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Abstract This paper assesses the spatial resolution and

accuracy of tomographic particle image velocimetry (PIV).

In tomographic PIV the number of velocity vectors are of

the order of the number of reconstructed particle images,

and sometimes even exceeds this number when a high

overlap fraction between adjacent interrogations is used.

This raises the question of the actual spatial resolution of

tomographic PIV in relation to the various flow scales. We

use a Taylor–Couette flow of a fluid between two inde-

pendently rotating cylinders and consider three flow

regimes: laminar flow, Taylor vortex flow and fully tur-

bulent flow. The laminar flow has no flow structures, and

the measurement results are used to assess the measure-

ment uncertainty and to validate the accuracy of the tech-

nique for measurements through the curved wall. In the

Taylor vortex flow regime, the flow contains large-scale

flow structures that are much larger than the size of the

interrogation volumes and are fully resolved. The turbulent

flow regime contains a range of flow scales. Measurements

in the turbulent flow regime are carried out for a Reynolds

number Re between 3,800 and 47,000. We use the mea-

sured torque on the cylinders to obtain an independent

estimate of the energy dissipation rate and estimate of the

Kolmogorov length scale. The data obtained by tomo-

graphic PIV are assessed by estimating the dissipation rate

and comparing the result against the dissipation rate

obtained from the measured torque. The turbulent flow data

are evaluated for different sizes of the interrogation vol-

umes and for different overlap ratios between adjacent

interrogation locations. The results indicate that the tur-

bulent flow measurements for the lowest Re could be

(nearly) fully resolved. At the highest Re only a small

fraction of the dissipation rate is resolved, still a reasonable

estimate of the total dissipation rate could be obtained by

means of using a sub-grid turbulence model. The resolution

of tomographic PIV in these measurements is determined

by the size of the interrogation volume. We propose a

range of vector spacing for fully resolving the turbulent

flow scales. It is noted that the use of a high overlap ratio,

that is, 75 %, yields a substantial improvement for the

estimation of the dissipation rate in comparison with data

for 0 and 50 % overlap. This indicates that additional

information on small-scale velocity gradients can be

obtained by reducing the data spacing.

1 Introduction

The development of modern multi-camera methods, such

as tomographic particle image velocimetry (tomographic

PIV; Elsinga et al. 2006), makes it possible to measure all

three components and their spatial derivatives of the

instantaneous velocity field in a volumetric domain. Such

data enable the investigation of the instantaneous structure

of turbulent flows, and they provide quantitative experi-

mental data on the full deformation tensor and derived

quantities, such as the energy dissipation rate. For turbu-

lence measurements, it is necessary to resolve the spatial

velocity gradients, which requires a high spatial resolution.

However, the spatial resolution in tomographic PIV is

limited by the maximum density of particle images that can
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be recorded (Elsinga et al. 2006; Adrian and Westerweel

2011). As a consequence, there exists an upper limit to the

number of reconstructed particle images. This is further

augmented by the common practice to use overlapping

interrogation domains, which may result in a final data

density (determined by the total number of interrogation

locations) that exceeds the estimated tracer particle density

in the measurement volume. Hence, the question arises

what the actual spatial resolution is of a tomographic PIV

measurement. To validate the spatial resolution of tomo-

graphic PIV, we consider the (turbulent) dissipation rate in

Taylor–Couette (TC) flow. For this flow, the dissipation

rate is proportional to the torque applied to the rotating

cylinders (Racina and Kind 2006). Hence, we have an

independent measurement for the dissipation rate, and this

can be compared against the dissipation rate estimated

from the velocity data. A discrepancy between these values

is a measure of the accuracy and the spatial resolution of

the measurement, as the dissipation rate is determined by

the smallest scales that appear in the flow.

A further challenge that is addressed in this paper lies in

the fact that tomographic PIV is applied to a flow domain

with a curved and moving outer wall, which complicates

the measurement. Since tomographic PIV relies on the

precise volumetric reconstruction of the scattering sites in

the measurement volume, optical aberrations that are not

accounted for in the calibration can deteriorate the quality

of the reconstruction. The reconstruction and a volumetric

self-calibration can be applied to correct for small optical

distortions and aberrations.

Following the same categorisation as Andereck et al.

(1986), we consider three Taylor–Couette flow regimes in

this paper, namely laminar flow, flow with Taylor vortices

and fully turbulent (i.e., ‘‘featureless’’ turbulent) flow.

These regimes have increasing dissipation rates, that is,

decreasing length scales. For the laminar flow case, we

only have one dominant velocity gradient determined by

the differential angular speed of the cylinders and the gap

width between the cylinders. In this case, the flow can be

fully resolved due to the absence of any small-scale vari-

ations of the velocity. In the case of the Taylor-vortex flow

regime, we find large-scale vortical structures. Also here,

by absence of small-scale motions, the measurement

should be able to fully resolve the flow. The fully turbulent

flow regime contains small-scale flow structures. The flow

is fully three-dimensional and the turbulent kinetic energy

is dissipated in small-scale vortices. The scale of these

vortices depends on the Reynolds number. By increasing

the Reynolds number, we can decrease the smallest flow

scales relative to the measurement resolution.

In order to quantify the spatial resolution of tomographic

PIV, we compare the computed dissipation rate values with

the dissipation rates that were estimated using torque

measurements. We discuss the effect of the Reynolds

number, the interrogation window size and the data spacing

relative to the interrogation window size (i.e., window

overlap) on the spatial resolution of tomographic PIV.

Additionally, we also use the large eddy PIV method

(Sheng et al. 2000) to estimate the dissipation rate and

discuss its performance.

An outline of this paper is as follows. A brief literature

review is given in Sect. 2. The implementation of tomo-

graphic PIV for a Taylor–Couette flow system is discussed

in Sect. 3. We briefly explain several problems that were

encountered during the implementation. The validation of

the experimental method is done for the analytically well-

defined laminar flow case, which is basically a stable cir-

cular Couette flow, are given in Sect. 4.1. The effect of a

curved and rotating outer cylinder between the flow

domain and the cameras on the measurement results is

tested in the same section. Then, in Sects. 4.2 and 4.3, the

characteristics of Taylor vortex flow and the fully turbulent

flow regimes are analysed. Estimates of the dissipation rate

and the effect of interrogation window size relative to the

Kolmogorov length scale are given in Sect. 5. The main

findings are summarised in Sect. 6.

2 Background

Taylor–Couette systems basically consist of two indepen-

dently rotating concentric cylinders. Isaac Newton is

believed to be one of the first scientists attracted to the flow

between these rotating cylinders (Donnelly 1991).

The advantage of the Taylor–Couette setup is the pos-

sibility to examine the flow stability in a small closed

environment, which can be manipulated simply by

adjusting the rotation speeds of the cylinders. In addition,

usage of a transparent outer cylinder makes it possible to

observe the elementary flow characteristics with different

visualisation techniques (Di Prima and Swinney 1985). An

extensive characterisation of flow regimes in Taylor–

Couette systems, based on flow visualisation analysis, was

reported by Andereck et al. (1986), which is regarded as a

reference for defining the flow patterns in Taylor–Couette

flows.

The set of parameters used to describe the Taylor–

Couette flow varied over the years. In this paper, we adopt

the parameters to characterise the Taylor–Couette flow as

defined by Dubrulle et al. (2005). The Reynolds numbers

for inner cylinder and outer cylinder, based on the gap d,

are defined as Rei ¼ ðriXid=mÞ and Reo ¼ ðroXod=mÞ,
respectively. Xi and Xo represent the angular velocities of

the inner and the outer cylinders, and m represents the

kinematic viscosity of the fluid. The Rotation number (Ro)

and the shear Reynolds number (Res) are defined as:
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Ro ¼ ð1� gÞ Rei þ Reo

gReo � Rei
; ð1Þ

Res ¼
2jgReo � Reij

1þ g
; ð2Þ

where g = ri/ro is the gap ratio. The experimental param-

eters for all measurements are summarised in Table 1.

So far, field-based experimental studies mainly focused

on 2D structures of the flow because of the limited capa-

bilities of available experimental methods. Wereley and

Lueptow (1998, 1999) performed 2D PIV measurements in

Taylor–Couette flow. However, they could only measure

the axial and radial components of the flow velocity. They

applied a glass box, filled with a liquid that matches the

refractive index of the working fluid, that encloses the

Taylor–Couette flow system in order to avoid effects due to

refraction from the curved outer cylinder wall. Since then,

2D PIV has been used to examine different flow charac-

teristics of Taylor–Couette flows (Akonur and Lueptow

2003; Wang et al. 2005; Smieszek and Egbers 2005; Ra-

cina and Kind 2006; Abcha et al. 2008; Deng et al. 2009).

Akonur and Lueptow (2003) performed planar PIV in

radial-azimuthal planes in a setup very similar to the one of

Wereley and Lueptow (1998). In order to obtain the third

component of the velocity, they combined their results with

those of Wereley and Lueptow (1998), which were in the

axial–radial direction. With the help of phase averaging,

they obtained time-resolved, three-dimensional and three-

component PIV results. So far, their work has been the only

experimental attempt to analyse volumetric flow structures

in a Taylor–Couette system by means of PIV. Recently,

Ravelet et al. (2010) applied Stereo PIV to Taylor–Couette

flow for the first time. They performed measurements in the

axial–radial plane, where the azimuthal velocity is in

the out-of-plane direction. They also performed torque

measurements on the inner cylinder. The combination of

Stereo PIV and torque measurements was used to explore

the torque scaling in relation to the flow field.

Despite several papers on the application of PIV to

Taylor–Couette flows, the reliability of PIV measurements

in Taylor–Couette flow has not been studied widely.

Akonur and Lueptow (2003) report an error for PIV mea-

surements of laminar flow to be 1 % for azimuthal and 4 %

for radial velocities, relative to the inner cylinder velocity.

