Skip to main content
Log in

Elektrophysiologische Untersuchungsmethoden in der Glaukomdiagnostik

Electrophysiological examination methods in glaucoma diagnostics

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Für die Glaukomfrühdiagnostik sind derzeit 2 elektrophysiologische Methoden am vielversprechendsten: 1) Mit dem Pattern-ERG (PERG) können Augen mit einer okulären Hypertension 4 Jahre vor Auftreten einer Konversion mit Manifestation eines Gesichtsfelddefekts mit einer Sensitivität und Spezifität von ca. 75% identifiziert werden. Hierzu müssen der verwendete Reiz und das Auswerteprotokoll optimal angepasst sein (Verwendung bestimmter Karogrößen und Reizfrequenzen sowie Auswertung von Amplitudenverhältnissen auf verschiedene Karogrößen). Das PERG kann allerdings nur bei Patienten mit einem bestkorrigierten Visus ≥ 0,8 ohne wesentliche Medientrübungen reliabel verwendet werden, um falsch positive Ergebnisse zu vermeiden. 2) Die sog. „photopic negative response“, eine Komponente des Ganzfeld-ERGs, ist zwar etwas einfacher abzuleiten als das PERG und ist von optisch bedingten Visusreduktionen unbeeinträchtigt, jedoch ist sie nach bisherigen Ergebnissen dem PERG bezüglich der Glaukomfrühdiagnostik etwas unterlegen.

Abstract

The two currently used most successful techniques for early detection of glaucoma are described. (1) The pattern electroretinogram (PERG) allows detection of incipient glaucomatous damage in eyes with ocular hypertension up to 4 years ahead of manifest glaucoma with a sensitivity and specificity of approximately 75%. This is achieved by selecting optimized stimulation (check size and stimulation frequency) and analysis protocols (amplitude ratio to different check sizes). The major disadvantage is the requirement for best corrected visual acuity to be at least 0.8(decimal) to avoid false positive results. (2) The photopic negative response (PhNR), a component of the Ganzfeld ERG, does not suffer from optical factors reducing visual acuity. It is also affected in early glaucoma but so far has not achieved the same sensitivity and specificity as the PERG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Kass MA, Heuer DK, Higginbotham EJ (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713; discussion 829–730

    PubMed  Google Scholar 

  2. Quigley HA, Dunkelberger GR, Green WR (1988) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464

    Google Scholar 

  3. Hood DC (2003) Objective measurement of visual function in glaucoma. Curr Opin Ophthalmol 14:78–82

    Article  PubMed  Google Scholar 

  4. Korth MJ, Junemann AM, Horn FK et al (2000) Synopsis of various electrophysiological tests in early glaucoma diagnosis – temporal and spatiotemporal contrast sensitivity, light- and color-contrast pattern-reversal electroretinogram, blue-yellow VEP. Klin Monatsbl Augenheilkd 216:360–368

    Article  PubMed  CAS  Google Scholar 

  5. Gouras P (2003) The role of S-cones in human vision. Doc Ophthalmol 106:5–11

    Article  PubMed  Google Scholar 

  6. Horn FK, Jonas JB, Budde WM et al (2002) Monitoring glaucoma progression with visual evoked potentials of the blue-sensitive pathway. Invest Ophthalmol Vis Sci 43:1828–1834

    PubMed  Google Scholar 

  7. Goldberg I, Graham SL, Klistorner AI (2002) Multifocal objective perimetry in the detection of glaucomatous field loss. Am J Ophthalmol 133:29–39

    Article  PubMed  Google Scholar 

  8. Hood DC, Thienprasiddhi P, Greenstein VC et al (2004) Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Invest Ophthalmol Vis Sci 45: 492–498

    Article  PubMed  Google Scholar 

  9. Hood DC, Greenstein VC (2003) Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res 22:201–251

    Article  PubMed  Google Scholar 

  10. Fortune B, Demirel S, Zhang X et al (2007) Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 48:1173–1180

    Article  PubMed  Google Scholar 

  11. Johnson MA, Drum BA, Quigley HA et al (1989) Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest Ophthalmol Vis Sci 30:897–907

    PubMed  CAS  Google Scholar 

  12. Poloschek CM, Sutter EE (2002) The fine structure of multifocal ERG topographies. J Vis 2:577–587

    Article  PubMed  Google Scholar 

  13. Poloschek CM, Bach M (2009) The mfERG response topography with scaled stimuli: effect of the stretch factor. Doc Ophthalmol 119:51–58

    Article  PubMed  Google Scholar 

  14. Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20:531–561

    Article  PubMed  CAS  Google Scholar 

  15. Bach M, Hoffmann MB (2006) The origin of the pattern electroretinogram (PERG). In: Heckenlively J, Arden G (Hrsg) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge London, S 185–196

  16. Holder GE, Brigell MG, Hawlina M et al (2007) ISCEV standard for clinical pattern electroretinography – 2007 update. Doc Ophthalmol 114:111–116

    Article  PubMed  Google Scholar 

  17. Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18:988–991

    PubMed  CAS  Google Scholar 

  18. Bach M (1998) Preparation and Montage of DTL-Electrodes. http://www.uniklinik-freiburg.de/augenklinik/live/homede/mit/bach/ops/dtl_en.html (Zugegriffen: 02.01.2012)

  19. Hawlina M, Konec B (1992) New noncorneal HK-loop electrode for clinical electroretinography. Doc Ophthalmol 81:253–259

