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1 Introduction

A number of experimental velocimetry techniques have 
recently become available that allow the determination of 
the three velocity components (3C) in a volume (3D) of 
fluid. In particular, there are 3D particle tracking veloci-
metry (PTV) (Maas et al. 1993), scanning particle image 
velocimetry (PIV) (Brücker 1995), holographic PIV 
(Hinsch 2002), magnetic resonance velocimetry (MRV) 
(Elkins et al. 2003) and most recently tomographic PIV 
(Elsinga et al. 2006). Since the mentioned techniques 
measure the three velocity components in a volume, they 
enable one to calculate the full velocity gradient tensor. Not 
only does this allow a less ambiguous analysis of coherent 
structures than in the case where only 2D velocity slices 
are available, but it potentially allows accurate inference 
of pressure fields via the Navier-Stokes equations (van 
Oudheusden 2013). In the future, this latter capability is 
expected to have important applications in non-intrusive 
evaluation of forces, and the study of acoustic sources 
(Scarano 2013).

For incompressible flows, the trace of the velocity gradi-
ent tensor is zero by the mass conservation equation, i.e., 
the velocity field is solenoidal (divergence-free). How-
ever, measurement errors will cause spurious nonzero 
divergence in measured fields. It is possible to reduce this 
spurious divergence somewhat through ad hoc smoothing 
the data, as shown by Zhang et al. (1997). However, this 
results in a loss of resolution, without achieving a perfectly 
divergence-free velocity field. A more physically consistent 
approach is to enforce mass conservation in the filter itself.

Including this constraint can be particularly advanta-
geous when calculating physics-based derived quanti-
ties. For example, Sadati et al. (2011) found a significant 
improvement in the calculation of stress and optical signal 
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fields from velocity measurements of a viscoelastic flow. 
In this paper, we demonstrate improvements in the calcula-
tion of pressure fields. Additionally, it is essential when the 
measurements are to be used as input for numerical simula-
tions, e.g., for temporal flow reconstruction. In particular, 
in the field of PIV, Sciacchitano et al. (2012) proposed a 
method that uses the unsteady incompressible Navier–
Stokes equations to fill spatial gaps. Similarly Schneiders 
et al. (2014) proposed a vortex-in-cell method to fill tem-
poral gaps. These methods currently build a solenoidal 
velocity field from measurement data in an ad hoc way, 
without accounting for measurement noise or flow scales. 
This introduces an error in their input which pollutes the 
temporal reconstruction. Both methods will benefit from a 
preprocessing step that handles the noisy data and imposes 
mass conservation consistently.

1.1  Solenoidal filters

A number of methods have recently been proposed in the 
literature to filter out spurious divergence from 3C-3D 
velocity measurements. We have identified three general 
approaches, based on different principles.

Helmholtz representation theorem The first approach is 
based on the Helmholtz representation theorem. This states 
that any finite, twice differentiable vector field u can be 
decomposed into a solenoidal vector field usol plus an irro-
tational vector field uirrot (Segel 2007):

where a is a vector potential and ψ is a scalar potential. 
Taking the divergence on both sides of Eq. 1 and applying 
∇ · usol = 0 gives a Poisson equation:

Solving Eq. 2 gives ψ, from which the solenoidal velocity 
field can be obtained using Eq. 1. Difficulties arise in the 
specification of the boundary conditions, as in the absence 
of walls the boundary conditions are unknown. One 
extreme is to specify ∇ψ · n = u · n, i.e., the irrotational 
velocity normal to the boundary is equal to the measured 
velocity. As a consequence, the solenoidal velocity field 
normal to the boundary will be zero. The other extreme is 
to specify ∇ψ · n = 0; the irrotational velocity normal to 
the boundary is zero, meaning that the solenoidal velocity 
normal to the boundary is equal to the measured velocity. 
This will result in an ill-posed PDE if the measured velocity 
field is not globally mass conserving. An additional com-
plication arises when the vorticity field is to be calculated, 
because the vorticity of the solenoidal velocity is equal to 
that of the measured velocity (an irrotational velocity field 
has vanishing curl). Since the measured velocity field is 

(1)u = usol + uirrot = ∇ × a +∇ψ ,

(2)∇2ψ = ∇ · u.

contaminated by noise, the vorticity field of the solenoidal 
field will not be improved. A number of authors have fol-
lowed the approach of the Helmholtz representation theo-
rem in filtering velocity measurements (Song et al. 1993; 
Suzuki et al. 2009; Worth 2012; Yang et al. 1993).

Least-squares variational filters The second approach is to 
define a minimization problem. Liburdy and Young (1992) 
and Sadati et al. (2011) defined an unconstrained minimi-
zation problem, where the objective function consists of 
three terms: (1) the discrepancy between the measured and 
filtered velocity field, expressed as a sum of squared differ-
ences; (2) the smoothness of the velocity gradients; (3) the 
divergence of the velocity field . The latter two terms are 
multiplied with weighting parameters that must be supplied 
by the user. Sadati et al. (2011) proposed using generalized 
cross-validation to find optimum weights.

 de Silva et al. (2013) defined a constrained minimiza-
tion problem, thereby avoiding the use of weights in the 
objective function. They called their method the divergence 
correction scheme (DCS). The objective function is only 
the discrepancy between the measured and filtered veloc-
ity fields, expressed as a sum of squared differences. The 
divergence-free condition is introduced as a linear equality 
constraint. The method was applied to a tomographic PIV 
experiment, and an improvement in the prediction of turbu-
lence statistics was shown. However, it turns out that DCS 
is equivalent to a discretized Helmholtz Theorem in that the 
vorticity of the solenoidal velocity field is equal to that of 
the measured velocity field. A proof of this is given in the 
Appendix 1. Despite this, the advantage of DCS is that it 
does not require the user to specify boundary conditions 
since no Poisson equation needs to be solved.

Reconstruction with a solenoidal basis A third approach is 
to use a solenoidal basis, which by construction will return 
solenoidal velocity fields. There are several possible choices 
of basis. Solenoidal wavelets were proposed by Battle and 
Federbush (1993). Narcowich and Ward (1994) devised 
solenoidal radial basis functions (RBF). Lowitzsch (2005) 
subsequently derived a density theorem stating that any suf-
ficiently smooth solenoidal function can be approximated 
arbitrarily closely by a linear combination of solenoidal 
RBFs. Therefore any incompressible flow may be repre-
sented by this construction. Solenoidal wavelets and RBFs 
have been applied in computational fluid dynamics to solve 
incompressible flows (Deriaz and Perrier 2006; Schräder 
and Wendland 2011; Urban 1996; Wendland 2009). Appli-
cations of these methods to reconstruct solenoidal velocity 
fields from velocity measurements have been reported as 
well (Busch et al. 2013; Ko et al. 2000; Vennell and Beat-
son 2009). A method closely related to RBF interpolation 
is Kriging or Gaussian process regression (GPR) (Rasmus-
sen and Williams 2006). In this context, the radial basis 
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functions are referred to as covariance functions because 
they represent the covariance between spatial locations, 
since the underlying field is assumed to come from a sto-
chastic process. Scheuerer and Schlather (2012) derived a 
solenoidal covariance function for Kriging. In the follow-
ing, the solenoidal version of Kriging will be referred to as 
SGPR (solenoidal Gaussian process regression).

Another choice of basis is described in the work by 
Schiavazzi et al. (2014), who introduced a method, referred 
to in the following as solenoidal waveform reconstruction 
(SWR), where vortices around the edges of the measure-
ment grid are placed, ensuring a solenoidal velocity field 
on a finite-volume level. It works as follows: After creat-
ing a Voronoi tessellation associated with the measurement 
grid, the measured velocities are converted to face fluxes. 
Vortices are defined around the face edges, resulting in an 
ill-posed linear system for their strengths. This system is 
solved in a least-squares sense. Once the vortex strengths 
have been found, the new face fluxes are converted back 
to nodal velocities. The basis functions used in this method 
are the smallest possible solenoidal waveforms compatible 
with the measurement grid. The advantage of this is that 
large local measurement errors only disturb reconstructed 
velocities at neighboring grid points. The disadvantage of 
this minimal support is that it becomes difficult to recon-
struct gappy fields, i.e., regions with missing data.

1.2  Contributions

A first contribution of this paper is to derive SGPR from 
a Bayesian perspective, which is the subject of Sect. 2. 
We use this perspective since it provides a natural frame-
work to fuse prior (physical) knowledge, in this case mass 
conservation, with observations while taking into account 
the uncertainties that arise from both worlds. Using this 
framework is particularly apposite considering recently 
developed tools that allow the a posteriori quantification of 
measurement uncertainty from PIV (Charonko and Vlachos 
2013; Sciacchitano et al. 2013; Timmins et al. 2012; Wie-
neke and Prevost 2014).