On the other hand, Ravelet et al. (2010) showed the error

level does not exceed 1 % for the same components, using

stereoscopic PIV measurements. However, they report a

significant velocity difference in regions close to the outer

cylinder walls. This may be attributed to refraction effects

due to the curved cylinder walls.

According to the energy-cascade model, the turbulent

energy is dissipated on the smallest eddies, and it is

important to estimate the dissipation rate for some indus-

trial processes such as mixing (Jiménez et al. 1993; Saa-

renrinne and Piirto 2000; Sharp and Adrian 2001). The

approach to determine the local dissipation rate from

tomographic PIV data follows those reported by others,

using planar PIV data (Sheng et al. 2000; Sharp and Adrian

2001; Baldi and Yianneskis 2003; Racina and Kind 2006;

Tanaka and Eaton 2007; Lavoie et al. 2007). In order to

resolve the smallest scales in turbulence and to capture the

velocity gradients accurately, measurements of turbulent

flows should ideally have a resolution of the order of the

Kolmogorov microscale (Sharp and Adrian 2001; Adrian

and Westerweel 2011). Nevertheless, for accurate results,

the knowledge of velocity gradients in all directions, which

is not possible by 2D PIV, is required (Adrian and West-

erweel 2011). The missing data can be estimated by

assuming local isotropy or by making use of symmetry

properties in the statistics of the local deformation tensor

Table 1 Flow conditions of the laminar (LF), Taylor vortex flow (TVF) and fully turbulent flow (FT)

Flow type Rei (-) Reo (-) Res (-) Ro (-) Xi (rad/s) Xo (rad/s) Dt (ms) Rec. rate (Hz) Number of vectors dx (mm)

LF – 643 615 0.091 – 0.48 10.0 4.7 107 9 61 9 28 0.370

TVF 1,000 500 565 -0.231 0.88 0.38 12.5 4.7 92 9 61 9 28 0.370

FT4700 1,850 -2,900 4,700 0.019 1.57 -2.26 2.5 4.7 92 9 61 9 28 0.370

FT3800 1,900 -1,900 3,800 0 1.63 -1.51 5.0 7.55 107 9 55 9 26 0.391

FT6200 3,100 -3,100 6,200 0 2.70 -2.45 5.0 7.55 107 9 55 9 26 0.391

FT11000 5,500 -5,500 11,000 0 4.78 -4.39 3.0 7.55 107 9 55 9 26 0.391

FT14000 7,000 -7,000 14,000 0 6.09 -5.59 2.0 7.55 107 9 55 9 26 0.391

FT17000 8,500 -8,500 17,000 0 7.41 -6.79 1.5 7.55 107 9 55 9 26 0.391

FT29000 14,500 -14,500 29,000 0 12.63 -11.56 1.0 7.55 107 9 55 9 26 0.391

FT36000 18,000 -18,000 36,000 0 15.65 -14.33 0.5 7.55 107 9 55 9 26 0.391

FT47000 23,500 -23,500 47,000 0 20.42 -18.72 0.25 7.55 107 9 55 9 26 0.391

Parameters of the tomographic PIV measurements for the flow conditions are given on the last four columns. Dt is the exposure time delay. The

number of vectors are given in the x, y and z directions, respectively (see Figs. 1 and 2); dx stands for the distance between the vectors. The

number of vectors and dx values are given for computations with 40 9 40 9 40 voxel3 final interrogation windows with a 75 % overlap
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(Sharp et al. 2000; Sharp and Adrian 2001; Racina and

Kind 2006). Those assumptions limit the calculations

because of significant non-isotropic and inhomogeneous

structure of the flow (Sharp et al. 2000). Sharp and Adrian

(2001) showed that, in case of additional correction

methods, success of measuring the dissipation rate via PIV

increases up to 70 % of the actual dissipation rate. Racina

and Kind (2006) followed the same assumptions. They

used 2D PIV measurements to calculate the dissipation rate

in a Taylor–Couette system for the first time. Independent

torque measurements allowed them to compare the dissi-

pation rate measurements with their actual values. The

energy dissipation rate showed good reproducibility

according to their results.

Recently, Worth et al. (2010) performed simulations

and compared them with experiments in order to discuss

the resolution of 2D and of tomographic PIV. They used

errors as indicator of the effect of the noise and the spatial

resolution over the velocity and the dissipation rates. In this

paper, instead of simulations, we use torque measurements

to validate the dissipation rates estimated from the PIV

data.

3 Experimental setup

The measurements were performed in the Taylor–Couette

setup at the Laboratory for Aero & Hydrodynamics of the

Delft University of Technology, which was used previously

by Ravelet et al. (2010). It consists of two coaxial cylinders

that can rotate independently. Additionally, the system allows

performing torque measurement on the inner cylinder shaft.

The radii of inner and outer cylinders are ri = 110 ±

0.05 mm and ro = 120 ± 0.05 mm, respectively. This

results in a gap of d = ro - ri = 10 mm, and a correspond-

ing gap ratio of g = ri/ro = 0.917. The length of the inner

cylinder is L = 220 mm, which gives an axial aspect ratio of

C ¼ L=d ¼ 22. A sketch of the experimental setup is given in

Fig. 1. The system is closed by top and bottom covers, which

are rotating with the outer cylinder. The cylinders are trans-

parent, allowing optical access. However, structural metal

bars, which are placed inside of the inner cylinder, were found

to cause strong reflections and noise on the recorded images.

Therefore, another cylinder, which was painted black,

was placed on the inside of the inner cylinder, to cover the

structural bars. This improves the quality of the images

considerably.

Velocity measurements were done using the tomo-

graphic PIV method (Elsinga et al. 2006). With tomo-

graphic PIV, it is possible to achieve a fully volumetric

measurement of all three velocity components in the

instantaneous flow field. The recording and the image

analysis were done using commercial software (DAVIS by

LaVision GmbH). Four cameras (Imager Pro LX 16M)

were used in double frame mode for recording particle

images with a resolution of 4,800 9 3,200 pixels for

laminar, Taylor vortex, and a fully turbulent flow case with

Res = 4,700 and Ro = 0.019. For the remaining fully

turbulent flows (Res = 3,800–47,000, where Ro = 0),

cameras with a resolution of 2,000 9 2,000 pixels (Imager

Pro X 4M) were used. Only about 1,000 9 600 pixels were

used for all cases in order to achieve a higher image

recording rate. Recording rate and laser pulse separation

differ for each flow condition. Objectives with a 105 mm

focal length were used, which were mounted on Sche-

impflug adapters. In order to minimise the effect of the end

gaps of the Taylor–Couette facility on the measurements,

the images were recorded at the mid-height of the rotational

axis of the Taylor–Couette setup (see Fig. 1). The dimen-

sions of the volume recorded by all cameras is roughly

40 9 20 9 10 mm3 in axial, azimuthal and radial direc-

tions, respectively. One pixel in the recorded image corre-

sponds to 37 lm in flow field. The reconstructed volume

size changes slightly between individual experiments.

It is convenient to interrogate the tomographic PIV data

in a rectangular volume, although a cylindrical coordinate

system is more appropriate for the Taylor–Couette geom-

etry. In order to avoid interpolation errors in the conversion

between coordinate systems, the Cartesian representation is

followed throughout this paper.

The correspondence between the Cartesian and the

cylindrical coordinate systems for the measurement vol-

ume is given in Fig. 2. Since the axial direction, x, is

completely collinear in both coordinate systems, it is not

shown in the figure. As shown, the z and r directions are

collinear only in one axial–radial plane, where h = 0. On

the other hand, y and h directions are collinear on the same

plane, as well. Hence, x, y and z components of the mea-

sured velocity data corresponds to axial, azimuthal and

radial components of the velocities at the cylindrical

coordinate system on the collinear plane. Thus, the

Fig. 1 Sketch of the experimental setup and definition of the

coordinate system in the measurement volume; x axial, y azimuthal,

and z radial direction
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z-coordinate and r-coordinate are interchangeable, whereas

the y-coordinate and h-coordinate also coincide in this

selected plane. Please note that all 2D plots in this paper

are plotted on this collinear plane.

In order to avoid the effect of the reflections caused by

volume illumination, we apply fluorescent (Fluostar) par-

ticles that contain Rhodamine B, with a mean diameter of

15 lm. These particles have a density of 1.1 g/cm3. We

applied optical 570 nm lowpass filters for rejecting the

non-fluorescent illumination during the image acquisition.

In order to have a homogeneous seeding distribution, the

water including the seeding particles was mixed at high

speeds of the inner and outer cylinders between two sets of

recordings. Then, the system was stopped and the fluid was

allowed to settle down. After that, the cylinders were taken

to the desired rotational speeds, and PIV images were

recorded after the flow reached a stationary state.

The seeding density is kept low in order to avoid speckle

(Adrian and Westerweel 2011) and to achieve a high

quality in the tomographic reconstruction (Elsinga et al.

2006). The quality of the tomographic reconstruction

decreases with the increasing number of, so-called, ghost

particles. A detailed discussion on ghost particles, their

formation and their effects on the results were presented by

Elsinga et al. (2006, 2011). The reconstruction quality is

proportional to the signal-to-noise ratio (SNR) between the

number of actual (Np) and the ghost particles (Ng), which is

given by SNR = Np/Ng (Worth et al. 2010; Elsinga et al.

2011).

At the same time, a high seeding density is desired to

achieve better spatial resolution (Adrian and Westerweel

2011). Thus, a compromise should be found between

reaching a higher spatial resolution and reducing the

number of ghost particles. Based on these considerations

and given the additional complexity of curved and moving

walls, the seeding density was kept around the lower value

of 0.025 ‘particles per pixel’ (ppp) for the measurements

presented here. This results in a SNR of 6.1, which is

significantly above the minimum level of 2 that indicates a

high-quality tomographic PIV measurement (Elsinga et al.

2011). The corresponding source density is NS = 0.18,

which is sufficiently low to exclude speckle effects in the

recorded images. The high quality of the tomographic

reconstruction is also observable in the radial profile of the

intensity distribution in the reconstructed volume (Fig. 3),

which reveals the sharp contrast between the intensity

inside and outside the liquid-filled gap.

