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Abstract 
Accurately reconstructing a radial refractive index (n) field is challenging in axisymmetric background oriented Schlieren 
(BOS) measurement. In this study, we systematically investigated several widely adopted inversion algorithms in BOS appli-
cations. To quantitatively assess the performance of each algorithm, a synthetic experiment mimicking a helium jet discharged 
into ambient air was established to provide the reference. Relying on the necessity to solve a Poisson equation for a line-
of-sight projected variable, tested algorithms were categorized into two groups: direct and indirect. In the direct approach, 
the algorithm is applied directly to the light deflection angle ( � ) to reconstruct the radial � field, defined as � = (n − n

0
)∕n

0
 

where n
0
 is the reference refractive index. In the indirect group, the Poisson equation is solved first. Then, an inversion 

algorithm is subsequently applied to the projected � to obtain � in the radial plane. The two approaches were compared with 
the synthetic experiment both using the adaptive Fourier–Hankel methods (AFH). The comparison showed that at the cost 
of introducing the additional step of solving the Poisson equation, the indirect approach performed more accurately when 
noises were present in the � measurements. To identify the proper inversion algorithm suitable for the indirect approach, we 
further compared four types of algorithms in the synthetic experiments including AFH, onion peeling (OP), three-point Abel 
(TPA), and filtered back projection tomography (FBPT). The results showed that TPA had the best performance in terms of 
the reconstruction accuracy with noisy � data. Finally, experiments on axisymmetric helium jets were conducted to confirm 
the effectiveness of the proposed TPA algorithm in the indirect approach.

Graphic Abstract

1 Introduction

Intensive efforts have been made recently to apply BOS 
method to measure three-dimensional (3D) refractive index 
n, or density � fields, of non-reactive and reactive flows (Ven-
katakrishnan and Meier 2004; Goldhahn and Seume 2007; 
Atcheson et al. 2008; Nicolas et al. 2016; Hayasaka et al. 
2016; Grauer et al. 2018). The tomographic reconstruction 
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of the 3D n field requires multiple 2D projected views from 
different viewing angles. These projected views can be 
obtained by triggering different cameras simultaneously 
(Nicolas et al. 2016) or by one camera with a fiber bundle 
enabling multiple views at the expense of reduced resolu-
tion (Liu et al. 2019), or by rotating one camera around the 
probed volume assuming steady or periodic flows (Ota et al. 
2011; Lang et al. 2017). Achieving sufficient spatial resolu-
tion and accuracy of the 3D n field is time-consuming and 
computationally expensive.

Axisymmetric flows consist of a particular type of 3D 
flows widely encountered in laboratories, especially for lam-
inar jet experiments. The tomographic � field of a jet can be 
reconstructed using a single view angle owing to the sym-
metry of the flow. Such investigations on axisymmetric flows 
were conducted shortly after the introduction of the BOS 
technique (Dalziel et al. 2000; Richard and Raffel 2001; 
Meier 2002). Abel inversion was first applied directly to the 
deviation angle of the BOS measurements (Wong 2001), and 
the accuracy was also explored (Kirmse 2003), although the 
two references are not easily accessible. A special recursive 
ring method was designed by discretizing the n field into a 
set of rings, assuming a constant n within a ring (Kirmse 
2003; Klinge et al. 2003). A sufficient number of rings is 
required to allow accurate reconstruction.

Instead of processing the deflection angle data directly to 
obtain an axisymmetric density field, a Poisson equation of 
the line-of-sight integrated � was solved first, and the solu-
tion field was fed into FBPT algorithm to reconstruct the 
tomographic field (Venkatakrishnan and Meier 2004; Venka-
takrishnan 2005). The preference to FBPT over Abel inver-
sion was attributed to the noise susceptibility and singular-
ity issues of the Abel inversion. However, the introduction 
of the Poisson equation was argued to be unnecessary and 
redundant since displacement information can be fed into 
the FBPT algorithm directly (Goldhahn and Seume 2007). 
To avoid the computationally expensive FBPT methods, a 
Fourier-based method, such as AFH method, was proposed 
(Ma et al. 2008) as a way of accounting for the noise sus-
ceptibility and minimizing truncation errors without an 
additional filter function. Recently, the AFH method was 
introduced to process the axisymmetric BOS data (Tan et al. 
2015), which removes the requirement to solve the Poisson 
equation. Albeit all these studies dedicated to the axisym-
metric BOS technique, a systematic study on the necessity 
to solve the Poisson equation is much needed. Moreover, 
detailed comparisons on the performance of different inver-
sion algorithms, especially with the presence of the noise, 
are still missing in BOS applications.