A second contribution is implementing SGPR effi-
ciently to handle large data sets, which is the subject 
of Sect. 3. Gaussian process regression is known to be 
an expensive method. This is particularly important for 
the present application where the data sets are large. In 
addition, as will be shown in the next section, includ-
ing the divergence-free condition results in a larger sys-
tem of equations that needs to be solved. For data sets 
on regular and near-regular grids as is the case for PIV, 
the system matrix is seen to have a multilevel block-
Toeplitz structure. The Toeplitz structure allows speed-
ing up matrix-vector multiplications, required by the 
conjugate gradient method, from O(N2) computations 

to O(N logN) computations through the use of fast Fou-
rier transforms (FFTs). The block structure allows par-
allelization of these multiplications. By using an itera-
tive solver instead of a direct solver, these speedups also 
hold when spatially varying measurement uncertainty is 
included.

The third contribution is comparing SGPR with two 
other recently proposed solenoidal filters, namely DCS 
and SWR. From this follow the final two contributions: 
showing how applying a solenoidal filter results in more 
accurate PIV-based pressure reconstructions; showing 
how the inclusion of local measurement uncertainty with 
SGPR results in a divergence-free velocity field that fol-
lows the measurements more faithfully. DSC and SWR are 
described in more detail in the Appendices 1 and 2, in addi-
tion to their specific implementation in the present paper. 
Section 4 applies the filters to synthetic test cases. Real 
data from two tomographic PIV experiments are used in 
Sect. 5. Conclusions are drawn in Sect. 6.

2  Solenoidal Gaussian process regression

This section starts with an introduction to Gaussian process 
regression (GPR) using a Bayesian perspective, followed by 
a simple one-dimensional example to illustrate the impor-
tance of including accurate, local measurement uncertainty. 
We then describe how mass conservation can be enforced 
in the prior, resulting in solenoidal Gaussian process regres-
sion (SGPR) and we finally show that it is a generalization 
of solenoidal radial basis function interpolation.

2.1  Gaussian process regression: a Bayesian 
perspective

Consider an unobservable Gaussian process with mean µ 
and covariance function φ (Rasmussen and Williams 2006):

where x ∈ R
3 is the spatial coordinate and χχχ ∈ R

q are 
hyperparameters. Discretizing the process at n spatial loca-
tions gives a multivariate normal random-variable

Its realization is the state vector f ∈ R
n. We assume a sta-

tionary process, i.e., the correlation between two points 
xi and xj depends only on their separation, xi − xj, and 
not their absolute positions. The covariance function then 

F ∼ GP
(

µ(x),φ
(

x, xi;χχχ
))

,

F ∼ N (µµµ,P),

µi = µ

(

xi
)

,

Pij = φ

(

xi, xj;χχχ
)

, i, j = 1, . . . , n.



 Exp Fluids (2015) 56:198

1 3

198 Page 4 of 18

simplifies to φ
(

rij
)

, where rij is the Euclidian distance 
between the points xi and xj, defined as:

where parameter γk is the correlation length in the direction 
k. This will be the prior.

The statistical model for the observations is defined as 
y = Hf + ǫǫǫ, where y ∈ R

m contains the m observations, H 
is the observation matrix and ǫǫǫ ∼ N (0,R) (assuming unbi-
ased noise). Therefore, Y|f ∼ N (Hf ,R), the likelihood. 
The matrix R is known as the observation error covari-
ance matrix, representing the measurement uncertainty. 
We are interested in the distribution of the true state given 
the observed data p(f |y), i.e., the posterior. According to 
Bayes’ rule, the posterior distribution is proportional to 
the prior p(f) times the likelihood p(y|f). The posterior 
is therefore normally distributed as well with mean and 
covariance (Wikle and Berliner 2007):

In the following, we will assume the prior mean to be a 
constant field and in particular we will set µµµ = 0. This is 
acceptable since the complexity of the field that can be 
reconstructed is contained in the prior covariance P used 
(Jones et al. 1998). Also, we are primarily interested in the 
posterior mean. Azijli et al. (2015) use the posterior covari-
ance to propagate the uncertainty from the measured veloc-
ity field through the Navier–Stokes equations, allowing a 
posteriori uncertainty quantification of PIV-derived pressure 
fields. The term R+ HPH ′ will be referred to as the gain 
matrix A. In the present paper, Eq. 4 therefore reduces to:

(3)(rij)2 =
3

∑

k=1

(

xik − x
j
k

γk

)2

,

(4)E(F|y) = µµµ+ PH ′(R+ HPH ′)−1
(y− Hµµµ),

(5)Σ(F|y) =
(

I − PH ′(R+ HPH ′)−1
H
)

P.

2.2  1D example of GPR with local error information

To illustrate the importance of including accurate, local 
measurement uncertainty, we present an artificial one-
dimensional reconstruction problem. Consider the true 
function

observed at eleven equally spaced measurement locations 
on the interval [0, 1] with added noise. The measurements 
do not all have the same noise level (a common situation 
in e.g., PIV). For simplicity, we set the (co)variance of 
the measurement uncertainty R to a diagonal matrix (i.e., 
uncorrelated), where the elements on the diagonal are rep-
resented by the vector

Notice that the measurements at the boundaries of the inter-
val are more accurate than measurements in the center. We 
use a Gaussian covariance function

with γ = 0.15. Equations 6 and 5 are then used to recon-
struct the true function given the eleven measurements, and 
the (known) error covariance. Figure 1 shows the result. 
We have taken n = 101, uniformly distributed over the 
domain, so the function is evaluated at significantly more 
points than the measurement grid. H is a sparse matrix with 
a few 1’s picking the 11 measurement points from the 101 
points. We have considered three cases in terms of our prior 

(6)E(F|y) = PH ′A−1y.

h(x) := exp
[

−54(x − 0.5)6
]

,

r = (10−4, 10−2, 10−2, 10−2, 0.25, 0.25, 0.25, . . .

10−2, 10−2, 10−2, 10−4).

φG

(

xi, xj; γ
)

:= exp

[

−
(

xi − xj

γ

)2
]

,

Fig. 1  Reconstructions of the function h(x) (red line) based on eleven 
measurements (black dots), assuming perfect observations (a), uni-
form measurement uncertainties (b) and spatially varying meas-

urement uncertainties (c). A reconstruction is given by a mean field 
(blue lines) with confidence intervals of ±3 standard deviations (gray 
regions)
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knowledge of the measurement uncertainty: (1) R = 0 (see 
Fig. 1a), wrongfully assuming that the measurements are 
perfect. As a result, the reconstructed function interpolates 
exactly the observed points. At these locations, the poste-
rior uncertainty is zero. Notice that due to our overconfi-
dence in the accuracy of the measurements, the true func-
tion is well outside the ±3 standard deviations region for 
a large part of the interval; (2) (see Fig. 1b), taking into 
account measurement uncertainty but wrongfully assuming 
that all measurements have equal uncertainty. The recon-
structed function is more accurate than in the first case. 
Furthermore, the posterior uncertainty does not become 
zero at the measurement locations. Since we assume homo-
geneous measurement uncertainty and the observations are 
equally spaced, the confidence interval is very homogene-
ous throughout the interval; (3) (see Fig. 1c), taking into 
account the correct measurement uncertainty. This gives 
the most accurate reconstructed function of all three cases. 
Notice also that the process realizes the large uncertainty 
in the center of the interval and as a result relies more on 
the prior. This is reflected by the large bounds of the confi-
dence interval in this region.

2.3  Enforcing mass conservation

In the context of reconstructing measured velocity fields 
using GPR, previous works took the route of reconstructing 
the velocity components independently from each other, 
precluding enforcement of the mass conservation equation 
or other physical constraints (de Baar et al. 2014; Gunes 
and Rist 2008; Inggs and Lord 1996; Lee et al. 2008). In 
these works, the state is chosen as

where uk are the Cartesian velocity components. The m obser-
vations are defined by y =

(

uPIV,1 uPIV,2 uPIV,3
)′ ∈ R

3m. 
The covariance matrix P ∈ R

3n×3n is a 3× 3 block diago-
nal matrix, with elements Pk, k = 1, 2, 3 on the diagonal. The 
off-diagonal blocks are zero by assumption of uncorrelated 
velocity components.

In our case, for an incompressible flow the density is 
constant in space and time, giving a mass conservation 
equation: ∇ · u = 0. From vector calculus identities, it is 
known that the curl of a vector potential a is divergence-
free. We therefore choose the state vector

where ak are the Cartesian vector potential components. 
The observation matrix H ∈ R

3m×3n, when multiplied with 

f =
(

u1 u2 u3
)′ ∈ R

3n,

f =
(

a1 a2 a3
)′ ∈ R

3n,

the vector potential, should return its curl, therefore ensur-
ing that the resulting vector will be divergence-free:

where ∂k is the partial derivative with respect to xk. The 
covariance matrix P ∈ R

3n×3n is again a 3× 3 block diag-
onal matrix, with elements Pk, k = 1, 2, 3 on the diago-
nal. However, it now represents the covariance between 
the components of the vector potential, not the velocity. 
Again, the off-diagonals of the covariance matrix are zero. 
But the reason for this now is that the different compo-
nents of the vector potential, not the velocity, are assumed 
to be uncorrelated. In the most general case, there is no a 
priori physical knowledge to assume that there is a rela-
tion between them. The component HPH ′ of the gain 
matrix is equal to

It can easily be verified that the columns and rows of Eq. 8 
are divergence-free. By taking the same covariance function 
for all directions of the vector potential (P1 = P2 = P3 ) and 
assuming perfect measurements (R = 0), Eq. 8 reduces to:

This turns out to be proportional to the operator con-
structed by Narcowich and Ward (1994) in the context 
of RBF interpolation. Our method can therefore be seen 
as a generalization of their method that allows different 
covariance functions to be used for the different vector 
potential components, and that includes measurement 
uncertainty in the reconstruction via R. This latter prop-
erty is a natural consequence of the Bayesian approach we 
followed.

