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Abstract
Glycerol is used in many applications of science and daily life as it is cheap and biologically non-invasive. In science, aque-
ous solutions of glycerol are commonly used for experimental investigations as their density can be adapted by changing 
the glycerol content in the solution. Although the density of aqueous glycerol solutions has been measured precisely since 
more than a century, current models show a deviation from measured data of up to 2% . In this work we present an analyti-
cal expression to accurately calculate the density of aqueous glycerol solutions. The presented empirical model is validated 
in the range between 15 and 30 ◦

C and has a maximum deviation of less than 0.07% with respect to measured data. This 
improves the accuracy of current models by more than one order of magnitude. By knowing the temperature and glycerol 
content of the solution, its density can be simply calculated with the presented model. A Matlab function is provided in the 
supplementary material to allow a simple implementation in other scientific work.

1  Introduction

Glycerol is used in many applications within the scientific 
fields of fluid mechanics, chemistry, medicine, and biology. 
In daily life glycerol is commonly used in pharmaceutical 
and personal care products, as well as an anti-freeze and in 
food industry, because it is cheap and non-toxic (Ayoub and 
Abdullah 2012). In scientific work the exact determination 
of the density of aqueous glycerol solutions is important. 
By mixing glycerol with water, the density of the solution 
at room temperature can be adapted in the range from 1000 
kg/m3 (pure water) to 1260 kg/m3 (pure glycerol). This 
possibility of adapting the liquid density is why glycerol is 
used in many scientific fields in particular in fluid mechanics 
and biotechnology. A specific example for the application 
of this technique in fluid mechanics is the matching of the 
liquid density to polymer particles, which allows them to 
follow the streamlines. This property can be used in meas-
urement technologies to determine the structure of a flow 

field (Adrian and Westerweel 2011; Raffel et al. 2018). In 
biotechnology, glycerol density gradients allow to separate 
biological material by centrifugation (Hansen et al. 1987). 
Due to the various applications mentioned above, densities 
of aqueous glycerol solutions have been measured since 
more than a century. Whereas first measurements by Gerlach 
(1884) and Strohmer and Gerlach (1885) were accurate to 
four significant digits, several detailed investigations on the 
properties of aqueous glycerol solutions have been published 
later in the early 20th century by Washburn and West (1926) 
and Timmermans (1935), as well as by Bosart and Snoddy 
(1927) and Bosart and Snoddy (1928) and determined the 
density of glycerol and its aqueous solution with a precision 
up to five significant digits. A summary of tables on glycerol 
measurements can be found in a publication by the Glycerine 
Producers’ Association (1963). On the other hand, a precise 
formula to calculate the density based on temperature and 
glycerol content has not yet been presented. An attempt to 
summarize these measurements in a formula has been pre-
sented by Cheng (2008). However, in that work, the density 
of the solution is wrongly calculated using the mass fractions 
of the solutes instead of the volume fractions. Moreover the 
effect of volume contraction is not taken into account. In the 
work presented here, these aspects are corrected to develop a 
model for the the density of aqueous glycerol solutions that 
precisely fits with the measured data of Bosart and Snoddy 
(1928).
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2 � Density relation for aqueous glycerol 
solutions

Assuming an ideal solution, its density �s is given by

where N is the number of components, T the temperature 
value in ◦C , �

i
 the volume fraction of the ith component, and 

�
i
(T) its temperature-dependent density. However, Eq. (1) 

does not take into account the volume contraction, an effect 
that is typically small but occurs for most liquid mixtures 
and leads to a solution volume Vs that is smaller than the sum 
of the component volumes 

∑
i
V
i
 (Prigogine et al. 1957). To 

set up a model with high accuracy, this effect is also taken 
into account in this work. Thus, the volume contraction coef-
ficient � is introduced as the ratio:

By analyzing measured data of aqueous glycerol solutions, 
it can be found that � not only depends on the volume frac-
tion of glycerol, but also on the temperature of the solution 
(Bosart and Snoddy 1928). With the volume contraction the 
density of an aqueous glycerol solution is given by

where �0 and �g are the volume fractions of water and glyc-
erol and �0(T) and �g(T) the densities, respectively. As the 
mass fraction w

i
 is more commonly used than the volume 

fraction �
i
 to describe the amount of the components in a 

solution, the conversion:

is used in the following. The resulting expression for the 
density of an aqueous glycerol solution is then