The light source for illumination was a double-pulsed

Nd:YAG laser (New Wave Solo-III) with 50 mJ/pulse

energy at a wavelength of 532 nm. We used optics with an

anti-reflection coating consisting of two spherical lenses

(f = -50 mm, f = -40 mm) and one cylindrical lens

(f = ?200 mm), which were placed between the laser and

the test section to achieve the necessary dimensions of the

laser beam for the illumination of the measurement

volume.

In our Taylor–Couette system, it is not possible to

directly control the temperature of the working fluid.

However, the fluid and the ambient temperature were

measured carefully between the recordings of each data set,

and the angular velocities of the cylinders were adjusted to

compensate for the temperature dependent fluid viscosity,

so that we could maintain a constant flow Reynolds num-

ber. When the temperature difference between the begin-

ning and the end of each set of recordings exceeds 0.5� C,

Fig. 2 Representation of the Cartesian (top) and cylindrical (bottom)

coordinates for the experimental setup. Grey areas represent the

zones, which are included to reconstructed volume, but are outside of

the cylinders. Thus, they do not contain actual particles. Ghost

particles appear in the gap between the cylinders as well as in the

outside of the cylinders (grey areas)
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Fig. 3 Mean intensity profile along the z-direction (see Figs. 1 and 2)

in the reconstructed measurement volume (over 150 instantaneous

volumes). A width of 10 mm corresponds to 270 voxel units
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the data were considered invalid and were not used. Thus,

variations in the temperature of the working fluid were less

than ±0.5� C for the results presented in this paper.

The ±0.5� C change in the temperature results in a maxi-

mum of 1.2 % uncertainty in the kinematic viscosity of the

fluid, which is water for the current study. Since each set of

experiments takes around 20 min, including the period to

achieve stationary flow conditions, and given that the

measurements were performed at relatively low angular

velocities, this approach is assumed reliable.

3.1 Calibration

The procedure for the calibration of the camera system

consists of two main steps. The first step is to determine the

mapping of the recorded planes to all cameras, as it is

usually done in Stereo PIV. This was done by traversing

the calibration target in the z direction along the gap width.

The second step is the volumetric self-calibration method

(Wieneke 2008) for refining the calibration.

Calibration of the camera system was done using a 1-mm

thick, stainless steel, flat plate. The dimensions of the plate

are 150 9 20 mm2, where the short edge is placed tangential

to the azimuthal flow direction. Circular holes with diameter

of 0.4 mm were drilled. The distance between subsequent

holes is 2.5 mm in both vertical and horizontal directions. At

least 8 holes in all directions were present in each of the

calibration image recordings. The calibration target was

placed on a translating and rotating traversing mechanism,

capable of positioning the target with micrometer precision.

Due to the target thickness and the curvature of the cylinder,

the calibration target can be translated only over 50 % of the

gap width. Thus, calibration images were recorded in three

selected planes. The calibration for the remaining 50 % of

the gap was computed by extrapolating the calibration

equation. During the calibration the gap between the cylin-

ders was also filled with water.

The curved outer walls of the cylinders introduce some

optical distortion. However, these distortions are small

enough, so that they can be compensated for in the cali-

bration. Since the tomographic reconstruction requires an

error level better than 0.4 pixel (Elsinga et al. 2006) and

the extrapolation of the mapping function can introduce

further uncertainties, the volumetric self-calibration (Wie-

neke 2008) was applied for further refinement of the cali-

bration. After several refinement steps with volumetric

self-calibration, the maximum calibration error could be

reduced from 0.329 to 0.019 pixel.

3.2 Image processing

Image processing was performed to reduce the effect of

background noise and to increase the image quality of the

recorded images. First, a sliding minimum intensity of

25 9 25 pixels was subtracted from all images to increase

the signal-to-noise ratio. Then, a smoothing with a 3 9 3-

pixel Gaussian kernel was applied. Tomographic recon-

struction was performed with the MART algorithm (El-

singa et al. 2006). The intensity distribution averaged

over 150 reconstructed volumes along the z direction is

given in Fig. 3. The distribution shows that the illumi-

nated volume occurs for voxels located at 19 B z B 266.

Outside that region, the intensity values decrease

approximately to one-third of that inside. The steep drop

of the intensity indicates the presence of the cylinder

walls. The comparison of intensities inside and outside of

the cylinder walls reveals the contribution of ghost par-

ticles to the reconstructed volume (Elsinga et al. 2006),

which appears to be 35 % of the total intensity. The

reconstructed volume size was around 40 9 20 9

10 mm3. This corresponds to a resolution of approxi-

mately 27 voxel/mm.

For the experiments of all flow types represented in this

paper, the adaptive multi-pass approach was used for cor-

relation. Unless stated otherwise (see Sects. 5.2.2, 5.2.3),

the interrogation window size was 60 9 60 9 60 voxels

with a 50 % overlap in the first pass and 40 9 40 9 40

voxels with a 75 % overlap in the final two passes. Spu-

rious vectors were detected and removed by the universal

outlier detection method (Westerweel and Scarano 2005).

Linear interpolation was used to fill the gaps where the

vectors were removed.

4 Flow characteristics

In this section, the accuracy of tomographic PIV for Tay-

lor–Couette systems is initially validated using well-

defined laminar flow. Then, the characteristics of the other

flow regimes are given in terms of flow profiles, 3D visu-

alisations, and coherent structures.

4.1 Laminar flow and accuracy assessment

The laminar flow case with only the outer cylinder rotating

provides a steady flow that can be used to assess the

accuracy of the tomographic PIV method.

Laminar Taylor–Couette flow is analytically well

defined, with zero axial and radial velocities, and with an

axisymmetric azimuthal velocity, v, given by (Dubrulle

et al. 2005):

vðrÞ ¼ Ar þ B

r
; ð3Þ

where, r is the radial distance with respect to the common

axis of rotation, and A and B are constants, defined as:
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A ¼ 1

1� g2
Xo � g2Xi

� �
; B ¼ r2

i

1� g2
Xi � Xoð Þ; ð4Þ

where, Xo and Xi are the angular velocities of the outer and

inner cylinders, respectively.

Laminar flow measurements were performed with only

the outer cylinder rotating (i.e., Xi ¼ 0). Corresponding

Reynolds and rotation numbers are summarised in Table 1.

If we substitute Xi ¼ 0, in (3–4):

vðrÞ ¼ X0

1� g2
r � r2

i

r

� �
: ð5Þ

The measured 3D velocity fields are shown in Fig. 4.

The curved streamlines are in correspondence with the

curvature of the cylinders.

Quantitative comparison between the analytical result

and the measurements is necessary to assess the reliability

of the method. The results are plotted in Fig. 5. Flow pro-

files presented here were obtained from an average over 150

instantaneous 3D vector fields. The profile of the azimuthal

velocity (v) is in good overall agreement with the analytical

solution. The difference between the analytical solution and

the tomographic PIV results does not exceed 3.2 % of the

outer cylinder velocity anywhere between the cylinders.

Especially, in the region of 0.20d B r - ri B 0.50d the

deviation is below 2.5 %, and in the region 0.50d B r -

ri B 0.95d it is below 1 %. Additionally, the maximum

absolute values for the axial (u) and the radial (w) velocity

components, which should be identical to zero, are within

0.7 and 0.5 % of the outer cylinder velocity, respectively.

Presence of non-zero axial and radial velocities can be

explained as the result of the finite height of the experi-

mental setup, which results in large-scale Ekman-like cir-

culation (Dubrulle et al. 2005). Since the velocity deviation

is always below 3.2 %, the effect of a moving and curved

wall between the test section and the cameras appears not to

significantly deteriorate the measurement quality.

Coles and Van Atta (1966) performed laminar flow

measurements with hot-wire anemometry, when only the

outer cylinder is rotating at a constant speed with Reynolds

numbers between Reo = 2,000 and 12,000. They reported a

strong disturbance of the laminar flow in the mid-plane of

axial direction, which is increasing with the Reynolds

number. This distortion effect was not observed during our

experiments, which is possibly due to the relatively low

Reynolds number in our experiments. Ravelet et al. (2010)

found that the error level between analytical calculations

and measurements was higher close to the outer cylinder

(0.7d B r - ri B d). They concluded that the reason

behind this is the refraction close to curved wall. However,

for the results presented here, the disagreement is found to

be of the same order for both regions close to the inner and

Fig. 4 3D plot (left), and 2D cross-section (right) of the laminar

Taylor–Couette flow, obtained from 150 time-averaged instantaneous

vector fields. Only every 5th vector in the x and y directions and every

2nd vector in the z direction are shown. Color coding represents the

absolute velocity (jUj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2
p

). The data are represented in

a Cartesian coordinate system (see Figs. 1 and 2), where z = 0

corresponds to the inner cylinder surface, and z = 1 corresponds to

the outer cylinder surface. Both images are non-dimensionalised with

the gap width d between the cylinders

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(r − r
i
)/d [−]

U
(r

) 
/ (

Ω
o

×
r o) 

[−
]

Azimuthal Velocity: Analytical Solution
Azimuthal Velocity: Tomo−PIV
Axial Velocity: Tomo−PIV
Radial Velocity: Tomo−PIV

Fig. 5 Mean velocity of the laminar flow with only the outer cylinder

rotating (Xo ¼ 0:48 rad/sec;Xi ¼ 0;Reo ¼ 643;Ro ¼ 0:091;Res ¼
615), as a function of the radial distance. Time-averaging was

performed over 150 instantaneous vector fields. All velocities are

normalised with the azimuthal velocity of the outer cylinder

(Xo � ro). The dashed lines connect the measured data points and

the theoretical values at the walls
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outer cylinder walls, with a slightly higher value near the

inner cylinder. In our case, the camera viewing directions

were much closer to the normal of the cylinder wall, which

may have helped to eliminate the errors due to refraction.

