of mode 1 is very similar
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(a) u-velocity component.

to the reconstruction of the buffet mode. Mode 2 and
mode 3 illustrated in Figs. 13 and 14 are very similar to
each other. Their frequency is 244 Hz and 253 Hz. Their
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reconstructions include the shock wave and the recircula-
tion region in the u-velocity component of mode 2, and
pronounced vortical structures. Mode 4 has a frequency of
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1511 Hz and the corresponding spatial structures plotted
in Fig. 15 are vortices in the separated boundary layer. Its
amplitude is low compared to the other selected margin-
ally stable modes, followed only by the vortex mode (see
Fig.8a). Since the frequency and spatial distribution of
mode 4 and the vortex mode are similar, it is supposed
that they contribute to the same phenomenon of vortex
roll-up inside the separated shear layer. Whereas further
investigations are needed to clarify the role of mode 1, it
is supposed that modes 2 and 3 contribute to the overall

0.8 1 12 0 02 04

0.6 0.6
x/c [-] x/c [-]

(b) v-velocity component.
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buffet dynamics without characterizing any additional
dynamic phenomena.

5 Conclusion

The transonic buffet flow field around a supercritical DRA
2303 airfoil model has experimentally been investigated by
particle-image velocimetry measurements. For the first time,
the experimentally obtained velocity data of a buffet flow
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field are further processed to perform a sparsity-promoting
dynamic mode decomposition (SP-DMD).

The physics of the buffet phenomenon around the DRA
2303 airfoil was thoroughly discussed, e.g., in Hartmann
et al. (2013a) and in Feldhusen-Hoffmann et al. (2018), sup-
porting the buffet model by Lee (1990). This model assumes
that the shock wave oscillations are driven by an acoustic
feedback loop consisting of a downstream propagating part
represented by shock induced vortices and an upstream prop-
agating part represented by sound waves which are generated
when the downstream moving vortices pass over the trailing
edge. The shock wave movement is supposed to be sustained
by a varying SPL of the sound waves interacting with it.

From the previous studies, two dominant frequencies, the
low frequency of the shock wave oscillation and the high
frequency of the vortex shedding, are known. Using the pre-
sent SP-DMD analysis these frequencies could be assigned
to their spatial structures. The low-frequency buffet mode
captures the coupling of the shock wave oscillation and the
pulsation of the recirculation region. The downstream loca-
tion of the shock wave is associated with a less pronounced
separation of the boundary layer than the upstream loca-
tion. Changes in the velocity of the flow in the recircula-
tion region start at the shock foot and convect downstream
towards the sharp trailing edge. This leads to a wave-like
up- and down motion of the recirculation region, also visible
in the w-velocity component of the buffet mode. Hartmann
et al. (2013a) argued that the changing size of the recircula-
tion region enhances the variation of the trailing-edge noise
SPL. For a larger recirculation region, they found a lower
wall-normal gradient of the streamwise velocity component
indicating a lower vorticity which is the main driving mech-
anism of noise. Furthermore, the locally generated sound
waves are weakened while propagating upstream since they
undergo stronger interactions and refractions when the
recirculation region is larger. This supports the idea of Lee
(1990) and Hartmann et al. (2013a) that during buffet, the
shock wave is forced to oscillate by the trailing-edge noise
of varying SPL. Furthermore, the DMD substantiates the
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existence of the high-frequency vortex mode that excites the
shock oscillations via the Lamb vector.

Four further marginally stable periodic modes have been
identified. It is supposed that they are not related to addi-
tional singular physical features.

In brief, the study shows that experimentally obtained
velocity distributions are suitable for the DMD analysis of
the 2D buffet flow and can be used for the future analysis of
3D buffet flow. Since the velocity data are recorded by a high
sampling rate, buffet generated trailing-edge vortex shedding
is detected by measurement data based DMD, which was
not discussed in the literature, yet. The experimental results
confirm numerical findings, i.e., the dominant buffet and
vortex modes are in good agreement with the feedback loop
suggested by Lee (1990).
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