3 � Model for the density of aqueous glycerol 
solutions

The model presented in this work is based on experimen-
tal data which is shown in Table 1 of the supplementary 
material where the density of aqueous glycerol solutions 
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�s was measured by Bosart and Snoddy in a temperature 
range between 15 and 30 ◦ C for glycerol weight fractions 
between 0 and 100% with an uncertainty Δ�s ≈ 0.1 kg∕m3 
(Bosart and Snoddy 1928). Based on this data, a model will 
be developed in this work to describe the density of aqueous 
glycerol solutions. The model uses the density of pure water 
�0 (Linstrom and Mallard 2005; Wagner and Pruß 2002) 
and pure glycerol �g (Bosart and Snoddy 1928) to calculate 
�s . The uncertainties of the measured densities of the pure 
components are Δ�0 ≈ 0.01 kg∕m3 and Δ�g ≈ 0.1 kg∕m3 . 
With Eq. (2) and the given uncertainties, the uncertainty of 
the volume contraction coefficient is Δ� ≈ 0.0002 according 
to linear error calculation.

The densities of the pure liquids can be approximated 
with the empirical expressions:

for water and

for glycerol (adapted from Cheng (2008) to fit the data 
of Linstrom and Mallard (2005) and Bosart and Snoddy 
(1928), respectively). Equation 6 describes the temperature 
dependent density of water where the maximum deviation 
from the measured data is less than 0.3 kg/m3 (0.03%) in 
the temperature range between 0 and 100 ◦C . For glycerol, 
the temperature dependent density is given by Eq. (7) and 
the maximum deviation from the measured data is less than 
0.4 kg/m3 (0.03%) in the temperature range between 15 and 
30 ◦C . For pure liquids � has to be exactly one. To guarantee 
this it can be approximated by the function

where A is the temperature dependent coefficient

Equations (8) and (9) where determined based on the 
measurements of Bosart and Snoddy (1928). Figure 1 
shows a comparison between � calculated by the model 
given in Eq.  (8) and the same coefficient determined 
based on the measured data as a function of glycerol con-
tent and temperature. The maximum deviation of � from 
the measured data is 0.0004 which is only by a factor 
of 2 higher than the calcuated uncertainty based on the 
measurements.

The density of aqueous glycerol solutions is calcu-
lated by substituting Eqs.  (6)–(8) into Eq.  (5). When 

(6)�0(T) = 1000

(
1 −

||||
T − 3.98

615

||||
1.71

)
kg

m3

(7)�g(T) = (1273 − 0.612 T)
kg

m3

(8)�(T ,wg) = 1 + A sin(w1.31
g

�)0.81,

(9)A = 1.78 × 10−6 T2 − 1.82 × 10−4 T + 1.41 × 10−2.
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comparing the results with the measurements which are 
given in Bosart and Snoddy (1928) in the temperature 
range between 15 and 30 ◦C , the maximum deviation 
between model and measured data is less than 0.7 kg/m3 
(0.07%). In comparison, the commonly used model of 
Cheng (2008), which does not take into account volume 
contraction shows a maximum deviation from measured 
data of about 2% . A more recent but less known work by 
Cristancho et al. (2011) is using the Jouyban–Acree model 
(Jouyban et al. 2004) to estimate the density of aqueous 
glycerol solutions and achieved results with a maximum 
deviation from measured data of about 0.4% . The model 
presented in this work is, therefore, strongly improving 
other density models of aqueous glycerol solutions and is 
much closer to the measurement uncertainty of 0.01%.

Figure 2 shows a comparison of the model presented 
in this work with the models of Cheng (2008) and Cris-
tancho et al. (2011), respectively. The measured data of 
Bosart and Snoddy (1928) is also shown in the figure. 
To enable an easy implementation of the above results in 
other scientific work, a matlab function with the model 
is provided in the supplementary material. An online cal-
culator for the density and viscosity of aqueous glycerol 
solutions is provided by Chris Westbrook (http://www.
met.readi​ng.ac.uk/~sws04​cdw/visco​sity_calc.html). The 
tables in the supplementary material show a comparison 
between the measured data (Supplementary Table 1) and 
the model (Supplementary Table 2) as well as calculated 

densities of aqueous glycerol solutions at typical lab tem-
peratures between 15 and 29 ◦C (Supplementary Tables 3, 
4, 5).
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