In order to check the accuracy of the method, the RMS

of the measured velocities were also calculated (Fig. 6).

For the azimuthal velocity v, the RMS reaches its maxi-

mum value of 4.8 % of the outer cylinder velocity. The

maximum occurs at the outer cylinder wall. However, for

0 B r - ri B 0.85d, it is always below 1.5 %. On the other

hand, RMS values of axial and radial velocities are below

0.64 and 2.0 %, respectively, of the outer cylinder velocity.

High RMS values for 0.85d B r - ri B d might be caused

by the low SNR close to walls. This is probably due to the

effect of the boundaries of the measurement volume and

ghost particles, which is explained in detail below. High

RMS values might also be related with slight unroundness

of the cylinder.

Particle image velocimetry measurements in the vicinity

of the edges of the measurement domain are generally

problematic. One of the reasons is the lower probability to

find sufficient particle images in the interrogation window.

A lower number of particles reduces the height of the

correlation peak, which defines the measurement quality.

This applies in particular to tomographic PIV, where the

reconstruction is done in a volume that is slightly larger

than the illuminated volume. Ghost particles are formed

randomly throughout the reconstructed volume, whereas

actual particles only exist in the illuminated volume.

Although the number of the ghost particles remains con-

stant, the ratio of the ghost particles to the actual particles

in the interrogation windows becomes larger in the vicinity

of the cylinder walls, where the interrogation windows

partially overlap with the walls. The measured velocity

component is affected by the presence of the ghost parti-

cles. Consequently, the signal strength, that is, the height of

the correlation peak, is reduced in the vicinity of the inner

and outer cylinder walls. This explains the higher error

levels and the increase of the number of outliers near the

cylinder walls. The Taylor–Couette setup has one more

disadvantage. The tomographic reconstruction implemen-

tation that we use allows a reconstruction in a rectangular

geometry only. In order to reconstruct the full measurement

depth at positions where h = 0, one should include the

external part of the cylinders of the Taylor–Couette setup

(represented by the grey regions in Fig. 2).

One criterion that defines the quality of PIV measure-

ments is the number of the invalid vectors per velocity

field. The percentage of the invalid vectors to the valid

vectors for an instantaneous velocity field is given in

Fig. 7. Except for the regions close to the cylinder walls

(0 B r - ri B 0.04d and 0.85d B r - ri B d) the number

of invalid vectors is below 4.1 % of the total vectors. The

value increases from 5 to 14 % in the region 0.85d B r -

ri B d. Since the percentage of the outliers are below 4 %

for most of the measurement volume, one can use slightly

smaller interrogation windows for vector calculations in

order to achieve a higher spatial resolution.

4.2 Taylor vortex flow

The measurements for Taylor vortex flow were performed

at angular velocities of the outer and inner cylinders of

Xo ¼ 0:38 rad/sec and Xi ¼ 0:88 rad/sec, respectively.

Corresponding Reynolds and rotation numbers are

Res = 565 and Ro = -0.231 (Table 1). The measured

flow profile based on an average over 300 instantaneous

velocity fields is given in Fig. 8. In addition to vorticity
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calculations (Fig. 9), the vortical motion of the flow can be

represented by means of the Q-criterion (Hunt et al. 1988),

of which isosurfaces are shown in Fig. 10.

Two significant properties can be concluded from the

plots. The first one is the inclined elliptical shape of the

Taylor vortices. The inclination axes are making an angle

of ±25� with the azimuthal direction of the cylinders. The

high-velocity radial flow in between adjacent vortices

might be responsible for the inclination of the vortex

shapes. For instance, at x/d & 1 in Fig. 9, both positive and

negative vorticity are tilted outwards. This can be associ-

ated with the strong outward flow in the radial direction

between two vortices. Similarly, at x/d & 2.3 both positive

and negative vorticity are inclined towards the inner cyl-

inder, because of the strong radial inflow coming through

this region. The strong inflow and outflow cause the tilting

of the elliptical shape of the Taylor vortices. This is in

agreement with the observations of Ravelet et al. (2010),

where they reported a similar deformation for Ro B -0.04.

Smieszek and Egbers (2005) discussed similar, but less-

significant deformation for Rei = 259 at Ro = -0.5, but

with a shorter cylinder height of C ¼ 4:64.

On the other hand, the inclined characteristics of the

vortices resembles wavy vortex flow. Wang et al. (2005)

reported inclination angles of ±45� for wavy vortex flow

with a gap ratio of g = 0.733. However, there is no evi-

dence for a significant transfer of fluid between adjacent

vortices in our measurements, which is a typical property

of wavy vortex flow (Wereley and Lueptow 1998; Akonur

and Lueptow 2003; Wang et al. 2005; Abcha et al. 2008).

On the contrary, the boundaries of each individual coherent

structure are well defined for the measurements presented

here. Unlike wavy vortex flow (Wang et al. 2005), the

boundaries between neighboring Taylor vortices are fairly

stationary in our measurements.

The second property is the appearance of two concen-

trated regions with a high vorticity level inside each indi-

vidual Taylor vortex structure. If we consider the Taylor

vortex in the middle of the Q-plots in Fig. 10, the core of

the vortical structure can be seen as divided into two vor-

tices inside. This can be explained with the existence of

two separate, highly concentrated, vortical regions inside
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Fig. 8 Mean velocity of the Taylor vortex flow with co-rotation of

cylinders (Xo ¼ 0:38 rad/sec;Xi ¼ 0:88 rad/sec;Reo ¼ 500;Rei ¼
1; 000;Ro ¼ �0:231;Res ¼ 565), as a function of the radial position.

Time-averaging was performed over 300 instantaneous vector fields.

All velocities are normalised with the azimuthal velocity of the inner

cylinder (Xi � ri). The dashed lines simply connect the measured data

points to the theoretical values at the walls

Fig. 9 Instantaneous representation of vorticity and velocity vectors

for Taylor vortex flow (Reo = 500, Rei = 1,000, Ro = -0.231,

Res = 565), given at a cross-section at the center of the measurement

volume in the azimuthal direction (y). Vorticity in the azimuthal

direction is color coded. Only the vectors that are tangential to the

cross-sectional plane are given

Fig. 10 The isosurfaces for constant values of the Q-criterion (Hunt et al. 1988) (Q = 0.25 s-2) determined from the measured instantaneous

flow fields of Taylor vortex flow (Reo = 500, Rei = 1,000, Ro = -0.231, Res = 565). 3D view (left), side view in x–z plane (right)
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each individual Taylor vortex. The high-concentration

regions become more obvious if we increase the value of

Q-criterion isosurface for visualisation or perform time-

averaging. Any possible relation between the high con-

centration zones and the inclined shape of Taylor vortices

will need to be confirmed in further studies.

Similar to Wereley and Lueptow (1998), we performed

time averaging on six instantaneous Taylor vortex flow

velocity vector fields (Fig. 11). The vortical structures

thereby become smoother with respect to the plots for the

instantaneous vector fields (Fig. 10). The inclined rectan-

gular shape of the vortical structures is preserved in the

averaging procedure. The two regions with a concentration

of vorticity inside the individual Taylor vortices are also

visible in the x - y (axial-azimuthal) view, which is plot-

ted for higher values of Q. The isosurface contours of the

azimuthal velocity (v) show sharper transitions than the

ones represented by Wereley and Lueptow (1998). This is

most likely due to the higher Reynolds numbers used in our

measurements (Res = 103 and 124 vs. Res = 565 for our

data).

In addition to the observations above, the formation of

new Taylor vortices was observed in our measurement as

well. An example of the formation cycle is shown in

Fig. 12. Initially, the leading edges of a pair of counter-

rotating vortical structures appear in the outflow region

between two counter-rotating Taylor vortices. They are

similar both in shape, size and vorticity strength. They

emerge in the region close to the inner cylinder wall and

then move in the streamwise (azimuthal) flow direction. As

they move forward, their size and diameter tend to expand,

and they move to the center of the gap between cylinders.

Their presence imposes the bigger vortices to move away

from each other in axial direction. This progress continues

until the diameter of the newly appeared vortical structures

becomes equal to the diameter of the original structures.

New counter-rotating vortical structures replace the previ-

ous ones at the end of the cycle. The opposite behaviour

was observed as well. Disappearance of pairs of vortical

structures follows the same cycle, but in reverse order.

In our measurements, the formation of new vortices

always starts at the outflow region, while the disappearance

always ends at the inflow region. Similarly, the leading

edges of the new vortices appear in the vicinity of the inner

cylinder, where the trailing edges of the disappearing

vortices are close to the outer cylinder. It should be noted

that these cycles were observed randomly both in time and

space. However, it is not possible to make a guess of the

appearance frequency. Thus, one should be careful when

performing time-averaging over instantaneous Taylor vor-

tex flow fields. The averaging can only be performed when

the cores of the vortical structures remain at the same

positions. Similar phenomena were reported by Coles

(1965) as well. He briefly discussed single vortex filaments

that first doubled themselves, then merged again into a

single vortex filament. However, for our measurements, the

Fig. 11 Time-average of six successive instantaneous Taylor vortex

flow fields. 3D view of isosurfaces for Q-criterion (Q = 0.25 s-2) (a),

x–y (axial-azimuthal) view (Q = 1.5 s-2) (b), x–z view (Q = 0.25

s-2) (c), color coded vorticity values in azimuthal y direction and

tangential velocity vectors in radial-axial plane plotted on the radial-

axial cross-section alongside the azimuthal velocity isosurface

contours (isosurface red: -7.15 9 10-2 m/s, isosurface blue:

-6.25 9 10-2 m/s) (d)
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Fig. 12 3D representation of one cycle of the new vortex formation

for Taylor vortex flow. Isosurfaces of constant vorticity values in the

azimuthal direction y (yellow: 0.75 s-1, blue: -0.75 s-1). Blue and

red arrows indicate the approximate centres of the new-forming

vortical structures in the axial direction. The time differences between

consequent images are Dt ¼ 0:21 s
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phenomenon was not observed as a ‘‘doubling’’. It is more

like an appearance or disappearance of new vortex pairs in

between two counter-rotating vortices. Further investiga-

tion should be done to find out any possible relation

between these two incidents. On the other hand, based on

visualisation experiments in a Boger fluid, Smieszek and

Egbers (2005) reported the continuous formation of new

vortices in the middle of the axial position of the cylinders.

