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Abstract
Purpose  To predict the post transurethral prostate resection(TURP) urethral stricture probability by applying different 
machine learning algorithms using the data obtained from preoperative blood parameters.
Methods  A retrospective analysis of data from patients who underwent bipolar-TURP encompassing patient characteristics, 
preoperative routine blood test outcomes, and post-surgery uroflowmetry were used to develop and educate machine learning 
models. Various metrics, such as F1 score, model accuracy, negative predictive value, positive predictive value, sensitiv-
ity, specificity, Youden Index, ROC AUC value, and confidence interval for each model, were used to assess the predictive 
performance of machine learning models for urethral stricture development.
Results  A total of 109 patients’ data (55 patients without urethral stricture and 54 patients with urethral stricture) were 
included in the study after implementing strict inclusion and exclusion criteria. The preoperative Platelet Distribution Width, 
Mean Platelet Volume, Plateletcrit, Activated Partial Thromboplastin Time, and Prothrombin Time values were statistically 
meaningful between the two cohorts. After applying the data to the machine learning systems, the accuracy prediction scores 
for the diverse algorithms were as follows: decision trees (0.82), logistic regression (0.82), random forests (0.91), support 
vector machines (0.86), K-nearest neighbors (0.82), and naïve Bayes (0.77).
Conclusion  Our machine learning models’ accuracy in predicting the post-TURP urethral stricture probability has demon-
strated significant success. Exploring prospective studies that integrate supplementary variables has the potential to enhance 
the precision and accuracy of machine learning models, consequently progressing their ability to predict post-TURP urethral 
stricture risk.
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Introduction

Benign Prostatic Hyperplasia (BPH) presents a prevalent 
health concern impacting the overall well-being of men, 
typically manifesting in their 40 s and becoming more pro-
nounced with age [1]. Severe BPH is notably prevalent in 

approximately 40% of men in their 60 s, and this proportion 
escalates to 50% as they advance in years [2].

Medical treatments are primarily used in the treatment of 
BPH. In cases where medical treatment is inadequate, surgi-
cal treatments such as resection or enucleation are planned 
[3]. Although different surgical methods, such as laser 
resection with Thulium, transurethral incision, transvesical 
open prostatectomy, and laser enucleation with holmium, 
are available, currently, the gold standard and the most fre-
quently employed surgical method for BPH is transurethral 
resection of the prostate (TUR-P) [4]. Although TUR-P is 
recognized as an efficacious therapeutic approach, it is not 
exempt from prospective complications. Adverse outcomes 
after the procedure, such as incontinence, urethral stricture, 
and bladder neck stenosis, have the potential to significantly 
impact the patient's overall quality of life [5].
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Urethral stricture may manifest in up to 10% of cases 
TUR-P, necessitating repeated surgical intervention [5–7]. 
While the precise mechanisms leading to the formation of 
urethral stricture remain uncertain, it is proposed that fibro-
sis emerges as a consequence of inflammatory processes 
occurring within the urethral epithelium and subepithelial 
tissues, ultimately resulting in stricture formation [8]. The 
occurrence of urethral stricture after transurethral TUR-P 
has been documented to be correlated with various risk fac-
tors. These include, but are not limited to, factors such as 
age, duration of the surgical procedure, prostate volume, the 
expertise of the surgeon, and the presence of infection [9]. 
Given the pivotal role of inflammation in the pathogenesis 
of urethral stricture, recent studies have concentrated their 
efforts on investigating this aspect. These studies aim to pre-
dict the risk of urethral stricture by quantifying inflammation 
levels on an individual basis [10–13].

Despite all these studies, there is currently no established 
marker or method capable of predicting the inflammation 
related to the development of urethral stricture after TUR-
P. In recent years, there has been a growing prevalence 
of employing artificial intelligence and machine learning 
algorithms in the realm of healthcare. Machine learning 
is increasingly harnessed for the interpretation of patient 
images and the prediction of potential pathologies through 
the analysis of patient data [14, 15]. In light of these 
advancements, we aimed to predict the development of post-
operative urethral stricture by evaluating the data obtained 
from preoperative blood parameters with different machine 
learning algorithms in patients undergoing TUR-P for BPH.

Methods

Approval for this study was obtained from Selçuk Univer-
sity Faculty of Medicine Ethics Committee (Decision no: 
2023/16).

Study population

We retrospectively analyzed data from patients who 
underwent bipolar TUR-P using the GyrusPlasmaKinet-
icTM system (Gyrus ACMI, USA) from January 2015 to 
January 2022, with ethical approval from the local eth-
ics committee. To minimize bias, cases performed by two 
urologists with at least five years of TUR-P experience 
were included. Data included patient characteristics, pre-
operative blood test results, and post-surgery uroflowme-
try outcomes. Parameters such as age, prostate-specific 
antigen (PSA) levels, prostate volume, and perioperative 
operation times were recorded. TUR-P utilized a stand-
ard continuous irrigating resectoscope with a 26 French 
outer sheath, and plasmakinetics settings were 200 W for 

shearing and 120 W for coagulation. A tri-way 20 F Foley 
catheter remained for 2–4 days post-surgery. Discharged 
patients underwent uroflowmetry at 1, 3, and 12 months 
post-discharge.Endoscopy with flexible cystoscopy was 
performed under local anesthesia in patients in whom 
stenosis pattern was detected on uroflowmetry. Patients 
were not classified according to urethral stricture locali-
zation. All urethral strictures were confirmed by cystos-
copy. Patients were grouped based on stricture presence. 
Exclusion criteria applied to those with urethral issues, 
bladder neck strictures, cancer treatments, hematologic 
disorders, infections during surgery, strictures at prior 
resection sites, and those receiving blood transfusions. In 
addition, patients with incomplete data after TUR-P and 
patients who underwent urological interventional proce-
dures in another center after the operation were excluded 
from the study.