In this paper, a synthetic experiment mimicking the helium 
jet discharged into the ambient air was designed to evaluate the 
necessity to solve the Poisson equation and the performance 
of various inversion algorithms for the axisymmetric BOS 

measurement. Laboratory measurements were also conducted 
over a steady helium jet to verify the selected algorithm.

2  Methodology

2.1  Principle of BOS

A typical BOS setup consists of a camera with a lens with a 
long focal length (Goldhahn and Seume 2007; Gojani et al. 
2013), a background with a suitable pattern compatible with 
the correlation algorithm (Atcheson et al. 2009; Ota et al. 
2011), and a light source for the background illumination.

When light rays pass through transparent inhomogeneous 
media, the ray deflects. Considering the schematic of a typi-
cal BOS setup shown in Fig. 1, the deflection angle � , e.g., in 
y-direction, can be calculated via a simple geometric relation, 
assuming small deflection angles as:

where Zd is the distance from the center of the Schlieren 
object to the background and �y is the y component of the 
displacement vector � = (�x,�y) in the image plane. The 
relation between �y and gradient of the refractive index n is 
given by the following formula:

where n0 is the refractive index of the ambient gas, z is 
the line-of-sight direction of the ray, and y is the direc-
tion perpendicular to the line-of-sight direction. For two-
dimensional flows, Eq. (2) can be simplified by assuming a 
constant �n∕�y over the thickness W of the Schlieren object 
thus,

Combining Eqs. (1) and (3) and considering the equivalent 
equations in x-direction, an equation set can be obtained, 
which is usually solved in the form of a Poisson equation 

(1)�y ≈
�y

Zd
,

(2)�y =
1

n0 ∫
�n

�y
dz,

(3)�y =
W

n0

�n

�y
.

Fig. 1  A typical BOS setup with an axisymmetric helium jet as the 
Schlieren object
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with proper boundary conditions (Xiong et al. 2020). For 
axisymmetric flows, �n∕�y is not constant along z in Eq. (2) 
and the thickness of the Schlieren object becomes a func-
tion of x. A solution strategy utilizing the symmetry of the 
flow is required.

2.2  Axisymmetric BOS

Several solutions strategies exist to process axisymmetric 
BOS data. Depending on the necessity to solve the Poisson 
equation, these methods can be categorized into direct and 
indirect groups. In the former group, � is directly linked to 
� , or n, in the radial plane. In the later one, the line-of-sight 
integrated � field ( � ) needs to be solved first via the Poisson 
equation, and then an inversion algorithm is further applied 
to the field to obtain the � field in the radial plane. For con-
venience, the difference between the direct and indirect 
approach is illustrated using the Abel transform.

Abel transform describes the projection of a spherically 
or axially symmetric function f onto a plane. To apply for-
ward and inverse Abel transforms, the field function f(r) 
has to drop to zero faster than 1/r. In this study, instead of 
projecting n(r), a modified refractive index field �(r) that 
approaches zero in the far-field is defined in Eq. (4) (shown 
schematically in Fig. 1):

The relation between �y and � can be derived based on Eq. 
(2) as:

where 𝛿 is the line integrated � in the z-direction. The for-
ward Abel transform, connecting 𝛿 and � together, takes the 
following form:

and accordingly the inverse Abel transform can be given by:

Considering the Eq. (5), it gives:

(4)� =
n

n0
− 1.

(5)
𝜀y =

1

n0 ∫
𝜕n

𝜕y
dz = ∫

𝜕𝛿

𝜕y
dz =

𝜕

𝜕y

(

∫ 𝛿dz

)

=
𝜕𝛿

𝜕y
,

(6)𝛿(y) = 2∫
∞

y

𝛿(r)r
√
r2 − y2

dr,

(7)𝛿(r) = −
1

𝜋 ∫
∞

r

d𝛿(y)

dy

dy
√
y2 − r2

.