They related the formation to the instability of the Taylor

vortices. However, their observations on periodic move-

ment of the vortex cores in the axial direction has not been

observed in the measurements presented in this paper.

4.3 Fully turbulent flow

In this section, results for the characteristics of fully tur-

bulent flow at a slightly positive Ro are discussed. In their

paper, Andereck et al. (1986) defined fully turbulent flow

as a region of turbulent flow without any apparent large-

scale structure and characterised the dominant length scale

as smaller than the gap d for high cylinder speeds. Since

they could not identify obvious structures, they identified it

as ‘‘featureless turbulence flow’’.

The measurements were performed when the outer

and inner cylinders are rotating with angular velocities of

Xo ¼ �2:26 rad/sec and Xi ¼ 1:57 rad/sec, respectively.

The shear Reynolds number is Res = 4,700. Corresponding

Reynolds and rotation numbers, as well as the tomographic

PIV measurement parameters are summarised in Table 1.

The measured velocity profile is given in Fig. 13. The

characteristic of the azimuthal profile is similar to results

reported in the literature (Vaezi et al. 1997; Dong 2008;

Ravelet et al. 2010). Since Ro [ 0, the azimuthal flow

profile is not symmetric, and the plateau in the middle

section is shifted in positive direction towards the velocity

of the outer cylinder. The velocity near the outer cylinder

wall is found to be underestimated by 11 % and near the

inner wall by 47 % compared to their theoretical values

(Xo � ro ¼ �0:27 m/s for the outer and Xi � ri ¼ 0:17 m/s

for the inner cylinder walls). This is because of the thin

near-wall layer that is not resolved and gradients are

underestimated due to low resolution.

We measured a total of 300 vector fields to make a

further analysis of the characteristics of the time-averaged

velocity field for fully turbulent flow. In contrast to findings

by Dong (2008), the time-averaged vector fields do not

contain any apparent large structures like Taylor vortices.

Dong (2008) explains the Taylor vortex-like structures in

time-averaged field as the cumulative effect of instanta-

neous small-scale vortex organisation, which results in

average structures similar to Taylor vortices.

If the instantaneous vector fields are considered, obvious

structures similar to Taylor vortices were not observed in

our measurements (Fig. 14). However, the flow fields

contain disorganised small-scale and large-scale structures,

as typical for a regular turbulent shear flow.

5 Dissipation rate estimations

In this section, we focus on the dissipation rate, which is

computed from the velocity gradients estimated by tomo-

graphic PIV measurements. The validation is done using

the analytically well-defined laminar flow. Moreover, the

average dissipation rate is compared to the values that are

obtained from torque measurements for increasing Res

numbers for fully turbulent flows. We discuss the actual

spatial resolution of tomographic PIV based on the dissi-

pation rate estimations.

The dissipation rate in Cartesian coordinates, which

simplifies the calculations over cylindrical coordinates in

our experiments (Lewis and Swinney 1999; Sharp et al.

2000; Sharp and Adrian 2001), is given by:
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Fig. 13 Mean velocity profile of the fully turbulent flow with counter-

rotation of cylinders (Reo = -2,900, Rei = 1,850, Ro = 0.019,

Res = 4,700), as a function of the radial position. Time-averaging

was performed over 150 instantaneous vector fields. Spatial averaging

was performed in the axial direction of the cylinders. All velocities are

normalised with the azimuthal velocity of the outer cylinder (Xo � ro).

The dashed lines simply connect the measured data points and the

theoretical values at the walls
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where, ‘‘ �h i’’ represents a temporal ensemble average. The

u, v and w values are the instantaneous velocities in the x, y

and z directions, respectively. McEligot et al. (2008)

showed that in case of the dissipation rate estimations, the

fluctuating velocity components are dominant in the bulk

flow, while the mean flow is important in the regions close

to the wall. However, since we aimed to compute the total

dissipation, the instantaneous velocities, which include

both the mean and the fluctuating velocity components, are

used for the estimations.

Different to the previous efforts to compute the dissi-

pation rate using 2D PIV measurements (Sheng et al. 2000;

Sharp et al. 2000; Sharp and Adrian 2001; Baldi and

Yianneskis 2003; Racina and Kind 2006), all instantaneous

3D velocity gradients are known via tomographic PIV. As

a consequence, assumptions based on flow axisymmetry or

isotropy are not necessary, and only directly measured

values are used to compute e (Baldi and Yianneskis 2003).

The precision of the computations is mainly limited by the

spatial resolution of the measurements.

The computed dissipation rates are compared against

values for e based on separate torque measurements

(Racina and Kind 2006). For Taylor–Couette flow, the total

dissipation of kinetic energy per unit time must be equal to

the power supplied by the rotating cylinders. Furthermore,

the balance of momentum in the steady state requires the

torque magnitude on the inner and outer cylinder to be

equal, which reduces the expression for the mean dissipa-

tion rate per unit volume to:

eT ¼
P

qV
¼ T jXi � Xoj

qV
ð7Þ

where P stands for the power input due to the inner

cylinder rotation, T represents the torque measured on the

inner cylinder, Xi and Xo are the angular velocities of

inner and outer cylinders, q is the density of the fluid and

V is the total volume of the fluid in the Taylor–Couette

setup.

In order to compute the velocity gradients in (6), a

second-order polynomial regression to the measured

velocity field was done (Elsinga et al. 2010):

fregðrx; ry; rzÞ ¼ a0 þ a1rx þ a2ry þ a3rz þ a4rxry þ a5rxrz

þ a6ryrz þ a7r2
x þ a8r2

y þ a9r2
z

ð8Þ

where rx, ry and rz are the relative distances from a point in

the x, y and z directions, respectively. The method fits a

second-order polynomial function to the velocity distribu-

tion in a 5 9 5 9 5 neighbourhood around a point

(x1, y1, z1), which acts like a filter as well (Elsinga et al.

2010). The fit parameters a1, a2 and a3 represent the

velocity gradients at (x1, y1, z1) in the x, y, z directions,

respectively.

The PIV method encounters problems to properly resolve

Kolmogorov microscales, because of the limit of the spatial

resolution (Sheng et al. 2000; Sharp and Adrian 2001; Baldi

and Yianneskis 2003; Racina and Kind 2006; Tanaka and

Eaton 2007; Lavoie et al. 2007; Adrian and Westerweel

2011). The Kolmogorov microscale is defined as:

kK �
m3

eT

� �1=4

ð9Þ

where m is the kinematic viscosity and eT is the mean

dissipation rate estimated from torque data.

Small-scale fluctuations are filtered out when the space

between the vectors (dx) is larger than the Kolmogorov

length scale (Sheng et al. 2000; Tanaka and Eaton 2007).

This results in the underestimation of turbulent kinetic

energy dissipation rate (Sheng et al. 2000; Racina and Kind

2006; Tanaka and Eaton 2007). In contrast, for cases where

dx is smaller than the Kolmogorov scale length, a

decreasing dx leads to a rapid increase of dissipation rate

because of the measurement noise. This noise is due to the

finite measurement error (Saarenrinne and Piirto 2000;

Tanaka and Eaton 2007).

Fig. 14 The isosurfaces for constant values of Q-criterion (Hunt

et al. 1988) (Q = 400 s-2) determined from the measured instanta-

neous flow fields of fully turbulent flow (Reo = -2,900,

Rei = 1,850, Ro = 0.019, Res = 4,700); 3D view (left), side view

in x-y (axial-azimuthal) plane (right)

Exp Fluids (2012) 53:561–583 573

123



A measure of the smallest turbulent length scale that is

captured by tomographic PIV (k) can be estimated by using

(9). However, eT should be replaced by the mean dissipa-

tion rate computed by tomographic PIV (i.e. e). The effect

of the spatial resolution to the dissipation rate estimations

can be evaluated by k/kK ratio. The spatial resolution of the

measurement is better if the ratio is closer to unity. Nev-

ertheless, the ratio of k/kK is indicative of how well the

flow has been resolved with respect to the dissipation rate

estimation.

5.1 Laminar flow and assessment of dissipation rate

estimations

Local dissipation rate estimations for the laminar flow are

given in Fig. 15. They were computed with two different

approaches. The first approach is to compute the gradients

and the dissipation rates from a single, time-averaged

vector field, which we refer to as ‘‘method 1’’. Since the

time-averaging smooths the vector field, this method

results in slightly lower values of velocity gradients and

local dissipation rates.

The second approach, that is indicated as ‘‘method 2’’, is

to compute the gradients and the dissipation rates for each

of the 150 instantaneous vector fields individually, and then

average the dissipation rates. In general, ‘‘method 2’’

results in slightly higher dissipation rates, since it includes

the contribution of random noise in the measured velocity.

The difference between these two methods is also plotted

in Fig. 15. Both methods yield data that are in good

agreement in the inner region. The difference is below

3.4 % of the maximum dissipation rate in the region

0.1d B r - ri B 0.85d, which is associated to PIV noise. It

is obvious that the difference between the results of the two

methods is higher close to the cylinder walls. The differ-

ence between the methods remains small however, indi-

cating that the effect of random measurement noise is not

significant. Since the other flow regimes are unsteady, only

‘‘method 2’’ is considered in the remainder of this paper.

The analysis of individual velocity gradients reveals two

dominant gradients, which are qv/qz and qw/qy. These

gradients are an order of 10 times higher than the

remaining ones. However, all of the gradients were inclu-

ded in dissipation rate estimations. The ‘‘wavy’’ charac-

teristics of the local dissipation rates is caused by the step-

like behaviour of the gradient qw/qy, which might be due to

peak locking effect (Adrian and Westerweel 2011). Post-

processing methods to correct the peak locking effect can

be found in the literature (Roth and Katz 2001; Cholemari

2007). Since we aim to use the raw data without any cor-

rection, these methods were not implemented in this paper.