Now that we have shown how SGPR is a generaliza-
tion of divergence-free RBF interpolation, we exploit the 
latter to express how the velocity vector can be evaluated 
analytically at any point x in the field using the following 
expression:

where c = A−1y (see Eq. 6). φkl,i indicates the second par-
tial derivative of φ with respect to the coordinate directions 
k and l, and represents the covariance between point x and a 
measurement point xi.

(7)H =





0 −∂3· ∂2·
∂3· 0 −∂1·
−∂2· ∂1· 0



 ,

(8)





∂3,3P2 + ∂2,2P3 −∂1,2P3 −∂1,3P2

−∂1,2P3 ∂3,3P1 + ∂1,1P3 −∂2,3P1

−∂1,3P2 −∂2,3P1 ∂2,2P1 + ∂1,1P2



 .

(9)
(

�I − ∇∇′)P1.

(10)





u1(x)

u2(x)

u3(x)



 =
m
�

i=1





φyy + φzz − φxy − φxz
−φxy φxx + φzz − φyz
−φxz − φyz φxx + φyy





i

ci,
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3  Efficient implementation

The practical implementation of SGPR is discussed in this 
section, in which the primary concern is the storage, condi-
tioning and inversion of the (in general) dense gain matrix 
A. This is critical given that tomographic data sets contain-
ing 105–106 vectors are typical (Scarano 2013). By exploit-
ing the Toeplitz structure of the gain matrix, we make the 
method highly efficient.

3.1  Computational cost

To evaluate the divergence-free velocity field at any point 
(see Eq. 10), one first has to solve the linear system Ac = y , 
where A ∈ R

3m×3m. This is the most expensive component 
of SGPR. The gain matrix is per definition symmetric. For 
scattered observations, this requires storing 3m(3m+ 1)/2 
entries. If the covariance function used is positive definite, 
the matrix will also be positive definite (Narcowich and 
Ward 1994). The Cholesky factorization, with a compu-
tational complexity of O(27m3), can therefore be used as 
a direct solver. Alternatively, the conjugate gradient (CG) 
method, with a computational complexity of O

(

9k · m2
)

 
(k is the number of iterations required to reach a given tol-
erance), can be used as an iterative solver. The dominant 
operation per iteration is the matrix-vector multiplication 
Ac.

For large data sets, the cost of SGPR therefore becomes 
prohibitive. One approach to deal with this is to use a 
covariance function with local support: φ(r ≥ rd) = 0, 
where rd is the support radius. If the support radius is 
much smaller than the size of the measurement domain, 
the gain matrix will be sparse, resulting in storage and 
computational savings. However, the optimum support 
radius may be large for a given flow field (Schaback 
1995), and we do not wish to be limited by computational 
considerations.

If the measurements are (1) available on a regular grid, 
as is the case in scanning PIV and tomographic PIV; and 
(2) all observations have equal measurement uncertainty, 
then the gain matrix will have a small displacement rank 
(Kailath et al. 1979), allowing memory and time savings. 
To be more specific, the gain matrix will have a Toeplitz 
structure. For the present problem, it is a 3× 3 block matrix 
where each block is a 3-level symmetric Toeplitz matrix. It 
is a 3-level Toeplitz matrix as we are dealing with a three-
dimensional space, and the 3× 3 block structure is due to 
the structure of Eq. 8. A 3-level symmetric Toeplitz matrix 
T is defined as follows:

where m = m1m2m3 and mk, k = 1, 2, 3, is the number of 
observations in the k-direction. The gain matrix can now be 
stored using 3m entries. Fast and superfast direct solvers of 
complexity O

(

9m2
)

 and O
(

3m log2 (3m)
)

, respectively, are 
available (Ammar and Gragg 1988).

If the measurement uncertainty is not the same at all 
points, the gain matrix will have arbitrary displacement 
rank and no fast direct solvers are available for such a sys-
tem (Ng and Pan 2010). However, when the CG method is 
used, accelerations can be achieved. First, the gain matrix 
A is decomposed into a diagonal matrix D, containing the 
unequal measurement uncertainties, and a 3× 3 block 
matrix G, where each block Gi is a 3-level symmetric Toe-
plitz matrix:

The multiplication Dc can be carried out in O(3m) opera-
tions. The matrix-vector multiplication Gc can be acceler-
ated by embedding each 3-level Toeplitz matrix Gi ∈ R

m×m 
into a 3-level circulant matrix Ci ∈ R

8m×8m and then using 
3D FFTs to carry out matrix-vector multiplications at a 
cost of O(8m log (8m)) (Chan and Jin 2007). The com-
putational complexity of the CG algorithm now becomes 
O(72k · m log (8m)). Normally, the CG method is used in 
combination with a preconditioner to speed up convergence. 
Unfortunately, Capizzano (2002) has shown that precondi-
tioners for multilevel Toeplitz matrices are not superlinear. 
So in the present paper, we have implemented SGPR with-
out a preconditioner.

Note that the assumption of observations on a regular 
grid should not be seen as a significant limitation. Con-
sider two common situations where we have (1) a regular 

(11)

T =





















T1 T2 · · · · · · Tm3

T2

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . . T2

Tm3
· · · · · · T2 T1





















, Ti =





















t1 t2 · · · · · · tm2

t2

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . . t2

tm2
· · · · · · t2 t1





















,

ti =



























τ1 τ2 · · · · · · τm1

τ2
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . . τ2

τm1
· · · · · · τ2 τ1



























,

(12)A = D+





G1 G4 G6

G4 G2 G5

G6 G5 G3



 .
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measurement grid with missing data (e.g., from removed 
outliers); (2) an irregularly scattered data set that can be 
approximated as a subset of a regular grid. In these cases, 
we can set the values of the unobserved points equal to 
the mean of the observations (either global or local) and 
specify a large measurement uncertainty at these points. 
The size of the gain matrix increases, but this may be out 
weighted by the benefits of having a Toeplitz structure.

If it is not possible or efficient to exploit the Toeplitz 
structure, one can use the Fast Multipole Method (FMM) 
to speed up matrix-vector multiplications (Greengard and 
Rokhlin 1987), which is valid for arbitrary grids. The idea 
is to make use of analytical manipulations of series to 
achieve fast summation. The cost of a matrix-vector multi-
plication is similar to the FFT method, i.e., O(N logN) for 
matrices of size A ∈ R

N×N. The drawbacks of this method 
are that the implementation is complex and the constant in 
the order of its complexity may be large and thus several 
tricks must be used to reduce it (Darve 2000). Two nota-
ble examples of using FMM for GPR are by Billings et al. 
(2002) and Memarsadeghi et al. (2008).

3.2  Conditioning

The most important factors that influence the condition 
number of the gain matrix, κ(A), are the covariance func-
tion, the separation distance of the data, the correlation 
length and the observation error (Davis and Morris 1997; 
Narcowich and Ward 1994). Decreasing the separation dis-
tance, increasing the correlation length and decreasing the 
measurement uncertainty all increase the condition number. 
An ill-conditioned gain matrix causes inaccurate results 
(in the form of numerical noise in the reconstruction) and 
reduces the convergence speed of the CG method. In fact, 
the gain matrix can become so ill-conditioned that it stops 
being numerically positive definite (i.e., in finite-precision 
arithmetic), even though it will always be analytically posi-
tive given a positive definite covariance function. Since our 
solution methods, Cholesky and CG, both rely on positive-
definiteness, they cannot be applied. We therefore aim to 
avoid ill-conditioning by a suitable choice of the covariance 
function φ. Table 1 summarizes at which correlation length 
κ(A) becomes 1015. The functions φd,k , k = 1, 2, 3, 4 are 
the Wendland functions with smoothness C2k and spatial 

dimension d (Wendland 2005). The Gaussian (φG), an infi-
nitely smooth function, is defined as φG(r) = exp

(

−α2r2
)

. 
The constant α was set to 3.3 to make it resemble φd,3 
as closely as possible. Unlike the Gaussian, the Wend-
land functions have compact support: φd,k = 0 for r ≥ 1. 
The Gaussian covariance function appears to be the most 
ill-conditioned, a property attributed to the fact that it is 
infinitely differentiable (Davis and Morris 1997). The 
smoother the Wendland function, the more it approaches 
the Gaussian (Chernih et al. 2014). The idea that the level 
of differentiability is related to the conditioning of the gain 
matrix (Chernih et al. 2014) is supported by the observation 
that for the Wendland functions, the gain matrix for SGPR 
becomes numerically not-positive definite at a larger γ. 
The reverse happens for the Gaussian. For SGPR, the 
covariance function is differentiated twice (see Eqs. 8 and 
10), reducing the level of differentiability of the resulting 
function for the Wendland functions, explaining the better 
conditioning of the matrix. Clearly, φG limits our choice of 
correlation length, whereas Wendland functions are always 
suitable.