    Article  PubMed  CAS  Google Scholar 

  20. Hess RF, Baker CL (1984) Human pattern-evoked electroretinogram. J Neurophysiol 51:939–951

    PubMed  CAS  Google Scholar 

  21. Thompson D, Drasdo N (1989) The effect of stimulus contrast on the latency and amplitude of the pattern electroretinogram. Vision Res 29:309–313

    Article  PubMed  CAS  Google Scholar 

  22. Zapf HR, Bach M (1999) The contrast characteristic of the pattern electroretinogram depends on temporal frequency. Graefes Arch Clin Exp Ophthalmol 237:93–99

    Article  PubMed  CAS  Google Scholar 

  23. Otto T, Bach M (1996) Retest variability and diurnal effects in the pattern electroretinogram. Documenta Ophthalmologica 92:311–323

    Article  PubMed  Google Scholar 

  24. Bach M, Speidel-Fiaux A (1989) Pattern electroretinogram in glaucoma and ocular hypertension. Doc Ophthalmol 73:173–181

    Article  PubMed  CAS  Google Scholar 

  25. Trick GL (1985) Retinal potentials in patients with primary open-angle glaucoma: physiological evidence for temporal frequency tuning deficits. Invest Ophthalmol Vis Sci 26:1750–1758

    PubMed  CAS  Google Scholar 

  26. Hiss P, Fahl G (1991) Veränderungen im Muster-Elektroretinogramm bei Glaukom und okulärer Hypertension sind reizfrequenzabhängig. Fortschr Ophthalmol 88:562–565

    PubMed  CAS  Google Scholar 

  27. Bach M, Hiss P, Röver J (1988) Check-size specific changes of pattern electroretinogram in patients with early open-angle glaucoma. Doc Ophthalmol 69:315–322

    Article  PubMed  CAS  Google Scholar 

  28. Zrenner E, Ziegler R, Voss B (1988) Clinical applications of pattern electroretinography: melanoma, retinal detachment and glaucoma. Doc Ophthalmol 68:283–292

    Article  PubMed  CAS  Google Scholar 

  29. Bach M, Pfeiffer N, Birkner-Binder D (1992) Pattern-Electroretinogram reflects diffuse retinal damage in early glaucoma. Clin Vision Sci 7:335–340

    Google Scholar 

  30. Bach M, Unsoeld AS, Philippin H et al (2006) Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci 47:4881–4887

    Article  PubMed  Google Scholar 

  31. Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol 11(Suppl 2):S41–S49

    PubMed  Google Scholar 

  32. Ventura LM, Porciatti V, Ishida K et al (2005) Pattern electroretinogram abnormality and glaucoma. Ophthalmology 112:10–19

    Article  PubMed  Google Scholar 

  33. Yang A, Swanson WH (2007) A new pattern electroretinogram paradigm evaluated in terms of user friendliness and agreement with perimetry. Ophthalmology 114:671–679

    Article  PubMed  Google Scholar 

  34. Berg TJ van den, Boltjes B (1987) The point-spread function of the eye from 0 degrees to 100 degrees and the pattern electroretinogram. Doc Ophthalmol 67:347–354

    Article  PubMed  Google Scholar 

  35. Leipert KP, Gottlob I (1987) Pattern electroretinogram: effects of miosis, accommodation, and defocus. Doc Ophthalmol 67:335–346

    Article  PubMed  CAS  Google Scholar 

  36. Ver Hoeve JN, Danilov YP, Kim CB, Spear PD (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16:607–617

    Google Scholar 

  37. Bach M, Mathieu M (2004) Different effect of dioptric defocus vs. light scatter on the pattern electroretinogram (PERG). Doc Ophthalmol 108:99–106

    Article  PubMed  Google Scholar 

  38. Bach M (2007) The Freiburg Visual Acuity Test-Variability unchanged by post-hoc re-analysis. Graefes Arch Clin Exp Ophthalmol 245:965–971

    Article  PubMed  Google Scholar 

  39. Bode SF, Jehle T, Bach M (2011) Pattern electroretinogram (PERG) in glaucoma suspects – new findings from a longitudinal study. Invest Ophthalmol Vis Sci 52:4300–4306

    Article  PubMed  Google Scholar 

  40. Frishman LJ, Shen FF, Du L et al (1996) The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest Ophthalmol Vis Sci 37:125–141

    PubMed  CAS  Google Scholar 

  41. Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41:2797–2810

    PubMed  CAS  Google Scholar 

  42. Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42:514–522

    PubMed  CAS  Google Scholar 

  43. Wakili N, Horn FK, Junemann AG et al (2008) The photopic negative response of the blue-on-yellow flash-electroretinogram in glaucomas and normal subjects. Doc Ophthalmol 117:147–154

    Article  PubMed  Google Scholar 

  44. North RV, Jones AL, Drasdo N et al (2010) Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 51:1216–1222

    Article  PubMed  Google Scholar 

  45. Bach M, Preiser D, Poloschek CM (2010) Comparison of pattern-ERG (PERG) and photopic negative response (PhNR) in glaucoma suggests differential damage mechanisms. ARVO. http://www.arvo.org, Fort Lauderdale, S 345 (#5793)

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.M. Poloschek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poloschek, C., Bach, M. Elektrophysiologische Untersuchungsmethoden in der Glaukomdiagnostik. Ophthalmologe 109, 358–363 (2012). https://doi.org/10.1007/s00347-012-2546-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-012-2546-7

Schlüsselwörter

Keywords

Navigation