Obviously, the measured local dissipation rates in

Fig. 15 significantly decrease towards the walls. This is due

to the error caused during the velocity gradient estimation.

A second-order polynomial regression uses a 5 9 5 9 5

neighbourhood of vectors at each point. Therefore, the

effect of the gradients at the borders of the domain (i.e. the

cylinder walls) at both sides expands towards the inner

section of the gap. This continues until the edges no longer

are part of the domain of the 5 9 5 9 5 kernel, which is

the fourth data point from cylinder walls in the radial

direction for our case. This effect was tested by excluding

two and three data points from measurement domain at

both sides for the velocity gradient estimations and is

plotted in Fig. 16. The local dissipation rate in the region

0.18d B r - ri B 0.81d was identical for both estimations.

However, the deviation between two domains is large close

towards each wall. In the case of excluding of two data

points from each side, the effect of the cylinder walls is still

dominant in the domain. Thus, similar to Worth et al.

(2010), we decided to continue with excluding three data

points for the analyses with 75 % overlap, unless otherwise

stated (see Sect. 5.2 and Table 4 for the exceptions). It

should be noted that for all of the mean dissipation rate

estimations presented in this paper, we used the local dis-

sipation rates at the central plane of the measurement

volume in the azimuthal direction (i.e. h = 0). Addition-

ally, we performed spatial averaging in the axial direction

in the measurement volume, which is a homogeneous

direction in our system.

As the laminar flow has a well-defined analytical form,

local dissipation rate estimations based on the measure-

ment of tomographic PIV can be compared with the ana-

lytical calculations of the local dissipation rate. The grid

points of the velocity vectors obtained by tomographic PIV

were used for analytical computations. We generated a

volumetric domain of the analytical solution, which has the
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Fig. 15 Local dissipation rate estimations for laminar flow, obtained

by tomographic PIV, as a function of radial position. Calculations

were performed with two methods. Results were plotted along

centerline in radial direction
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exact grid positions with the measured domain. Then, the

same procedure for the dissipation rate estimation by

tomographic PIV was followed on the analytically gener-

ated velocity vector domain. The results are shown in

Fig. 17. The local dissipation rates estimated by tomo-

graphic PIV measurements are in good agreement with

analytical results. The decreasing trend through the gap is

consistent as well.

In order to make a quantitative comparison, the values

estimated from the tomographic PIV data were normalised

with the analytical result. The normalisation of the local

dissipation rate with the analytical value is given as:

e� ¼ e
eA

ð10Þ

where e represents the local dissipation rate estimated by

tomographic PIV and eA stands for the local dissipation rate

calculated analytically. The plot for the normalised local

dissipation rate is given in the inset of Fig. 17. The nor-

malisation points out that the tomographic PIV measure-

ments overestimates the local dissipation rate values

everywhere. However, the difference is below 20 % of the

local dissipation rate, with the exception of a few data

points near the cylinder walls. On the other hand, the effect

of the uncertainty of the water temperature to the dissipa-

tion rate estimations are represented by error bars in the

inset of Fig. 17. The uncertainty caused by the fluctuation

of the fluid temperature is relatively small compared to the

deviance from the analytical solution. Hence, we can

conclude that the error in the dissipation rate estimations of

the laminar flow case is mostly due to the errors in the

measurements.

Even though the comparison with the analytical solution

is the simplest and most reliable method for the validation

of the dissipation rate estimation, it is not feasible for all

flow types. Another approach should be used especially for

the fully turbulent flows.

An advantage of the Taylor–Couette setup is the possi-

bility of performing torque measurements. For the experi-

mental setup presented here, the torque of the inner

cylinder can be measured by a torque-meter that co-rotates

with the inner cylinder shaft. More detailed information

about the torque measurements on the current experimental

setup is given by Ravelet et al. (2010). Using (7), a direct

comparison between the mean dissipation rate obtained by

tomographic PIV and by the torque measurement can be

performed. It should be noted that the working fluid in our

experiments was water, and the system was operated at

relatively low rotating frequencies. As a consequence, the

torque values are much lower than the limits of the mea-

surement capability of the torque-meter. Therefore, a tor-

que scaling of the data presented by Delfos et al. (2009)

and Ravelet et al. (2010) was used instead. If (7) and (10)

are combined, we obtain the normalisation of mean dissi-

pation rate:

e� ¼ e
eT

ð11Þ

Another question arises in the computations of the mean

dissipation rate, e. Because of the reasons explained above,

the dissipation rates close to the cylinder walls cannot be

estimated via tomographic PIV. However, these values are

needed for computing the mean dissipation for the

complete system. In order to estimate these values, a

linear polynomial curve fitting operation was performed on

the dissipation rate values on the radial direction. By the

help of these polynomials, we estimated the dissipation
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Fig. 16 The effect of borders to the local dissipation rate estimations

for laminar flow, as a function of radial position
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Fig. 17 Dissipation rate estimations, computed analytically and with

tomographic PIV data, for laminar flow. Plotted as a function of radial

position. Spatial averaging was performed in the axial direction of the

cylinders. (Inset) Normalised dissipation rate estimations for laminar

flow as a function of radial position. Normalisation was performed

according to the analytically computed local dissipation rates. Error
bars are representing the effect of uncertainty of the kinematic

viscosity due to ±0.5� C temperature difference
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rates at the cylinder walls. For the laminar flow case, we

used all data points of the domain to fit the equation. Since

the analytical solution shows approximately linear

behaviour, this approach seems reasonable. However, as

it will be discussed in the next section, the dissipation rates

of the fully turbulent flows have different characteristics to

that of the laminar flow. Thus, using the complete domain

for the curve fitting would result in erroneous estimations

for the turbulent flow cases. Hence, we used 3 data points,

which are the closest to the cylinder walls, to fit linear

polynomials. Two separate polynomials, one for the inner

cylinder and another one for the outer cylinder, were used

for each case to estimate the dissipation rates at the inner

and outer cylinder walls. In order to compute the mean

dissipation of the Taylor–Couette system, numerical

integration was performed over the measured data points

in the middle region and the estimated values on the walls.

A summary of the dissipation rate estimations for all

flow cases are presented in Table 2. Note that, for the

laminar case, the Kolmogorov length scale-related values

in Table 2 (i.e. kK, dx/kK, k and k/kK), are meaningless in

terms of ‘‘turbulence’’ characteristics. However, they are

presented for the aim of comparison. The mean dissipation

rate for the laminar flow case (Res = 615) is in good

agreement with both estimations of the analytical value and

the scaled torque data. The error level is of the order of

15 %. Since the equivalent ‘‘Kolmogorov length scale’’ is

relatively large for the laminar case, the vector spacing is

smaller than this (dx/kK = 0.915). Thus, the overestimation

is caused by the noise during the measurements (Saaren-

rinne and Piirto 2000; Racina and Kind 2006; Tanaka and

Eaton 2007; Adrian and Westerweel 2011; Buxton et al.

2011). Tanaka and Eaton (2007) reported an error level of

20–30 % at a similar dx/kK, but with a correction. We can

conclude that, without any need for a further correction,

tomographic PIV has a similar order of error as for cor-

rected 2D PIV estimations.

The different nature of the torque and tomographic PIV

methods might lead to a some degree of uncertainty.

Comparison of both measurements with the analytically

calculated mean dissipation rate indicates an uncertainty of

the torque measurements as &1 % and the tomographic

PIV measurements as &15 %.

The mean dissipation rate estimation for the Taylor

vortex flow (Res = 565) is similar to the laminar flow case.

As expected, measurements are very close to resolving the

flow (k/kK = 1.04). The error level is of the order of 15 %

again, but the dissipation rate is now slightly underesti-

mated. Since both large-scale flow cases have similar error

levels, the discrepancy might be due to the contribution of

the errors in the tomographic PIV and other effects in the

estimations.

5.2 Fully turbulent flows

In this section, the fully turbulent flows are evaluated,

where we aim to investigate the relation between turbulent

length scales and the spatial resolution of the tomographic

PIV measurements, using three different methods. Initially,

in order to understand the effect of the turbulence intensity

to the dissipation rate estimations, the size of the interro-

gation window (IW in voxel - DI in mm) was kept

Table 2 Results of the dissipation rate estimations for laminar flow (Res = 615), Taylor vortex flow (Res = 565), and fully turbulent flows

Res eA ðm2=s3Þ eT ðm2=s3Þ e ðm2=s3Þ e� (-) dx (mm) kK (mm) dx/kK (-) k (mm) k/kK (-) eSGS ðm2=s3Þ e�SGS (-)

615 2.79 9 10-5 2.76 9 10-5 3.19 9 10-5 1.157 0.370 [0.404] [0.92] [0.390] [0.96] – –

565 – 2.85 9 10-5 2.46 9 10-5 0.862 0.370 0.412 0.90 0.427 1.04 – –

3,800 – 3.70 9 10-3 1.97 9 10-3 0.532 0.391 0.124 3.15 0.145 1.17 6.03 9 10-3 1.629

6,200 – 1.42 9 10-2 3.05 9 10-3 0.214 0.391 0.089 4.41 0.130 1.47 9.80 9 10-3 0.690

11,000 – 6.82 9 10-2 7.25 9 10-3 0.106 0.391 0.060 6.53 0.105 1.75 3.42 9 10-2 0.502

14,000 – 1.33 9 10-1 1.12 9 10-2 0.084 0.391 0.051 7.72 0.094 1.86 6.64 9 10-2 0.498

17,000 – 2.27 9 10-1 1.58 9 10-2 0.070 0.391 0.044 8.83 0.086 1.95 1.12 9 10-1 0.491