4  Synthetic test cases

The performance of SGPR is assessed using two synthetic 
test cases of incompressible flow. It is compared with three 
other filters. The first does not enforce the divergence-
free constraint, and works through a convolution of the 
data using a 3× 3 smoothing kernel with equal weights 
(BOX3×3), a simple yet widely used approach to dealing 
with noisy data (Raffel et al. 1998). The two solenoidal fil-
ters we compare with are DCS (de Silva et al. 2013) and 
SWR (Schiavazzi et al. 2014). A detailed description of the 
specific implementations of these two filters in the present 
paper can be found in the Appendices 1 and 2.

The covariance function we use when applying SGPR is 
the Wendland function with smoothness C4:

where + indicates that (1− r)6+ = 0 for r ≥ 1. The choice 
for using this function is computational efficiency; it is the 
lowest-order Wendland function with continuous second-
order velocity components, which are needed for calcu-
lating the pressure field, and as is concluded in Sect. 3.2, 
using lower-order covariance functions improves the con-
ditioning of the gain matrix and as a result improves the 
convergence speed of the conjugate gradient method. 
Recall from Eq. 3 that the radial distance is scaled with a 
correlation length γ. The user can either specify its value 
a priori or its optimum value can be pursued by using an 
optimization algorithm. Choosing between the manual and 

(13)φd,2(r) = (1− r)6+

(

35

3
r2 + 6r + 1

)

,

Table 1  Relative correlation length γ /L at which κ(A) = 1015

The spatial dimension is 3, and the data points are defined on a regu-
lar 15× 15× 15 grid with size L × L × L

φ3,1 φ3,2 φ3,3 φ3,4 φG

GPR 508.35 21.617 6.1209 3.2370 0.5175

SGPR 4.4558e9 408.63 18.503 5.4604 0.4884
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automatic approach is a trade-off between computational 
cost and accuracy. In this paper, we suggest to set the tun-
ing parameter a priori. The reasoning is that in practice, an 
experimenter will already know what the flow looks like 
before applying SGPR. So the tuning parameter could be 
set equal to a representative flow feature, like the size of 
a vortex. In this section and the next, we will investigate 
how the reconstructed fields are influenced by the choice of 
the tuning parameter and then determine how the a priori 
choice compares with the actual optimum value.

We set R = �I, where � simply acts as a regularization 
parameter. Many different methods have been proposed in 
the literature to choose this parameter; however, there is 
no generally accepted approach. For an extensive review 
of available approaches, the reader is referred to Bauer 
and Lukas (2011). We chose � = 10−2 for reasons of com-
putational efficiency; satisfactory convergence speeds 
were then obtained for all test cases when using the CG 
method.

To simulate PIV noise, we add spatially correlated 
Gaussian noise to the true velocity field. However, the error 
of one velocity component is assumed to be uncorrelated 
from the error of the other velocity components. This is 
typically the case in PIV. Therefore, noise will be added to 
each velocity component independently. For each velocity 
component, we express the covariance of the measurement 
uncertainty between point i and j as:

where σ i and σ j are the standard deviations of the meas-
urement noise at points i and j, respectively. We take this 
standard deviation equal to a fraction of the local velocity 
magnitude. For point i:

where we have taken α = 0.1, i.e., the standard deviation is 
equal to 10 % of the local velocity magnitude. Therefore, 
the measurement uncertainty is spatially varying. This is 
roughly representative of the situation in a real PIV experi-
ment, see e.g., Fig. 8. The correlation ζ ij we use is based on 
results obtained by Wieneke and Sciacchitano (2015), who 
investigated the spatial correlation of measurement noise 
between PIV velocity vectors as a function of overlap and 
interrogation window size. We used the results for an over-
lap of 75 % and an interrogation window size of 32 voxels 
in each direction, which are the most frequently used set-
tings for tomographic PIV (Scarano 2013). To eventually 
obtain noise with the desired spatial covariance structure, 
we compute the Cholesky decomposition of S = LL′, and 
multiply L with a vector containing uncorrelated noise 
from a standard Gaussian distribution. This noise is added 
to the analytical velocity fields.

Sij = Cov
[

uiPIV, u
j
PIV

]

= σ iζ ijσ j,

σ i = α||uiPIV||2,

The filters we will use work on the velocity field. To get 
the vorticity field, we take the curl. With SGPR we can cal-
culate this field analytically (see Eq. 10). For the other fil-
ters we use finite differencing, as velocities are only avail-
able on grid nodes. To allow for a fair comparison, we also 
use finite differencing to compute curl when using SGPR.

For the first test case, we will also calculate the pressure 
field. The pressure field can be obtained from the velocity 
field by using the Navier–Stokes equations (van Oudheus-
den 2013):

By taking the divergence of Eq. 14, we obtain the pressure 
Poisson equation:

Neumann boundary conditions can be obtained from 
Eq. 14. All the derivatives are calculated using second-
order accurate finite-difference schemes.

The metric we use to compare the filters is a noise reduc-
tion percentage (Q), defined as:

where εo is the root-mean-square error of the measured 
(observed) field and εf is the root-mean-square error of the 
filtered field.

4.1  Taylor vortex

The Taylor vortex is defined in 2D (Panton 2013). The 
velocity field is solenoidal and in addition satisfies the 
Navier–Stokes equations. The tangential velocity is defined 
as:

where H is the amount of angular momentum in the vortex, 
r is the radial distance from the center of the vortex, ν is the 
kinematic viscosity and t is time. The vorticity is given by 
the following expression:

The pressure is given by:

(14)∇p = −ρ

(

∂u

∂t
+ u · ∇u

)

+ µ∇2u.

(15)∇2p = ∇ ·
{

−ρ

(

∂u

∂t
+ u · ∇u

)

+ µ∇2u

}

.

(16)Q =
(

εo − εf

εo

)

× 100%,

(17)uθ =
H

8π

r

νt2
exp

(

−
r2

4νt

)

,

(18)ω = −
H
(

r2 − 4νt
)

16πν2t3
exp

(

−
r2

4νt

)

.

(19)p = −
ρH2

64π2νt3
exp

(

−
r2

2νt

)

+ p∞,
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where ρ is the fluid density and p∞ is the pressure at an 
infinite distance from the vortex center. For the present 
problem, we take H = 1× 10−6 m2, ν = 1× 10−6 m2 s−1 , 
ρ = 1000 kg m−3. The domain size is −L0 ≤ xi ≤ L0 , 
i = 1, 2, where L0 = 1× 10−3 m. We use a regular grid 
with 101 points in both directions, totaling 10,201 obser-
vation points. Using a regular grid allows us to solve the 
linear system efficiently by exploiting its Toeplitz structure. 
Samples are taken between t = 0.05 s and t = 0.30 s with a 
sampling frequency of 100 Hz. These same settings were 
also used by Charonko et al. (2010), who investigated the 
effect of a number of factors, among others measurement 
noise, on PIV-based pressure reconstruction.

For simplicity, we use the same correlation length in 
both directions. Since the whole domain contains one 
vortex, we set its value equal to the size of the domain: 
γ = γ1 = γ2 = 2L0. Table 2 shows the noise reduction Q 
for the velocity magnitude, vorticity and pressure fields, 
averaged over the 26 time frames. Comparing SGPR with 
the other filters, we see that it provides the highest noise 
reduction for all fields. Comparing BOX3×3 with DCS and 
SWR, we see that BOX3×3 returns a more accurate vorti-
city field, but less accurate velocity and pressure fields. 
Notice that for DCS the noise in the vorticity field is not 
reduced, so the vorticity of the solenoidal field is equal to 
that of the observed field. This indicates that it is equivalent 
to the Helmholtz representation theorem. Comparing the 
three solenoidal filters, SGPR has the highest noise reduc-
tion, followed by SWR and then DCS.

To get a qualitative impression of the reconstructed 
fields, we refer to Fig. 2. First of all, notice that the noise 
we have added to represent the PIV noise is indeed spa-
tially correlated. The fields returned by SGPR do indeed 
look better than the ones obtained with the other filters, 
especially when looking at the velocity and vorticity fields. 
The improvement in the pressure field is less noticeable, as 
verified from Table 2.

The correlation length we used was determined based on 
the fact that the field contains one vortex that encompasses 
the entire domain, so we set γ /L0 = 2. Figure 3 shows how 
the noise reduction for the velocity, vorticity and pressure 
fields is influenced by the correlation length. The three 
graphs share the following characteristics: (1) There is 
an optimum noise reduction inside the interval; (2) small 

values of the correlation length lead to an abrupt decrease 
in noise reduction; (3) around the optimum, the graph is 
relatively flat. The optimum correlation length is around 
γ /L0 = 9, resulting in noise reductions of 78, 93 and 93 % 
for velocity, vorticity and pressure, respectively. Though 
our choice of correlation length was therefore suboptimal, 
the a priori physical knowledge we used has still given us 
better noise reduction than the other filters. It is only when 
we would have chosen a length smaller than γ /L0 = 0.45 
that SWR would have been better. The fact that the graphs 
are relatively flat around the optimum is a desirable prop-
erty as it implies robustness of SGPR. As long as the user 
makes an educated guess for the correlation length based 
on a priori physical knowledge, SGPR is relatively insensi-
tive to the exact value chosen.