(8)�(r) = −
1

� ∫
∞

r

�y

dy
√
y2 − r2

.

Thus �(r) correlates directly with the deflection angle �y , 
which could be calculated based on Eq. (1).

The direct approach utilizes Eq. (8) in which � and � 
are connected directly without any intermediate step. As a 
contrast, indirect methods compute � via two steps. Firstly, 
the line-of-sight integrated value 𝛿 is calculated via solving 
a Poisson equation, which can be derived from Eq. (5) by 
taking the partial derivative in y-direction and consider the 
same equation in the x-direction by summing up the two as:

By applying proper boundary conditions, 𝛿 can be calculated. 
More details to solve this Poisson equation in BOS measure-
ments can be found in the literature, e.g., (Xiong et al. 2020). 
The inversion of 𝛿 can be achieved, for example, by inverse 
Abel transform as shown in Eq. (7). A schematic summa-
rizing the roadmap of the solution methodology within the 
BOS measurements is shown in Fig. 2, where ⊗ denotes the 
multiple-pass cross-correlation operation, � = (�∕�x, �∕�y) 
is the gradient operator and � ⋅ � = (�2∕�x2 + �

2∕�y2) is the 
laplacian operator, � = (�x, �y) , K is the Gladstone-Dale con-
stant, D is the inversion algorithm in the direct approach and 
I  is the operator for the indirect approach.

3  Experimental setup

3.1  Synthetic experiments

Synthetic experiments are widely used to test the accuracy of 
the inversion algorithm for the tomography but typically lim-
ited to 1D conditions (Dasch 1992; Zhang et al. 2018). In the 

(9)
𝜕
2
𝛿

𝜕x2
+

𝜕
2
𝛿

𝜕y2
=

(
𝜕𝜀x

𝜕x
+

𝜕𝜀y

𝜕y

)
.

Fig. 2  The roadmap for the solution methodology in axisymmetric 
BOS measurements
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jet experiments, density gradients occur not only in the radial 
direction but also in the stream-wise direction (x-direction as 
shown in Fig. 1). In this regard, a synthetic 2D displacement 
field, mimicking a helium jet discharged into air ambient, was 
designed with the non-dimensional displacement field as:

where the subscript a denotes analytical expression, the nor-
malized variables are defined as x̂ = x∕R , ŷ = y∕R , r̂ = r∕R , 
Ẑd = Zd∕R and �c =

(
nj − n0

)
∕n0 with the jet nozzle radius 

R, jet refractive index nj and ambient air refractive index n0 . 
The selected expressions for �̂xa can allow analytical solu-
tions for 𝛿a and ̂𝛿a as:

Note that Ẑd was set to 2 (other values can be selected also) 
to obtain Eq. (13) by solving the Poisson equation as:

The ⋅̂ sign and the subscript a are omitted in the following 
derivations to alleviate the notation. To exhibit the synthetic 
experiments intuitively, 2D � field, � field, together with 
the associated 3D � field are shown in Fig. 3. Inside ten iso-
surfaces of � were presented in 3D space, projected � and 
� fields were positioned at Z = 2 , the center of the jet was 
located at y = 0, z = 0 . n0 = 1.000258 and nj = 1.000030809 
(refractive index of helium) were used. In practical BOS 
measurements, noises inevitably appear in the � data from 
various sources. If a high spatial resolution is desired for 

(10)�𝛥xa = −
8

15
�Zd𝛿c

(
1 − ŷ2

)5∕2
,

(11)�𝛥ya =
8

3
�Zd𝛿c(x̂ − 2)ŷ(1 − ŷ2)3∕2,

(12)𝛿a =𝛿c
(
1 − r̂2

)2(
1 −

x̂

2

)
,

(13)̂
𝛿a = −

8

15
𝛿c(x̂ − 2)

(
1 − ŷ2

)5∕2
.