29,000 – 9.65 9 10-1 3.88 9 10-2 0.040 0.391 0.031 12.67 0.069 2.23 4.20 9 10-1 0.435

36,000 – 1.78 5.98 9 10-2 0.034 0.391 0.027 14.76 0.062 2.34 9.50 9 10-1 0.534

47,000 – 3.75 1.19 9 10-1 0.032 0.391 0.022 17.78 0.051 2.37 3.09 0.824

eA is the analytical estimation of mean dissipation in a unit volume, eT is the mean dissipation estimation from torque data, e is the mean

dissipation estimation from tomographic PIV data. eSGS is the mean dissipation estimation from tomographic PIV data, using large eddy method.

e� and e�SGS are the normalised values of e and eSGS, respectively. dx represents the distance between the vectors, kK is the Kolmogorov length

scale computed from torque data, k is the equivalent Kolmogorov length scale estimated from the tomographic PIV data. We used

40 9 40 9 40 voxel3 final interrogation windows with 75 % overlap. Hence, the linear dimension of the interrogation window, DI, is 4 times the

vector spacing (i.e. DI = 4 dx). It is emphasised that the numerical values inside ‘‘[ • ]’’ do not represent an actual turbulence characteristic, but

are evaluated for the aim of comparison. Similarly, since the large eddy method is only valid for turbulent flows, the computations with the large

eddy method are excluded for the laminar and Taylor vortex flow
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constant. In the mean time, Res was increased from 3,800

to 47,000, at an exact counter rotation of the cylinders;

Ro = 0 (Sect. 5.2.1). This approach results in measurements

with constant spatial resolution, but decreasing Kolmogo-

rov length scales.

In the second approach (Sect. 5.2.2), the size of the

interrogation window was increased, while the shear Rey-

nolds number remained constant. In this way, kK was kept

constant, while dx increased. Worth et al. (2010) performed

a similar analysis, but using DNS data at a single Reynolds

number.

Finally, in Sect. 5.2.3, the shear Reynolds number is

kept constant, and we discuss the influence of different

interrogation window overlap values while maintaining

constant interrogation window size. This has the same

effect on dx and kK as it has in the second approach.

However, this approach allows to evaluate the effect of

oversampling to the measurement result. Additionally, in

Sect. 5.2.4, we compare the dissipation rate estimates with

the estimates computed by the large eddy PIV method

(Sheng et al. 2000; Sharp and Adrian 2001).

Estimations of dissipation rate for fully turbulent flows

were performed over 1,000 instantaneous velocity fields,

which is sufficiently higher than the required number of

samples for statistically reliable results (Baldi and Yian-

neskis 2003). Our tests (Fig. 18) show that an uncertainty

below 4 % requires at least 150 independent vector fields,

where the uncertainty level becomes lower than 1 % when

at least 650 vector fields are used. From this, we conclude

that the sampling error of 1,000 vector fields is below 1 %.

5.2.1 Effect of Reynolds number

The results of the dissipation rate estimations for increasing

shear Reynolds numbers are plotted in Fig. 19. The plots

show the characteristics of the local dissipation rates along

the gap between the cylinders. The dissipation rates are

increasing for increasing Res, as expected. The ratio

between the dissipation rates at Res = 3,800 and 47,000 is

of the order of 102 for the estimations via tomographic PIV.

Furthermore, for each shear Reynolds number, the local

dissipation rates are almost symmetrical with respect to the

r - ri = 0.5d plane. The regions close to the inner and the

outer cylinder have similar rates of dissipation, and they

are higher than for the middle section. The local dissipation

rate values reveal a plateau at the middle center region. The

difference between the minimum and the maximum dissi-

pation rates for each profile decreases for increasing Res.

Hence, the plateau becomes flatter for increasing values of

Res.

As explained before, unlike the case for laminar flow, it

is not possible to compute the dissipation rates analytically

for fully turbulent flows. However, the mean dissipation

was estimated using the torque data measured with the

same experimental setup by Delfos et al. (2009) and

Ravelet et al. (2010). Results for the estimations of the

mean dissipation rate are given in Table 2.

The agreement between the estimates for the mean

dissipation rate via torque scaling and tomographic PIV

measurements are not as good as for the laminar flow case.

Tomographic PIV underestimates the mean dissipation by

47 % for the best case (Res = 3,800), and up to 97 % for

higher values of Res. Mainly, this is the result of the finite

spatial resolution of the tomographic PIV data. If the Kol-

mogorov scale is less than the vector spacing (i.e. dx/kK [ 1),

the dissipation rate values would be underestimated (Sheng

0 100 200 300 400 500 600 700 800 900 1000
−0.02

0

0.02

0.04

0.06

0.08

Number of samples [−]

(ε
 −

 ε
10

00
) 

/ ε
10

00
 [−

]

 

 
r − r

i
 = 0.47d

r − r
i
 = 0.66d

r − r
i
 = 0.27d

Fig. 18 Convergence of the average dissipation rate (e) with the
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Fig. 19 Dissipation rate estimations for fully turbulent flow cases

(Res = 3,800–47,000) with exact counter-rotation of the cylinders.

Profiles were computed with 40 9 40 9 40 voxel3 final interrogation

window and 75 % overlap. Spatial averaging was performed in the

axial direction of the cylinders. Three data points in each direction

near the flow boundaries were excluded in order to avoid the effect of

the boundaries of the domain on the results for the estimation of the

dissipation rate. Dashed lines represent the linear extrapolation to

estimate the wall value for Res = 3,800
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et al. 2000; Tanaka and Eaton 2007). This is due to uncap-

tured small-scaled structures (Lavoie et al. 2007).

In the literature, various values of dissipation rate

estimation errors have been reported. Tanaka and Eaton

(2007) demonstrated that at high spatial resolutions, the

error level might reach up to 10 times the actual dissi-

pation value and for lower spatial resolutions the dissi-

pation rates are underestimated. Sharp and Adrian (2001)

estimated the contribution of the unresolved scales using a

Smagorinsky model. They concluded that approximately

70 % of the turbulent dissipation had been captured in

their measurements at a spatial resolution of about 8

Kolmogorov length scales. Tomographic PIV returns

similar errors at comparable spatial resolution. Racina and

Kind (2006) showed lower mean dissipation rates

obtained from 2D PIV data with decreasing resolution,

but the results are somewhat difficult to compare due to

the different nature of the flow, that is, wavy vortex flow

compared to fully turbulent here.

5.2.2 Effect of the size of the interrogation window

In order to isolate the effect of the interrogation window

size on the velocity vector, calculations are performed on

the very same measurement data with different final

interrogation window sizes. This way, the Kolmogorov

length scale, kK, is maintained constant. We performed this

analysis for Res = 3,800, 14,000 and 47,000.

The local dissipation rate estimations for Res = 14,000

with different interrogation window sizes are plotted in

Fig. 20. Since the characteristics are similar to those for

Res = 3,800 and 47,000, we omitted those in Fig. 20.
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The effect of the interrogation window size to the mean

dissipation rate is summarised in Table 3. Consistent with

previous reports in literature (Saarenrinne and Piirto 2000;

Racina and Kind 2006; Tanaka and Eaton 2007; Lavoie et al.

2007), the estimations are decreasing with increasing size of

the interrogation windows; IW (i.e. with increasing values of DI

and dx), for all Res numbers. If the values are compared to our

best estimations (i.e. IW = 40 voxel), doubling the interro-

gation window size results in an average decrease of 76 % for

all Res. The difference increases to an average of 95 % in the

case of 4-times larger window size (IW = 160 voxel).

5.2.3 Effect of the overlap of the interrogation windows

As the last approach, we discuss the effect of the overlap

value of the final interrogation volumes to the dissipation

rate estimations.

It should be noted that the velocity gradient computation

scheme is the same for all cases in this study. However, for

the computations in this section, we adjusted the kernel

sizes according to the overlap values. The 5 9 5 9 5

kernel size that is used to filter the measured velocity field

is chosen equal to the interrogation window with 75 %

overlap (Elsinga et al. 2010). In order to match the kernel

size to the correlation window size at 0 and 50 % overlap,

1 9 1 9 1 and 3 9 3 9 3 kernel are used in these cases.

This means that the velocity gradients for 0 % overlap

were calculated without any filtering. Thus, the expected

noise level is higher for 0 % overlap.

Since the kernel size is not constant, the number of

excluded data points close to the cylinders are varied

between the overlap values as well. Three, two and one

data points were excluded from the measured domain for

the analyses with 75, 50, and 0 % overlap, respectively.

The only exception to this procedure is the case of

160 9 160 9 160 voxel3 final interrogation window with

75 % overlap. Since the measured data for this case con-

tains only 7 points in the radial direction, three point

exclusion results in the removal of 6 data points. Obvi-

ously, one data point in the radial direction is not enough

for the total dissipation estimation and introduces addi-

tional uncertainty. Hence, we excluded two data points

from the measurement domain at both sides for the velocity

gradient estimations of the corresponding case. The

parameters of the velocity gradient computations are

summarised in Table 4.