4.2  Vortex ring

The vortex ring has become a popular test case to numeri-
cally assess reconstruction methods in tomographic PIV 
(Elsinga et al. 2006; Novara and Scarano 2013). The dis-
placement field used for it is a Gaussian, which does not 
result in a divergence-free velocity field. Therefore, we 
have used a different model proposed by Kaplanski et al. 
(2009). They derived analytical expressions for the velocity 
and vorticity fields by linearizing the vorticity equation for 
incompressible flows. Figure 4 shows an isosurface of the 
vorticity magnitude and the velocity field at the symmetry 
plane. The axial (ua) and radial (ur) velocities are defined as:

where J0 and J1 are Bessel functions. The functions F(µ, η) 
and F̃(µ, η) are defined as follows:

The parameters σ, η and θ are defined as:

(20)ua = πθ2
∫ ∞

0

µF(µ, η)J1(θµ)J0(σµ)dµ,

(21)ur = −πθ2
∫ ∞

0

µF̃(µ, η)J1(θµ)J1(σµ)dµ,

(22)

F(µ, η) = exp (ηµ)erfc

(

µ+ η√
2

)

+ exp (−ηµ)erfc

(

µ− η√
2

)

,

(23)

F̃(µ, η) = exp (ηµ)erfc

(

µ+ η√
2

)

− exp (−ηµ)erfc

(

µ− η√
2

)

.

σ =
r

l
, η =

x1

l
, θ =

R0

l
.

Table 2  Noise reduction Q of velocity magnitude, vorticity and pres-
sure for the Taylor vortex

BOX3×3 (%) DCS (%) SWR (%) SGPR (%)

Velocity 14.9 29.6 35.8 59.2

Vorticity 26.3 0 15.8 70.4

Pressure 42.7 83.0 88.1 92.3
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Fig. 2  True (left side of a, c, 
e), measured (right side of a, c, 
e) and filtered (b, d, f) veloc-
ity magnitude (top), vorticity 
(center) and pressure (bottom) 
fields for the Taylor vortex. 
Filters (clockwise, starting at 
top left): BOX3×3, DCS, SWR, 
SGPR. The second frame is 
shown
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We take R0 = 0.0067 and l = 0.0031. The vorticity is given 
by the following expression:

where I1 is the modified Bessel function. We take 
Γ0 = 4πR0. The domain size is −2.5R0 ≤ x1 ≤ 2.5R0 and 
−5R0 ≤ x2, x3 ≤ 5R0. The coordinate direction 1 is taken 
as the axial direction. We take a regular grid with 21 data 
points in the 1-direction and 41 data points in the 2- and 
3-directions. So there are 35,301 data points in total. We 
use a correlation length of 10R0 in each direction. So the 
support radius spans the complete vortex ring. Table 3 
shows the noise reduction for the velocity and vorticity 
magnitude. Again, BOX3×3 results in the lowest noise 
reduction for the velocity field. However, as for the previ-
ous test case, it returns more accurate vorticity fields than 
DCS and SWR, where DCS again leaves the measured vor-
ticity field unchanged. SGPR results in the highest noise 

(24)ω =
Γ0R0√
2π l3

exp

[

−
1

2

(

σ 2 + η2 + θ2
)

]

I1(σθ)

reduction for the vorticity field, but for the velocity field 
SWR is marginally better. To get a qualitative impression 
of the methods, Fig. 5 compares the true vortex ring with 
the filtered ones. Figure 6 shows how the noise reduction is 
influenced by the choice of correlation length. The value we 
chose (γ /R0 = 10) is close to the optimum at γ /R0 = 14. 
At this value, the noise reduction in velocity and vorticity is 
30.4 and 23.2 %, respectively. Similar to the Taylor vortex, 
the current graph has three characteristics, namely an opti-
mum inside the interval, a large decrease in noise reduc-
tion for small correlation lengths and a relatively flat curve 
around the optimum.

5  Application to experimental data

Two experimental data sets are considered: The first is of 
a circular jet in water (Violato and Scarano 2011); the sec-
ond is of a fully developed turbulent boundary layer over a 
flat plate in air (Pröbsting et al. 2013). Both data sets were 
obtained using tomographic PIV. We will not consider the 
non-solenoidal BOX3×3 filter, since such filtering steps 
have already been applied to obtain the velocity fields from 
the particle images, especially due to the effect of the inter-
rogation windows.

To assess the reconstruction accuracy of the solenoidal 
filters, we use different approaches for the two test cases: 
For the circular jet in water, we use a posteriori estimates 
of random uncertainty for the measurements in terms of 
the velocity field and investigate to what extent the fil-
tered velocities are inside the uncertainty bounds; for the 
turbulent boundary layer in air, we reconstruct the pressure 
field from the velocity data and compare with microphone 
measurements.

5.1  Circular jet in water

Figure 7 shows the circular jet in water. The jet velocity at 
the nozzle exit is 0.5 m/s, so assuming incompressible flow 
is an excellent approximation. The jet periodically creates 
vortex rings, as can clearly be seen from Fig. 7. The data 
set consists of 289,328 vectors and is defined on a regular 
grid, with 107 vectors in the jet direction and 52 vectors in 
the cross directions. Since we are considering experimental 

Fig. 3  Noise reduction in the velocity (circle), vorticity (square) and 
pressure (diamond) fields as a function of correlation length for the 
Taylor vortex using SGPR

Fig. 4  Isosurface of vorticity magnitude at 2000 (1/s) and velocity 
field at the symmetry plane for the vortex ring case

Table 3  Noise reduction Q of velocity magnitude and vorticity for 
the vortex ring

BOX3×3 DCS (%) SWR (%) SGPR (%)

Velocity 16.6 17.6 27.5 27.4

Vorticity 18.5 0 15.1 20.7
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data, there is no perfect reference solution. To make a quan-
titative performance assessment of the solenoidal filters, 
we use a recent method that estimates a posteriori random 
uncertainty for measurements locally (Sciacchitano 2015). 
It is also applicable for tomographic PIV. It expresses the 
distribution of error for each vector component in terms of 
standard deviation (1 sigma). Figure 8 shows isosurfaces 
of the standard deviation at a velocity magnitude of 0.035 
(m/s). Clearly, the measurement uncertainty varies in space. 
Also notice how the uncertainty is localized inside the jet, 
as opposed to outside where the flow is practically at rest. 
In particular, we can identify ring shapes (compare with the 
vortex rings in Fig. 7). These are regions with strong veloc-
ity gradients, so it is reasonable to expect larger uncertain-
ties there (Sciacchitano et al. 2013). When using SGPR, we 
consider two scenarios. In the first, we do not include the 

a posteriori measurement uncertainty in the reconstruction. 
In the second scenario, we take it into account in R.

The covariance function we use is given by Eq. 13. The 
correlation length we use spans 15 vectors in each direc-
tion, which is approximately the diameter of a vortex ring, 
i.e., dvortex = 15h. To investigate the influence of the cor-
relation length on the reconstructed velocity field, we under 
sample the data set by halving the measurement resolution 
in each direction. The data points in between are taken as 
validation, which we then use to calculate the root-mean-
square error. Figure 9 shows the result. The behavior is 
very similar to what we found for the synthetic data sets in 
the previous section: (1) There is an optimum correlation 
length inside the interval; (2) small values of the correlation 
length lead to an abrupt increase in root-mean-square error; 
(3) around the optimum, the graph is relatively flat . Again, 
we emphasize that the latter characteristic is a desirable 
one from a robustness point of view. It turns out that our 
choice of correlation length γ /dvortex = 1 was a very good 
one. Not only are we in the flat region, we are at the begin-
ning of it. This is advantageous since a smaller correlation 
length leads to a better conditioned gain matrix, resulting in 
faster convergence. Note that we have only under sampled 
to understand the relation between reconstruction accuracy 
and correlation length. In the following, we use the full 
data set.

Figure 10a shows isosurfaces of the velocity divergence 
at 15 (1/s). Before removing the spurious divergence, we 
first quantify how far from divergence-free the data set is. 
The following metric is due to Zhang et al. (1997):

The mean of δ will lie between 0 and 1. When δ̄ = 0, the 
velocity field is exactly divergence-free. When δ̄ = 1, the 
velocity components are independent, random variables. 

(25)δ = (∂u1/∂x1 + ∂u2/∂x2 + ∂u3/∂x3)
2

(∂u1/∂x1)
2 + (∂u2/∂x2)

2 + (∂u3/∂x3)
2
.