(14)
𝜕
2 ̂
𝛿

𝜕x̂2
+

𝜕
2 ̂
𝛿

𝜕ŷ2
=

1

Ẑd

(
𝜕�𝛥x

𝜕x̂
+

𝜕�𝛥y

𝜕ŷ

)
.

the BOS measurements, the value of Zd determining the 
out-of-focus effect should be minimized together with the 
measurement sensitivity (Goldhahn and Seume 2007). Thus 
the resulting � field can be only with a small signal-to-noise 
ratio. To take the noise effect into account, white noise term 
was added to the R.H.S. of Eqs. (10) and (11) as:

Inside SNR is the signal-to-noise ratio varying from 0 to 
20%, R is a randomly generated matrix vector of the same 
size as � with values between –1 and 1, and C is chosen to 
be the peak value of |�| . Examples of (�x,�y) fields with the 
noise addition are shown in Fig. 4. Since the noise matrix is 
randomly generated in each run, one hundred of runs were 
computed for each test condition to obtain the statistics such 
as the variances and standard deviations.

3.2  Helium jet experiment

BOS measurements over an axisymmetric helium jet were 
conducted to obtain the n field. The helium of 99.9% purity 
was discharged from the gas cylinder, passed through a mass 
flow controlling valve, and entered a cylindrical cavity. The 
flow was then straightened by a honeycomb to homogenize 
the velocity disturbances before the convergent section 
upstream of the jet pipe. The jet pipe outlet was round-
shaped with R = 7 mm. To isolate the helium jet from sur-
rounding flow disturbance, acrylic glass walls of a thickness 
HG = 4 mm were built around the jet with a width of 480 
mm and a height of 670 mm. A loudspeaker, driven by a 
voltage amplifier, was mounted at the bottom of the cavity to 
enable acoustic modulation of the jet. A function generator 
provided the sinusoidal signals to the amplifier at desired 
frequencies. Zd was set to 219 mm. A similar setup can be 
found in our previous study (Xiong et al. 2020).

The BOS system consisted of a high-speed camera (Lavi-
sion, HighSpeed-Star), an over-driving LED light (HARD-
Soft, IL-106X), and a background printed on a paper with 
random dots and sandwiched between two thin acrylic 
glasses. The dot size in the background pattern is designed 

(15)w = SNR ×R × C.

Fig. 3  Direct visualization of 
the fields of � , |�| and � in the 
synthetic experiment
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to be about 2–3 pixels to minimize the peak-locking effects 
when processed with the cross-correlation algorithm (Raffel 
et al. 2018). The camera was equipped with a Nikon micro-
lens of f = 200 mm, and the camera aperture was set at f# 
= 32 to minimize the defocusing effect. This lens of a large 
focal length is preferred in BOS measurements for the sen-
sitivity consideration (Goldhahn and Seume 2007; Gojani 
et al. 2013). Continuous LED illumination was adopted here.

Recorded images in BOS were processed with the mul-
tiple-pass cross-correlation algorithm in DAVIS 8.4 (Lavi-
sion). The large correlation window size was 48 by 48 pixels 
with an overlap of 50%, and the small window size was 12 
by 12 pixels with an overlap of 75%. The pixel dimension 
in the background plane was approximately 0.13 mm. Since 
the displacements were mainly below 1 pixel in the current 
configuration, the capability of the DAVIS software to evalu-
ate the sub-pixel shift is essential. DAVIS 8.4 is documented 
to capture the sub-pixel displacement accurately down to 
0.03 pixel in PIV applications. With a carefully designed 
background pattern in BOS measurements, peak-locking 
and out-of-plane errors can be minimized. According to the 
synthetic experiments, the DAVIS algorithm can calculate 
sub-pixel displacements with a high level of precision down 
to 0.01 pixel in this study.

4  Results

4.1  Direct vs Indirect approach

The necessity of solving the Poisson equation needs to be 
clarified before selecting the optimal inversion algorithm for 
axisymmetric BOS measurements. The same type of algo-
rithms should be adopted to compare the direct and indirect 
approaches. In this study, AFH was adopted as the type of 
algorithm. The AFH algorithm utilizes the relation that the 
Fourier transform of � equals to the zero-order Hankel trans-
form of � as (Mook 1983):

where HT  and FT  are the Hankel and Fourier transform 
respectively. Applying the inverse Hankel transform on both 
side gives (Ma et al. 2008):