Table 4 Parameters that were used to compute the dissipation rates for the fully turbulent flow cases

Res (-) IW (vox) Overlap (%) Kernel size (-) Number of excluded data points (-)

All 40 75 5 9 5 9 5 3

3,800, 14,000, 47,000 40 50 3 9 3 9 3 2

3,800, 14,000, 47,000 40 0 1 9 1 9 1 1

3,800, 14,000, 47,000 50; 60; . . .100 75 5 9 5 9 5 3

3,800, 14,000, 47,000 80 50 3 9 3 9 3 2

3,800, 14,000, 47,000 160 75 5 9 5 9 5 2

‘‘Overlap’’ stands for interrogation window overlap value in percentage. ‘‘Kernel size’’ is the number of the neighbouring data points to calculate

the velocity gradients during regression analysis. ‘‘Number of excluded data points’’ stands for the number of the data points excluded from the

measurement domain at both inner and outer cylinder sides in the radial direction

Table 5 Dissipation rate estimations at a constant final interrogation window size (IW = 40 voxel, DI = 1.564 mm), but for different inter-

rogation window overlap values

Res (-) Overlap (%) dx (mm) DI (mm) dx/kK (-) DI/kK (-) e� (-) k/kK (-) e�SGS (-)

3,800 0 1.564 1.564 12.61 12.61 0.200 1.50 0.295

50 0.782 1.564 6.30 12.61 0.235 1.44 0.350

75 0.391 1.564 3.15 12.61 0.532 1.17 1.629

14,000 0 1.564 1.564 30.89 30.89 0.040 2.24 0.139

50 0.782 1.564 15.44 30.89 0.046 2.16 0.164

75 0.391 1.564 7.72 30.89 0.084 1.86 0.498

47,000 0 1.564 1.564 71.11 71.11 0.012 3.04 0.118

50 0.782 1.564 35.55 71.11 0.014 2.90 0.150

75 0.391 1.564 17.78 71.11 0.032 2.37 0.824
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The results of changing interrogation overlap values at a

constant interrogation window size of IW = 40 voxel are

presented in Table 5. The dissipation rate estimations

increase with increasing overlap value. Incrementing

the overlap from 0 to 50 and 75 %, results in 15–17 and

55–60 % improvement of the estimation for all three

values of Res considered here.

The effect of overlap ratios was tested with IW = 80 and

160 voxels as well. For the simplicity, results are given

only for Res = 14,000 in Table 6. The performance of the

dissipation rate estimations decreases for increasing vector

space at a constant interrogation window size DI. At a

constant distance between vectors, dx, increasing the

interrogation window size results in lower dissipation

estimations. However, the dependency of the estimations

on the change of DI and dx are not the same. At a constant

DI, doubling dx results in better estimations than of dou-

bling DI at a constant dx.

5.2.4 Dissipation rate estimations with large eddy method

In order to estimate the contribution of the non-resolved

scales to the dissipation rates, we computed the dissipation

rates using the large eddy PIV (Sheng et al. 2000). Using

the sub-grid scale (SGS) flux, the large eddy method takes

the unresolved scales of PIV measurements into consider-

ation for dissipation rate estimations (Sheng et al. 2000;

Sharp and Adrian 2001).

The dissipation rate estimations by the large eddy PIV

method were performed only for fully turbulent cases and

are given by e�SGS in Tables 2, 3 and 5, in normalised form.

Similar to Sheng et al. (2000), we used CS = 0.17 as the

Smagorinsky constant for the computations. As stated by

Sheng et al. (2000), the Smagorinsky model results in

better estimations for higher Res.

Our comparisons show that the large eddy method

results in improved dissipation rate estimations than

the direct estimations by tomographic PIV, as expected.

The improvement for all cases indicates that the error in the

direct estimation of dissipation rates by tomographic PIV is

due to the unresolved scales.

5.3 Summary of the dissipation rate estimations

Our results are is summarised in Figs. 21 and 22. As

reported in the literature, underestimation of the dissipation

rates is evident for fully turbulent flow cases, and the

degree of underestimation increases with Reynolds num-

bers (Sheng et al. 2000; Saarenrinne and Piirto 2000; Sharp

and Adrian 2001; Racina and Kind 2006; Lavoie et al

2007; Tanaka and Eaton 2007).

The results show that the success of the dissipation rate

estimations are strongly related to the spacing between the

vectors and the interrogation window size. The error level

increases with a logarithmic characteristic, as reported

(Baldi and Yianneskis 2003; Racina and Kind 2006;

Lavoie et al. 2007; Worth et al. 2010). Different cases with

a constant overlap of 75 % fall almost on same curve, with

relatively small scatter. Decreasing window overlap at a

constant interrogation window size increases the error.

Table 6 Relation between interrogation window size, vector spacing and the dissipation rate estimations for Res = 14,000

DI (mm) dx = 0.391 mm dx = 0.782 mm dx = 1.564 mm

dx/kK (-) DI/kK (-) e� (-) k/kK (-) dx/kK (-) DI/kK (-) e� (-) k/kK (-) dx/kK (-) DI/kK (-) e� (-) k/kK (-)

1.564 7.72 30.89 0.084 1.86 15.44 30.89 0.046 2.16 30.89 30.89 0.040 2.24

3.128 – – – – 15.44 61.78 0.023 2.57 30.89 61.78 0.012 3.00

6.256 – – – – – – – – 30.89 123.56 0.005 3.76

DI = 1.564, 3.128 and 6.256 mm correspond to IW = 40, 80 and 160 voxel, respectively. Moving horizontally from left to right in a row

represents the decrease of the overlap values (from 75, 50 to 0 %), at a constant interrogation window size. For each row, the first non-empty cell

from the left represents a 75 % overlap value for the corresponding interrogation window size. Moving in the diagonal direction from top-left to

bottom-right represents the increment of the interrogation window size at a constant overlap value. For instance; the cell for DI = 3.128 mm and

dx = 1.564 mm stands for a 50 % overlap, whereas the cell DI = 6.256 mm and dx = 1.564 mm represents a 75 % overlap
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Fig. 21 Normalised mean dissipation rate estimations of three

approaches for fully turbulent flow cases with exact counter-rotation.

For details, see Tables 2, 3 and 5
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However, it results in lower error levels compared to

similar vector spacing with larger window sizes. Hence, the

dissipation rate estimations, therefore the actual spatial

resolution of tomographic PIV, is a non-linear function of

both dx/kK and DI/kK.

Extrapolating the values in Fig. 22 to k/kK = 1 implies

that vector spacing of dx/kK & 1.5–2.0 (equivalent to

window sizes DI/kK & 6.0–8.0 at 75 % overlap or DI/kK &
3.0–4.0 at 50 % overlap) is required to fully resolve the

turbulent dissipation scales. This is comparable with

numbers reported by Buxton et al. (2011), Worth et al.

(2010) and Saarenrinne and Piirto (2000) (dx/kK

&1.5–3.0), which were calculated with 50 % overlap. Our

results are also seem consistent with a study by Jiménez

et al. (1993), who reported an average diameter of Burgers’

type vortices of 6–10 kK.

In conclusion, the computations are more sensitive to

changes of the interrogation window size than changes of

the vector spacing. Although it results in a higher data

density that possibly exceeds the tracer particle density,

oversampling the measured data results in better estima-

tions. The actual spatial sampling improves with the

increasing window overlapping.

6 Conclusion

In this paper, we describe the implementation of tomo-

graphic PIV for a Taylor–Couette flow. This was achieved

through a rotating and curved transparent outer wall, that

is, without the usage of an enclosure to reduce the effects

of refraction. We used fluorescent tracer particles, appro-

priate optical filters and black paint on the inside of the

inner cylinder to reduce the effects of surface reflection of

the incident laser light. The accuracy of the image cali-

bration for this situation and the refinement through volu-

metric self-calibration was shown from the comparison of

the measured velocity in the laminar flow state with the

exact analytical solution.

An attractive feature of Taylor–Couette flow is that we

could generate different flow conditions by changing the

angular velocities of the inner and outer cylinders, that is,

laminar flow, Taylor vortex flow, and turbulent flow. The

laminar flow is stationary, while the Taylor-vortex flow is

dominated by large-scale flow structures. The turbulent

flow is without any dominant large-scale structures (i.e.

‘‘featureless’’ turbulence). We utilised this to determine the

spatial resolution of tomographic PIV in relation to

the length scales that are present in the flow. We use the

measured torque on the cylinders to obtain an independent

estimate of the dissipation rate and compare this with the

dissipation rate as is estimated from the measured velocity

gradients. In tomographic PIV, the velocity gradients can

be measured of all three velocity components and for all

three principal directions. Hence, it was possible to esti-

mate the dissipation rate and Kolmogorov length scale

without recourse to any symmetry assumptions.

As a metric to express the difference between the mea-

sured dissipation rate and the actual dissipation rate, we use

the ratio of the dissipation rate as estimated from the PIV

data relative to the dissipation rate given by the measured

torque, as well as the ratio of the Kolmogorov scale deter-

mined from corresponding dissipation rates. Evidently, the

accuracy is improved for decreasing dimensions of the (3D)

interrogation window, while maintaining a minimum image

density of at least 6 particle images per interrogation win-

dow. While the laminar flow and Taylor vortex flow cases

appear to be fully resolved, the turbulent flow cases are

increasingly under-resolved. Only the turbulent flow with

the lowest Reynolds number investigated here appears to be

(almost) fully resolved. The measured dissipation rate rel-

ative to the actual dissipation rate quickly drops with

increasing Reynolds number. Yet, the use of the so-called

large-eddy PIV method is capable to recover most of the

dissipation due to unresolved scales. It should be noted that

the large-eddy PIV method is valid when the sub-grid scales

are sufficiently isotropic, which may not be always the case

in the present study. Most notably, our results show that an

increment of the overlap ratio for subsequent (3D) interro-

gation windows yield improved results. We also showed

that a vector spacing in the range of dx/kK & 1.5–2.0, which

equals to DI/kK & 6.0–8.0 at 75 % overlap (DI/kK &
3.0–4.0 at 50 % overlap), is required for a good estimation

of turbulent dissipation with PIV.

It is noted that the actual accuracy is also determined by

many data reduction steps and experimental parameters,

such as the number of particle images inside the (3D)
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Fig. 22 Ratio of the equivalent Kolmogorov scale over the actual

Kolmogorov scale (k/kK), as a function of the vector spacing relative

to the Kolmogorov scale (dx/kK). The symbols follow the same coding

as given in Fig. 21
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interrogation window, the smoothing of the measurement

data or the velocity gradient computation method. They

might change the contribution of the noise to the mea-

surements. However, we showed that the contribution of

the noise to our estimations is lower (3.4 % maximum)

compared to other error sources. Further investigation

should be done to reveal the effect of different aspects in

the data reduction in relation to achieving an improvement

of accuracy by means of oversampling.
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