Fig. 5  Top view of the vortex 
ring and contours of the out-of-
plane velocity. True (left side 
of a), observed (right side of a) 
and filtered b fields

Fig. 6  Noise reduction in the velocity (circle) and vorticity (square) 
fields as a function of correlation length for the vortex ring using 
SGPR
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Zhang et al. (1997) showed that smoothing of the data can 
significantly reduce this value. For a turbulent flow meas-
urement in a square duct using hybrid holographic PIV, 
they showed how using a Gaussian filter decreased δ̄ from 
0.74 to 0.50. For the data set used in the present paper, we 

found that δ̄ = 0.66. Figure 10b shows the isosurfaces of 
velocity divergence after applying SGPR. The mean of the 
normalized divergence is δ̄ = 0.09. Note that even though 
SGPR defines an analytically divergence-free field, we see 
some spurious divergence. This is because it was calcu-
lated using finite differencing to compare with the original 
data set. Therefore, the spurious divergence we observe for 
SGPR is completely due to truncation error. So the spuri-
ous divergence observed in the data set is for a large part 
not due to truncation error, but other sources that arise 
from measurements, like random measurement errors. 
The reason that we do not show the velocity divergence 
after applying DCS or SWR is because they are defined 
to return divergence-free fields on a finite-difference and 

Fig. 7  Circular jet in water, 
obtained with tomographic PIV. 
Velocity vector slice in the axial 
plane. Isosurfaces of vorticity 
magnitude at ω = 220 (1/s)

Fig. 8  Velocity magnitude slice in the axial plane. Isosurfaces of 
measurement uncertainty in terms of velocity magnitude standard 
deviation at 0.035 (m/s)

Fig. 9  Root-mean-square error as a function of correlation length for 
the circular jet in water

Fig. 10  Isosurfaces of velocity divergence at 15 (1/s) of the original 
data set (a) and after applying SGPR (b)
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finite-volume level, respectively. So, the divergence calcu-
lated with these methods at the data points is zero.

We quantify the performance of the filters by using the 
following metric:

where usol,i(x) is the solenoidal velocity field in the i-direc-
tion, obtained with DCS, SWR or SGPR and uexp,i(x) is the 
experimental velocity in the i-direction. The a posteriori 
standard deviation of the random uncertainty in the i-direc-
tion is given by σi(x). Ideally, all reconstructed data points 
should have ξi ≤ 3, i.e., the error should be within 3 stand-
ard deviations of the measurement uncertainty (99.7 % cer-
tainty). Figure 11 shows the cumulative distribution of ξ1. 
The plots for the other two directions look very similar. The 
results for DCS and SWR are practically identical. When 
the a posteriori measurement uncertainty information is not 
included (1), SGPR is only slightly better than the other 
filters. However, when this information is included in the 
reconstruction (2), the method is clearly better in recon-
structing a solenoidal velocity field within the measure-
ment uncertainty. At ξi = 3, F(ξi) is 1, whereas for DCS 
and SWR the value is around 0.9, meaning that 10 % of the 
data points have a deviation from the measurements greater 
than 3 standard deviations. With regard to the average ξ1, 
DCS and SWR are equal to 2.0. For SGPR, it is 1.8 when 
no measurement uncertainty is included, but it reduces to 
0.3 when this information is incorporated. In conclusion, 
when including local measurement uncertainty, SGPR is 
able to return a divergence-free velocity field that follows 
the measured velocity field more faithfully.

(26)ξi(x) =
∣

∣usol,i(x)− uexp,i(x)
∣

∣

σi(x)
, i = 1, 2, 3

5.2  Turbulent flat plate boundary layer in air

For this data set, the free stream velocity is 10 m/s, so 
incompressible flow is again an excellent approximation. 
The data set consists of 185,484 vectors and is defined 
on a regular grid, with 58 vectors in streamwise (x)-direc-
tion, 123 vectors in the spanwise (z)-direction and 26 vec-
tors in the wall-normal (y) direction. Since the particle 
images were not available to us, we were unable to use the 
approach by Sciacchitano (2015) to estimate the measure-
ment uncertainty, as was done in the first experimental test 
case. Therefore, for SGPR the observation error covari-
ance matrix R is set to the identity matrix multiplied with 
� = 10−2. We again use Eq. 13 as the covariance function. 
Recall that for the circular jet in water, we chose the cor-
relation length equal to the diameter of the vortex ring. The 
present turbulent boundary layer does not have such a dis-
tinguishable feature. One can suggest to use the boundary 
layer thickness for this and set the correlation length equal 
to it. However, the boundary layer thickness is approxi-
mately 9.4 mm and the height of the measurement vol-
ume is 4.2 mm, so the measurement volume is completely 
immersed in the boundary layer. For this reason, we sim-
ply chose the correlation length equal to the height of the 
measurement volume H. Indeed, as was explained before, 
larger correlation length results in a more ill-conditioned 
system matrix, which increases the computational time. 
To investigate the influence of the correlation length on 
the reconstructed velocity field, we again under sample 
the data set by halving the measurement resolution in each 
direction. The data points in between are taken as valida-
tion, which we then use to calculate the root-mean-square 
error. Figure 12 shows the result. We observe that the 

Fig. 11  Cumulative distribution of ξ1 for the circular jet in water 
using DCS (circle), SWR (square) and SGPR (1) (times, solid) and 
SGPR (2) (times, dashed)

Fig. 12  Root-mean-square error as a function of correlation length 
for the turbulent boundary layer in air
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chosen correlation length of γ /H = 1 is close to the opti-
mum. Before applying SGPR, δ̄ = 0.74. After application 
of this filter, it reduces to δ̄ = 0.03.

Contrary to the previous experimental test case, no a 
posteriori estimates of random uncertainty for the velocity 
measurements are available. Instead, to quantify the recon-
struction accuracy of the solenoidal filters, we derive pres-
sure fields from the time-resolved velocity field measure-
ments and compare the results with a pinhole microphone 
located on the wall. The boundary conditions imposed are 
the same as discussed in Pröbsting et al. (2013), so Neu-
mann boundary conditions at all sides except the top side 
closest to the free stream, where the pressure is prescribed 
(Dirichlet boundary condition). Three approaches are fol-
lowed to evaluate the acceleration, required for the pres-
sure calculation: (1) the Eulerian scheme (eul), where the 
material acceleration is evaluated with respect to a station-
ary reference frame; (2) the “standard” Lagrangian scheme 
(lag), where the material acceleration is calculated by fol-
lowing a fluid particle. The specific method used is that 
mentioned by van Oudheusden (2013), i.e., a first-order 
reconstruction of the particle track with a central difference 
scheme for the material acceleration at the next and pre-
vious time instances; (3) a least-squares regression of the 
fluid parcel’s velocity using a first-order polynomial basis 
(lsrN), as proposed by Pröbsting et al. (2013). Here, N is the 
number of velocity fields over which the particle trajectory 
is followed. The two latter approaches are both Lagrangian 
methods. According to Violato et al. (2011), Lagrangian 
methods are more accurate for convection dominated flows, 
like boundary layer flows. For the synthetic test case of the 
(non-convecting) Taylor vortex (Sect. 4.1), we only used 
the Eulerian scheme. To determine the microphone loca-
tion on the wall (the particle images were not available), we 
cross-correlated the time series of the microphone measure-
ment with the PIV-derived pressure fields. Figure 13 shows 
the cross-correlation coefficient taken at a region where we 
believed the microphone was located. We clearly see a peak 
and this is where the microphone is most likely located.

Following Pröbsting et al. (2013), we show the pres-
sure time series for a subset of the data in Fig. 14. Both the 
microphone and PIV-derived pressure signals were band 
pass-filtered over the range 300 Hz to 3 kHz. We have not 
shown the signals obtained with the other solenoidal fil-
ters to avoid obscuring the plots; however, they are very 
similar to SGPR. As expected, the worst reconstruction 
is obtained with the Eulerian scheme. Improvements are 
obtained by switching to the Lagrangian scheme. The best 
results are obtained when using the least-squares regres-
sor, where 9 velocity fields were used for the particle tra-
jectory. Comparing the results before and after applying 
SGPR, we clearly see that SGPR improves the reconstruc-
tion. The improvement is most noticeable for the Eulerian 

scheme and the least for the least-squares regressor with 
9 velocity fields, in which case the random errors seem to 
be sufficiently suppressed, leaving out mainly bias errors. 
However, we emphasize that using many velocity fields 
to reconstruct a particle trajectory is in principle undesir-
able since this results in a larger number of particles to fall 

Fig. 13  Cross-correlation between microphone pressure time series 
and PIV-reconstructed pressure time series, as a function of location 
on the wall

Fig. 14  Pressure time series obtained with the microphone (black), 
tomo PIV with the original data (blue) and SGPR (red) using the 
Eulerian (a), standard Lagrangian (b) and least-squares regression 
(lsr9) (c) approaches. δ is the boundary layer thickness, u∞ is the free 
stream velocity, q∞ is the free stream dynamic pressure and p′ the 
pressure fluctuation
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outside the measurement domain, potentially cropping a 
large part of the reconstructed pressure field. Therefore, it 
is indeed an important advantage that the solenoidal filters 
result in a significant improvement when using the Eule-
rian and standard Lagrangian schemes. For completeness, 
Table 4 shows the cross-correlation coefficients achieved 
using the various solenoidal filters and the various accel-
eration calculation schemes. As stated previously, the sole-
noidal filters return similar results and they always result 
in an improved pressure signal. This is independent of 
which scheme is used to calculate the acceleration, though 
the gain becomes less noticeable as more velocity fields 
are used to reconstruct a particle trajectory using lsr.