The numerical integration of Eq. (17) requires � field to 
be obtained first by solving the Poisson equation. To apply 
AFH directly, instead of 𝛿(r) , the deflection angle � should 
be used. Following the derivations in Chehouani and Fagrich 
(2013), the following equation is found:

where J0(𝜔r) =
1

2𝜋
∫ 2𝜋

0
exp(−î𝜔rsin𝜃)d𝜃 is the zero order 

Bessel function. By introducing a factor � with 0 < 𝛼 ≤ 1 
for choosing the frequency spacing, following numerical 
integration of Eqs. (17) and (18) can be obtained as:

Inside the discretization coefficient matrix is of the form 
as (Ma et al. 2008; Chehouani and Fagrich 2013; Tan et al. 
2015):

 Inside N = R∕�r is the number of intervals with distance 
�r , and N

�
 is the closest integer less than or equal to N∕� . 

(16)HT[�(r)] = FT[�(y)],

(17)
𝛿(r) =HT

−1[FT[𝛿(y)]]

=
1

2𝜋 ∫
∞

0

FT[𝛿(y)]𝜔J0(𝜔r)d𝜔.

(18)�(r) =
1

2�i ∫
+∞

0

FT[�y]J0(�r)d�,

(19)�(ri) = Dij�(yj) = �ij�y(yj).

(20)Dij = −
�

N

N∑

j=0

N
�∑

k=0

sin

(
��jk

N

)
J0

(
��ki

N

)
,

(21)�ij =
�
2
�

2NR

N∑

j=0

N
�∑

k=0

kcos

(
��jk

N

)
J0

(
��ki

N

)
.

Fig. 4  The fields of �x and �y 
in the synthetic experiment with 
a 20% noise addition
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� can take any value between 0 and 1. When choosing a 
smaller � , more discrete frequencies are taken into consid-
eration, and the truncation error of the method is reduced. At 
the same time, the computation time increases significantly 
as � is reduced. A value of 0.2 is recommended in the litera-
ture (Chehouani and Fagrich 2013). In this paper value of 
0.1 was used to decrease the truncation error further.

Applying the AFH methods in both the direct and indirect 
approaches allows a direct evaluation of the necessity of 
solving the Poisson equation. Consider first the case with 
no noise appearing in the synthetic experiment. The 2D 
error distributions � associated with the indirect and direct 
approaches are shown in Fig. 5 with �

�
 defined as:

Similar definition of �
�
 is achieved by replacing the vari-

able � with � in the equation. In the indirect approach, the 
first step error �

�
 is from solving the Poisson equation for � 

as shown in Fig. 5a. Subsequent inversion results in �
�
 , as 

shown in Fig.  5b. Overall the �
�
 is one order of magnitude 

smaller compared to the �
�
 indicating the major error comes 

from the AFH inversion step in the indirect approach. Fig-
ure  5c exhibits �

�
 from the direct AFH inversion. The com-

parison between Fig. 5b and c show that the direct approach 
is more accurate. This could be explained by the additional 
error introduced by solving the Poisson equation as shown 
in Fig. 5a. Thus without the noise contamination, the direct 
approach should be preferred over the indirect approach 
owing to the smaller error and also to the lower computa-
tional cost without the need to solve the Poisson.

In practice, noises are always appearing in the BOS meas-
urement from multiple sources (Xiong et al. 2020), thus 
it is critical to consider the impact from the noises when 

(22)�
�
=

� − �a

�0

.

evaluating the indirect and direct approaches. In Fig.  6, 
plots similar to Fig. 5 are listed by assuming SNR = 10 % in 
Eq. 15. Comparing the fields of �

�
 in Fig. 4b and c, a signifi-

cant reduction in the error can be identified from the indirect 
approach. The advantage of the indirect approach here relies 
on the additional step of solving the Poisson equation. Com-
paring the noisy displacement fields shown in Fig. 4 and the 
field of �

�
 shown in Fig. 6a, a much homogenized error field 

can be immediately identified owing to the solving of the 
Poisson equation.

To comparing the two approaches quantitatively, 
the radial distributions of �

�
(r) , obtained by averaging 

�
�
(x, r) along the x direction, from both approaches with 

SNR = 10 % were shown in Fig. 7a. From the figure, the 
peak �(r) always appears near the central axis. In the indirect 
approach, �(r) is approximately only half of the value from 
the direct approach. This is consisted with the observations 
in Fig. 6b and c.

SNR values are further varied from 0 to 20% to clarify 
the effect of the level of SNR over �

�
 . A global error-index 

� , obtained by further averaging �(r) in the radial direction, 
was adopted. The performance of � with respect to SNR is 
shown in Fig. 7b. As the SNR increases, � from both the 
direct and indirect approach increases linearly with respect 
to SNR . The value of � obtained from the direct approach 
is about 2.5 times larger than the values from the indirect 
approach, confirming the superiority of the indirect approach 
with noisy displacement fields.

4.2  Optimal algorithms for indirect approach

In the indirect approach, there are several other widely 
adopted algorithms including OP, TPA, and FBPT to invert 
�(r) in addition to the indirect AFH. Details on each method 
and associated parameters can be found in the appendix. To 

Fig. 5  Error distributions from solving the Poisson equation (a), from the AFH inversion in the indirect approach (b), and from the AFH inver-
sion in the direct approach (c) without the noise addition
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select the most robust algorithm among the four in the indi-
rect approach, associated �(r) distributions with SNR = 10 % 
are presented in Fig. 8a. Note the r coordinate is non-equally 
spaced from 0 to 0.1 and 0.9 to 1 to illustrate the compari-
son better. Overall, all four algorithms perform similarly 
in regions for 0.1 ≤ r ≤ 0.9 . Noticeable difference can be 
identified especially near the central axis ( 0 < r < 0.1 ) and 
lateral boundary ( 0.9 < r < 1 ). TPA can be identified clearly 
to yield the lowest inversion error. This conclusion on the 
superiority of the TPA algorithm is consisted with previ-
ous exploration in a 1D problem (Dasch 1992). The level 
of SNR was again varied from 0 to 20% to characterize the 
impact of the SNR on the performance of each algorithm, 
and the behaviors of � were compared in Fig. 8b. Gener-
ally, the superiority of the TPA algorithm can be confirmed 
throughout all SNR . Nevertheless, other algorithms also 
perform well in the indirect approach indicating that the 
inclusion of the Poisson equation in the solution strategy is 
the essential step compared to the selection of the specific 
inversion algorithm.

4.3  Importance of centering

All the analysis in previous sections assumes the flow is 
strictly axisymmetric. However, this is rarely the case. In 
practice, due to the imperfection of the setup and align-
ment, a slight asymmetry is usually present in flows, thus 
contributing to the inversion error. To evaluate the error 
introduced by the asymmetry quantitatively, we intention-
ally shifted the central axis in the analytical expression in 
Eq. 13 from 0 to 3 pixels. Then the TPA inversion algo-
rithm with the indirect approach was applied, and results 
are shown in Fig. 9 at x = 0.05 for the illustrative purpose. 
Clearly, the error � − �a is proportional to the offset value. 
An auto-correlation algorithm was thus applied to correct 
such asymmetry. The basic principle behind the correction 
algorithm was to compare the left and right half profile of 
|�| at specific x using the auto-correlation algorithm. Thus 
the lag between the two profiles could be estimated. Then 
the profile of � is shifted with respect to the identified lag 

Fig. 6  Error distributions from solving the Poisson equation (a), from the AFH inversion in the indirect approach (b), and from the AFH inver-
sion in the direct approach (c) with SNR = 10%

Fig. 7  Comparing �(r) with SNR = 10 % in the radial direction (a) 
and � with SNR from 0 to 20% (b) for both the direct and indirect 
approach

Fig. 8  Comparing �(r) with SNR = 10 % in the radial direction (a) 
and � with SNR from 0 to 20% (b) for four different algorithms after 
solving the Poisson equation in the indirect approach
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at each x. Finally, the left and right profiles are further 
averaged to achieve the exact symmetry.