6  Conclusions

We investigated the use of an analytically solenoidal filter 
based on Gaussian process regression (SGPR) to remove 
spurious divergence from volumetric velocity measure-
ments. We formulated the filter from a Bayesian perspective. 
Measurement uncertainty can therefore be included natu-
rally. To allow filtering large data sets, we have exploited the 
Toeplitz structure of the resulting gain matrix to speed up 
matrix-vector multiplications in the CG method. This can be 
done when the measurements are on a (near) regular grid. 
We used two synthetic test cases to assess the accuracy of 
the filtered velocity and derived vorticity and pressure fields 
and compared with conventional (non-physics-based) filter-
ing and two other recently proposed solenoidal filters that 
have been applied to volumetric velocity measurements 
as well. We have used a realistic model of PIV noise with 
correlated random errors. We found that SGPR has better 
noise reduction properties. The advantage of the other sole-
noidal filters is that they do not require a tuning parameter. 
SGPR on the other hand does, but we found that as long as 
the user makes use of his a priori physical knowledge of 
the field of interest, the results are quite insensitive to the 
exact value chosen. This demonstrates that the method is 
robust to its tuning parameters. The first experimental data 
set showed that by including the measurement uncertainty, 
SGPR is able to reconstruct a solenoidal velocity field that 
more faithfully follows the measurements. The second 
experimental data set showed that all three solenoidal fil-
ters improve the reconstructed pressure signal, independent 

of which scheme is used to evaluate flow acceleration. Feel 
free to contact the second author to obtain the Matlab codes 
of the three solenoidal filters.

Acknowledgments We thank Dr. Daniele Violato for providing the 
data set of the circular jet in water, Dr. Stefan Pröbsting for providing 
the data set of the turbulent flat plate boundary layer in air and Dr. 
Andrea Sciacchitano for providing us with the a posteriori estimates 
of random uncertainty for the circular jet in water.

Open Access This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropri-
ate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix 1: DCS implementation

The divergence correction scheme (DCS), as proposed by 
de Silva et al. (2013), works as follows. It defines the fol-
lowing optimization problem:

The divergence-free condition in Eq. 28 is approximated 
using a second-order central difference scheme on the Car-
tesian measurement grid. To solve the optimization prob-
lem, de Silva et al. (2013) use MATLAB’s constrained non-
linear multivariable solver fmincon. However, a closer look 
at the defined optimization problem reveals that it can be 
restated as a quadratic programming problem with linear 
equality constraints (Wright and Nocedal 1999), therefore 
avoiding the need for Matlab’s Optimization Toolbox:

where usol =
(

usol,1 usol,2 usol,3
)′, Q = (2/m) I (I is the 

identity matrix), d = −(2/m)
(

uPIV,1 uPIV,2 uPIV,3
)′, and 

D is the discrete divergence operator. The solution to the 

(27)min
usol

1

m

m
�

i=1





3
�

j=1

�

uisol,j − uiPIV,j

�2



 subject to

(28)∇ · usol = 0

(29)min
usol

1

2
u′solQusol + d′usol subject to

(30)Dusol = 0,

Table 4  Cross-correlation 
coefficient achieved with the 
original data (org) and the 
solenoidal filters

eul lag lsr3 lsr5 lsr7 lsr9

org 0.38 0.46 0.46 0.55 0.60 0.62

DCS 0.51 0.55 0.56 0.62 0.63 0.65

SWR 0.51 0.54 0.55 0.61 0.62 0.63

SGPR 0.51 0.55 0.56 0.62 0.63 0.65

http://creativecommons.org/licenses/by/4.0/
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optimization problem can be obtained by solving the fol-
lowing linear system of equations:

where ��� are Lagrange multipliers. The system matrix is 
sparse indefinite and can be solved using SYMMLQ or 
MINRES (Paige and Saunders 1975).

Our reformulation of DCS as a quadratic programming 
problem with linear equality constraints reveals that it is 
equivalent to the Helmholtz representation theorem. To this 
end, we extract the first row from Eq. 31:

which can be rewritten to

The transpose of the divergence operator (D′) is the nabla 
operator or gradient G (Ma et al. 2013):

Taking the curl on both sides of Eq. 34 and recalling the vector 
identity that the curl of the gradient operator is zero, we find 
that the vorticity of the solenoidal velocity field is equal to the 
vorticity of the measured field. Indeed, this is equivalent to the 
Helmholtz representation theorem. This observation was also 
backed up by the synthetic test cases, where we found that 
DCS did not result in a noise reduction in the vorticity field.

Appendix 2: SWR implementation

Solenoidal waveform reconstruction (SWR), as pro-
posed by Schiavazzi et al. (2014), works by first defining 
a Voronoi tessellation of the measurement grid. Then, the 
observed velocities uPIV are converted to face fluxes g.  
Vortices with unknown strengths ααα are defined around 
all edges of the grid (in 2D, vortices are defined around 
nodes). This ensures that the reconstructed velocity field, 
which is a sum of these vortices, will be solenoidal. The 
vortex strengths are found by solving the system Wααα = g 
in the least-squares sense, where the sparse matrix W con-
tains the influence of the solenoidal waveforms in terms of 
the flux they generate. Schiavazzi et al. (2014) propose a 
sequential matching pursuit algorithm to solve the under-
determined system. We use LSQR (Paige and Saunders 
1982), a conjugate-gradient-type method for sparse least-
squares systems. Once the vortex strengths have been 
found, the fluxes g∗ are used to reconstruct the divergence-
free velocities usol.

(31)

[

Q D′

D 0

] [

usol
���

]

=
[

−d

0

]

,

(32)Qusol + D′
��� = −d,

(33)usol = uPIV − D′
���.

(34)usol = uPIV − G���.

References

Ammar GS, Gragg WB (1988) Superfast solution of real positive defi-
nite Toeplitz systems. SIAM J Matrix Anal Appl 9(1):61–76

Azijli I, Sciacchitano A, Ragni D, Palha A, Dwight RP (2015) A pos-
teriori uncertainty quantification of PIV-derived pressure fields. 
In: 11th international symposium on PIV-PIV15

Battle G, Federbush P (1993) Divergence-free vector wavelets. Mich 
Math J 40(1):81–195

Bauer F, Lukas MA (2011) Comparing parameter choice methods 
for regularization of ill-posed problems. Math Comput Simul 
81(9):1795–1841

Billings SD, Beatson RK, Newsam GN (2002) Interpolation of geo-
physical data using continuous global surfaces. Geophysics 
67(6):1810–1822

Brücker C (1995) Digital-particle-image-velocimetry (DPIV) in a 
scanning light-sheet: 3D starting flow around a short cylinder. 
Exp Fluids 19(4):255–263

Busch J, Giese D, Wissmann L, Kozerke S (2013) Reconstruction of 
divergence-free velocity fields from cine 3D phase-contrast flow 
measurements. Magn Reson Med 69(1):200–210

Capizzano SS (2002) Matrix algebra preconditioners for multilevel 
Toeplitz matrices are not superlinear. Linear Algebra Appl 
343:303–319

Chan RH, Jin XQ (2007) An introduction to iterative Toeplitz solvers, 
vol 5. SIAM, Philadelphia

Charonko JJ, Vlachos PP (2013) Estimation of uncertainty bounds for 
individual particle image velocimetry measurements from cross-
correlation peak ratio. Meas Sci Technol 24(6):065,301

Charonko JJ, King CV, Smith BL, Vlachos PP (2010) Assess-
ment of pressure field calculations from particle image veloci-
metry measurements. Meas Sci Technol 21(10):105401. 
doi:10.1088/0957-0233/21/10/105401

Chernih A, Sloan I, Womersley R (2014) Wendland functions with 
increasing smoothness converge to a Gaussian. Adv Comput 
Math 40(1):185–200

Darve E (2000) The fast multipole method: numerical implementa-
tion. J Comput Phys 160(1):195–240

Davis GJ, Morris MD (1997) Six factors which affect the condi-
tion number of matrices associated with kriging. Math Geol 
29(5):669–683

Deriaz E, Perrier V (2006) Divergence-free and curl-free wave-
lets in two dimensions and three dimensions: appli-
cation to turbulent flows. J Turbul 7(3):1468–5248. 
doi:10.1080/14685240500260547

de Silva CM, Philip J, Marusic I (2013) Minimization of divergence 
error in volumetric velocity measurements and implications for 
turbulence statistics. Exp Fluids 54(7):1–17

de Baar JH, Percin M, Dwight RP, van Oudheusden BW, Bijl H 
(2014) Kriging regression of PIV data using a local error esti-
mate. Exp Fluids 55(1):1–13

Elkins CJ, Markl M, Pelc N, Eaton JK (2003) 4D magnetic resonance 
velocimetry for mean velocity measurements in complex turbu-
lent flows. Exp Fluids 34(4):494–503

Elsinga GE, Scarano F, van Oudheusden BWBW (2006) Tomographic 
particle image velocimetry. Exp Fluids 41(6):933–947

Greengard L, Rokhlin V (1987) A fast algorithm for particle simula-
tions. J Comput Phys 73(2):325–348