4.4  Helium jet experiment

A steady helium jet experiment was established to confirm 
the selection of the TPA inversion algorithm in the indi-
rect approach. A reference background image was recorded 
firstly with no jet. After several minutes, a data image with a 
steady jet was subsequently recorded. The cross-correlation 
algorithm in DAVIS 8.4 was then applied to the reference/
data image set to obtain the � field as shown in Fig. 10a. 
Inside the arrows represent only the direction of � while 
|�| is denoted by the color. Spatially non-uniform spurious 
displacements (SDs) can be clearly identified in regions far 
away from the jet. Similar observations and discussions on 

the possible origins of the SDs were also proposed by the 
same group (Xiong et al. 2020). A heuristic approach was 
adopted here to remove the SDs via reconstructing a non-
uniform field of SDs based on their distributions in regions 
away from the helium jet. Resulting filtered �f  is shown in 
Fig. 10b and a direct comparison with the raw field �raw in 
Fig. 10a immediately confirms the successful removal of the 
majority of the SDs. However, as indicated by the boundary 
contours marked in white lines, a slight asymmetry of the 
field still occurs due to the imperfections in the experiments. 
The symmetry correction algorithm discussed in Sect. 4.3 
was thus applied, and the obtained centered �c field is shown 
in Fig. 10c.

Obtained �c field is further utilized in the Poisson equa-
tion from the indirect approach for solving the � field. Then 
the TPA algorithm is applied to the � field to solve for the 
�r, y field in the radial plane as shown in Fig. 11a. A steady 
jet contour with two diffusion layers can be identified. To 
confirm the accuracy of the inversion, the quantitative com-
parison of � profiles with �air and �helium were conducted at 
y = 10 , 30, and 50 mm respectively as shown in Fig. 11b–d. 
A nearly perfect match between the � with the reference val-
ues in the helium and airside confirms the effectiveness of 
the proposed BOS solution strategy for axisymmetric flows.

5  Conclusions

The specific inversion strategy and algorithm for axisymmet-
ric BOS measurements have been systematically explored 
in this paper. A 3D synthetic experiment was established to 
mimic the helium jet discharged into the ambient air. With 

Fig. 9  Quantitative comparison of the error � − �
a
 induced by the 

asymmetric offset ranging from 0 to 3 pixels for x = 0.5 in the ana-
lytical expression in Eq. 13

Fig. 10  Two dimensional displacement fields without the correction on SDs (a), with the correction on SDs by subtracting the reconstructed 
spurious displacement field (b), with a further correction on the central axis location (c)
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minimal noises appearing in the displacement measure-
ments, solving the Poisson equation introduces additional 
computational cost and raises the error in reconstructing the 
radial refractive index field. Thus the direct approach is pre-
ferred in such a situation. As the noise within the measure-
ment grows, e.g., with SNR > 2% , solving the Poisson equa-
tion reduces the solution error significantly thus, the indirect 
approach should be selected. The superiority of solving the 
Poisson equation with noisy displacement measurements can 
attribute to the fact that formulating BOS problem in solving 
a Poisson equation equals to find the solution to the BOS 
problem in the least-squared sense. Thus the high-frequency 
spatial noise can be smoothed out inherently. Within the 
indirect approach for SNR > 2% , the superiority of the TPA 
algorithm has been verified compared to OP, FBPT, and 
AFH algorithms widely used in the BOS community. The 
importance of accurately centering the displacement data 
was also emphasized, and an effective asymmetry correction 
algorithm was proposed. An experiment of a steady helium 
jet was conducted and confirmed the performance of the 
TPA algorithm in the indirect approach together with the 
centering algorithm.
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Appendices

Three inversion methods within the frame of the indirect 
approach will be introduced including OP, TPA and FBPT.

Onion‑peeling method

Onion peeling is a classical algorithm to discretize Eq. (6) 
for axisymmetric flows. Axisymmetric flows are divided into 
N concentric rings of constant �j with j = 1, 2, ...,N as shown 
in the Fig. 12 (Dasch 1992):

where the matrix coefficient Wij has the following form:

(23)

𝛿(ri) = 2

N∑

j=i

𝛿(rj)∫
rj+𝛥r∕2

rj−𝛥r∕2

r
√

r2 − r2
i

dr

= 𝛥r

N∑

j=i

Wij𝛿(rj),

Fig. 11  The � field obtained 
by the TPA from the indirect 
approach in the radial plane (a) 
and quantitative comparisons 
between the � profiles with 
�
helium

 and �
air

 at y = 10 mm (b), 
30 mm (c) and 50 mm (d)

Fig. 12  Schematic of onion peeling algorithm. The axisymmetric 
flow is split into N concentric ring of constant �

j
 . Projection of the 

flow in the line-of-sight direction results to the distribution of 𝛿

http://creativecommons.org/licenses/by/4.0/
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Since this is discretation of the inverse Abel trans-
form, Eq. 23 is recast back to the form of Eq. (19) with 
�ij = (W−1)ij . The accuracy of onion peeling can be further 
improved by applying a regularization technique to the prob-
lem. A comprehensible explanation of how to implement 
Tikhonov regularization can be found in (Daun et al. 2006). 
The choice of the regularization is not trivial and is often 
found through trial and error. The following implementation 
of onion peeling does not include any regularization.

Three‑point Abel

The method discretizes Eq. (8) with a quadratic expansion of 
𝛿 around each projection point. According to the comparison 
study (Dasch 1992), TPA possesses the best noise perfor-
mance among all the tested methods under 1D conditions. 
A detailed derivation can be found in (Dasch 1992). The 
coefficient matrix �ij of Eq. (7) can be expressed as (Karl 
Matthew Martin 2002; Dasch 1992) :

The coefficient matrices H0
i,j

 and H1
i,j

 take the following form:

(24)

Wij =
√
(2j + 1)2 − 4i2 −

√
(2j − 1)2 − 4i2,

For j > i.

=
√
(2j + 1)2 − 4i2,

For j = i.

= 0,

For j < i.

(25)

�ij = 0,

For j < i − 1,

= H0
i,j+1

− H1
i,j+1

,

For j = i − 1,

= H0
i,j+1

− H1
i,j+1

+ 2H1
i,j
,

For j = i,

= H0
i,j+1

− H1
i,j+1

+ 2H1
i,j
− H0

i,j−1
− H1

i,j−1
,

For j ≤ i + 1,

= H0
i,j+1

− H1
i,j+1

+ 2H1
i,j
− 2H1

i,j−1
,

For i = 0, j = 1.

Filtered back projection tomography

A schematic of the projection of an arbitrarily distributed 
field �(x, y) onto a plane ( ̄𝛿(𝜃, l) ) is shown in Fig. 13. The 
projection data 𝛿(𝜃, l) is obtained via the integration along 
a path with angle � and a distance l from the center along 

(26)

H0
ij
= 0,

For j = i = 0 orj < i,

=
1

2𝜋
ln

�√
(2j + 1)2 − 4i2 + 2j + 1

2j

�
,

For j = i ≠ 0,

=
1

2𝜋
ln

�√
(2j + 1)2 − 4i2 + 2j + 1

√
(2j − 1)2 − 4i2 + 2j − 1

�
,

For j > i.

(27)

H1
ij
= 0,

For j < i,

=
1

2𝜋

√
(2j + 1)2 − 4i2 − 2jH0

ij
,

For j = i ≠ 0,

=
1

2𝜋

�√
(2j + 1)2 − 4i2 −

√
(2j − 1)2 − 4i2

�
− 2jH0

ij
,

For j > i.

Fig. 13  Schematic of filtered back projection technique
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the direction s. The relation between 𝛿(𝜃, l) and �(x, y) is 
given by:

where � is the Dirac delta function. Equation (28) is also 
known as the Radon transform. The inverse Radon transform 
calculates �(x, y) from the projection data 𝛿(𝜃, l) . FBPT is a 
typical method to perform such an inversion. The method 
is based on the projection slice theorem, which states that 
the slice of angle � in the frequency space of the 2D Fourier 
transform of �(x, y) is equal to the 1D Fourier transform of 
the projection profile at angle � , 𝛿(𝜃) as:

G(𝜚, 𝜃) = FT1D
[
𝛿(l, 𝜃)

]
 , F(u, v) = FT2D

[
�(x, y)

]
 , where FT1D 

and FT2D are the 1D and 2D fast Fourier transforms respec-
tively. By expressing the inverse 2D Fourier transform in 
cylindrical coordinates, one can show that:

Provided with the projection field G(�, �) , field �(x, y) thus 
can be evaluated. To correct for the uneven sampling, vari-
ous filters, such as the Shepp–Logan, Ram-Lak or the Hann 
filter have been devised. The choice of filter affects the trade-
off between contrast and noise. In this study, the FBPT algo-
rithm with the Shepp–Logan filter was adopted using the 
MATLAB function iradon.
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