Gunes H, Rist U (2008) On the use of Kriging for enhanced data 
reconstruction in a separated transitional flat-plate boundary 
layer. Phys Fluids 20:104109. doi:10.1063/1.3003069

Hinsch KD (2002) Holographic particle image velocimetry. Meas Sci 
Technol 13(7):R61–R72

http://dx.doi.org/10.1088/0957-0233/21/10/105401
http://dx.doi.org/10.1080/14685240500260547
http://dx.doi.org/10.1063/1.3003069


 Exp Fluids (2015) 56:198

1 3

198 Page 18 of 18

Inggs MR, Lord RT (1996) Interpolating satellite derived wind field 
data using Ordinary Kriging, with application to the nadir gap. 
IEEE Trans Geosci Remote 34(1):250–256

Jones DR, Schonlau M, Welch WJ (1998) Efficient global opti-
mization of expensive black-box functions. J Glob Optim 
13(4):455–492

Kailath T, Kung SY, Morf M (1979) Displacement ranks of a matrix. 
Am Math Soc B 1(5):769–773

Kaplanski F, Sazhin SS, Fukumoto Y, Heikal SBM (2009) A general-
ized vortex ring model. J Fluid Mech 622:233–258

Ko J, Kurdila AJ, Rediniotis OK (2000) Divergence-free bases and 
multiresolution methods for reduced-order flow modeling. AIAA 
J 38(12):2219–2232

Lee SL, Huntbatch A, Yang GZ (2008) Contractile analysis with krig-
ing based on MR myocardial velocity imaging. In: Metaxas D, 
Axel L, Fichtinger G, Székely G (eds) Medical image computing 
and computer-assisted intervention-MICCAI 2008. Lecture notes 
in computer science, vol 5241. Springer, Berlin, pp 892–899

Liburdy JA, Young EF (1992) Processing of three-dimensional parti-
cle tracking velocimetry data. Opt Laser Eng 17(3):209–227

Lowitzsch S (2005) A density theorem for matrix-valued radial basis 
functions. Numer Algorithms 39(1–3):253–256

Ma Z, Chew W, Jiang L (2013) A novel fast solver for poisson’s equa-
tion with neumann boundary condition. Prog Electromagn Res 
136:195–209

Maas HG, Gruen A, Papantoniou D (1993) Particle tracking veloci-
metry in three-dimensional flows. Exp Fluids 15(2):133–146

Memarsadeghi N, Raykar VC, Duraiswami R, Mount DM (2008) 
Efficient Kriging via fast matrix-vector products. In: Aerospace 
conference, 2008 IEEE. IEEE, pp 1–7

Narcowich FJ, Ward JD (1994) Generalized Hermite interpolation 
via matrix-valued conditionally positive definite functions. Math 
Comput 63(208):661–687

Ng MK, Pan J (2010) Approximate inverse circulant-plus-diagonal 
preconditioners for Toeplitz-plus-diagonal matrices. SIAM J Sci 
Comput 32(3):1442–1464

Novara M, Scarano F (2013) A particle-tracking approach for accu-
rate material derivative measurements with tomographic piv. Exp 
Fluids 54(8):1–12

Paige CC, Saunders MA (1975) Solution of sparse indefinite systems 
of linear equations. SIAM J Numer Anal 12(4):617–629

Paige CC, Saunders MA (1982) LSQR: an algorithm for sparse lin-
ear equations and sparse least squares. ACM Trans Math Softw 
8(1):43–71

Panton R (2013) Incompressible flow. Wiley, New York
Pröbsting S, Scarano F, Bernardini M, Pirozzoli S (2013) On the esti-

mation of wall pressure coherence using time-resolved tomo-
graphic PIV. Exp Fluids 54(7):1–15

Raffel M, Willert CE, Kompenhans J (1998) Particle image velocime-
try: a practical guide; with 24 tables. Springer, Berlin

Rasmussen C, Williams C (2006) Gaussian processes for machine 
learning, vol 1. MIT, Cambridge

Sadati M, Luap C, Kröger M, Öttinger HC (2011) Hard vs soft constraints 
in the full field reconstruction of incompressible flow kinematics 
from noisy scattered velocimetry data. J Rheol 55(6):1187–1203

Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci 
Technol 24(1):1–28

Schaback R (1995) Error estimates and condition numbers for radial 
basis function interpolation. Adv Comput Math 3(3):251–264

Scheuerer M, Schlather M (2012) Covariance models for diver-
gence-free and curl-free random vector fields. Stoch Models 
28(3):433–451

Schiavazzi D, Coletti F, Iaccarino G, Eaton JK (2014) A matching 
pursuit approach to solenoidal filtering of three-dimensional 
velocity measurements. J Comput Phys 263:206–221

Schneiders JF, Dwight RP, Scarano F (2014) Vortex-in-cell method 
for time-supersampling of PIV data. Exp Fluids 55(3)

Schräder D, Wendland H (2011) A high-order, analytically diver-
gence-free discretization method for Darcys problem. Math 
Comput 80(273):263–277

Sciacchitano A (2015) A posteriori uncertainty quantification for 
tomographic PIV data. In: 11th international symposium on 
PIV-PIV15

Sciacchitano A, Dwight RP, Scarano F (2012) Navier–Stokes simula-
tions in gappy PIV data. Exp Fluids 53(5):1421–1435

Sciacchitano A, Wieneke B, Scarano F (2013) PIV uncertainty quan-
tification by image matching. Meas Sci Technol 24(4):045,302

Segel L (2007) Mathematics applied to continuum mechanics. SIAM, 
Philadelphia

Song SM, Napel S, Glover GH, Pelc NJ (1993) Noise reduction in 
three-dimensional phase-contrast MR velocity measurementsl. J 
Magn Reson Imaging 3(4):587–596

Suzuki T, Ji H, Yamamoto F (2009) Unsteady PTV velocity field 
past an airfoil solved with DNS: part 1. Algorithm of hybrid 
simulation and hybrid velocity field at Re ≈ 103. Exp Fluids 
47(6):957–976

Timmins BH, Wilson BW, Smith BL, Vlachos PP (2012) A method 
for automatic estimation of instantaneous local uncertainty 
in particle image velocimetry measurements. Exp Fluids 
53(4):1133–1147

Urban K (1996) Using divergence free wavelets for the numerical 
solution of the Stokes problem. In: Axelsson O, Polman B (eds) 
Proceedings of the conference on algebraic multilevel iteration 
methods, Nijmegen, pp 259–278

van Oudheusden BW (2013) PIV-based pressure measurement. Meas 
Sci Technol 24(3):1–32

Vennell R, Beatson R (2009) A divergence-free spatial interpola-
tor for large sparse velocity data sets. J Geophys Res-Oceans 
114:C10024. doi:10.1029/2008JC004973

Violato D, Scarano F (2011) Three-dimensional evolution of flow 
structures in transitional circular and chevron jets. Phys Fluids 
23(12):124,104

Violato D, Moore P, Scarano F (2011) Lagrangian and Eulerian pres-
sure field evaluation of rod-airfoil flow from time-resolved tomo-
graphic PIV. Exp Fluids 50(4):1057–1070

Wendland H (2005) Scattered data approximation, vol 17. Cambridge 
University Press, Cambridge

Wendland H (2009) Divergence-free kernel methods for approximat-
ing the Stokes problem. SIAM J Numer Anal 47(4):3158–3179

Wieneke B, Prevost R (2014) DIC uncertainty estimation from statis-
tical analysis of correlation values. In: Advancement of optical 
methods in experimental mechanics, vol 3. Springer, Berlin, pp 
125–136

Wieneke B, Sciacchitano A (2015) PIV uncertainty propagation. In: 
11th international symposium on PIV-PIV15

Wikle CK, Berliner M (2007) A Bayesian tutorial for data assimila-
tion. Phys D 230(1):1–16

Worth N (2012) Measurement of three-dimensional coherent fluid 
structure in high Reynolds number turbulent boundary layers. 
PhD thesis, University of Cambridge

Wright SJ, Nocedal J (1999) Numerical optimization, vol 2. Springer, 
New York

Yang GZ, Kilner PJ, Firmin DN, Underwood SR, Burger P, Longmore 
DB (1993) 3D cine velocity reconstruction using the method of 
convex projections. In: Computers in cardiology 1993, Proceed-
ings, IEEE, pp 361–364

Zhang J, Tao B, Katz J (1997) Turbulent flow measurement in a square 
duct with hybrid holographic PIV. Exp Fluids 23(5):373–381

http://dx.doi.org/10.1029/2008JC004973

	Solenoidal filtering of volumetric velocity measurements using Gaussian process regression
	Abstract 
	1 Introduction
	1.1 Solenoidal filters
	1.2 Contributions

	2 Solenoidal Gaussian process regression
	2.1 Gaussian process regression: a Bayesian perspective
	2.2 1D example of GPR with local error information
	2.3 Enforcing mass conservation

	3 Efficient implementation
	3.1 Computational cost
	3.2 Conditioning

	4 Synthetic test cases
	4.1 Taylor vortex
	4.2 Vortex ring

	5 Application to experimental data
	5.1 Circular jet in water
	5.2 Turbulent flat plate boundary layer in air

	6 Conclusions
	Acknowledgments 
	References