Data collection

We gathered perioperative hematological parameters, 
PSA, alanine aminotransferase (ALT),aspartate ami-
notransferase (AST),activated partial thromboplastin clot-
ting time, prothrombin time, international normalized ratio 
(INR), and age at TURP from patient records. Calculated 
indices included:

•	 De Ritis Ratio(DRR) = AST/ALT
•	 NLR = Neutrophil Count/Lymphocyte Count
•	 Mentzer Index(MI) = MCV/RBC
•	 PLR = Platelet Count/(Lymphocyte Count*1000)
•	 Lymphocyte/Monocyte Ratio (LMR) = Lymphocyte 

Count/Monocyte Count
•	 Systemic Inflammatory Response Index (SIRI) = (Neu-

trophil Count*Monocyte Count)/Lymphocyte Count
•	 Systemic Immune-Inflammatory Index (SII) = (Neutro-

phil Count*Platelet Count)/(Lymphocyte Count *1000)

Machine learning

To predict urethral stricture development post-TUR-P for 
BPH, we used decision trees, logistic regression, random 
forests, support vector machine (SVM), k-nearest neighbors 
(k-NN), and naive Bayes algorithms. Data were split into 
80% training and 20% test subsets for each model. Predictive 
performance was evaluated using F1 score, accuracy, nega-
tive predictive value, positive predictive value, sensitivity, 
specificity, Youden Index, ROC AUC value, and confidence 
interval. Python 3.11.5 with libraries, pandas 2.1.1, numpy 
1.26.0, matplotlib 3.8.0, seaborn 0.12.0, and scikit-learn 
1.3.1 were used for model implementation.
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Data visualization

To assess calibration and performance, we utilized ROC 
curves and confusion matrices for machine learning models. 
A heatmap, generated with Python libraries seaborn 0.12.0, 
numpy 1.26.0, and matplotlib 3.8.0 was employed to com-
pare the effectiveness of all models.

Statistical analysis

Descriptive statistical analyses for groups with and without 
urethral strictures were performed using Python libraries 
pandas 2.1.1 and scipy 1.11.2, calculating mean ± standard 
deviation values. The homogeneity of the data distribution 
was then evaluated using the Kolmogorov–Smirnov test. 
Statistical analyses were performed using t-test for the data 
that fit the normal distribution, while Mann–Whitney U-Test 
was used for the data that did not fit the normal distribution. 
p values of < 0.05 were deemed statistically significant.

Results

Patient characteristics

In this study, 615 patients were retrospectively analyzed and 
a total of 109 patients were included. This cohort was sub-
sequently stratified into two distinct categories: a control 
group, which encompassed 55 patients who did not exhibit 
any signs of urethral stricture, and a study group, comprising 
54 patients who received a confirmed diagnosis of urethral 
stricture.

Comprehensive data encompassing surgical age, hemato-
logical parameters, ALT, AST, PSA, coagulation parameters, 
as well as indices such as the NLR, PLR, DRR, Mentzer 
Index, LMR, SIRI, and SII are meticulously documented and 
presented in Table 1. Statistical analysis revealed no discern-
ible statistical disparities between these two cohorts, except 
for preoperative Platelet Distribution Width (PDW), Mean 
Platelet Volume (MPV), Plateletcrit (PCT), Activated Par-
tial Thromboplastin Time (APTT), and Prothrombin Time 
(PT) values. Furthermore, the median follow-up period after 
TURP and the median duration between the TURP proce-
dure and the emergence of recurrence were computed at 
12 months (with a range of 10 to 64 months) and 6.4 months, 
respectively.

There was no statistically significant difference between 
the two groups in terms of age (US−  = 69.38 ± 8.90 vs. 
US +  = 68.06 ± 7.81, p = 0,41), preoperative prostate vol-
ume (US- prostat volume = 72.75 ± 25.09 cc vs. US + pros-
tate volume = 69,28 ± 21.71, p = 0.227) and operative time. 
(US−  = 66.6 ± 18.15 min vs. US +  = 62.06 ± 11.28 min, 
p = 0.12). An analysis of the hematological parameters 

Table 1   The clinical and laboratory results of the urethral stricture 
negative and urethral stricture positive

US Urethral Stricture, NLR Neutrophil-to-Lymphocyte Ratio, PLR 
Platelet-to-Lymphocyte Ratio, DRR De Ritis Ratio, LMR Lympho-
cyte-to-Monocyte Ratio, SIRI Systemic Immune-Inflammatory Index, 
SII Systemic Immune-Inflammation Index, WBC White Blood Cell, 
HGB Hemoglobin, HCT Hematocrit, PLT Platelet, RBC Red Blood 
Cell, MCV Mean Corpuscular Volume, MCH Mean Corpuscular 
Hemoglobin, MCHC Mean Corpuscular Hemoglobin Concentration, 
PDW Platelet Distribution Width, MPV Mean Platelet Volume, PCT 
Plateletcrit, NE# Neutrophil Count, LY# Lymphocyte Count, MO# 
Monocyte Count, EO# Eosinophil Count, BA# Basophil Count, NE% 
Neutrophil Percentage, LY% Lymphocyte Percentage, MO% Mono-
cyte Percentage, EO% Eosinophil Percentage, BA% Basophil Percent-
age, PSA Prostate-Specific Antigen, ALT Alanine Aminotransferase, 
AST Aspartate Aminotransferase, APTT Activated Partial Thrombo-
plastin Time, PT INR Prothrombin Time International Normalized 
Ratio, PT: Prothrombin Time *p < 0.05

US−  (n = 55) US + (n = 54) p value

Age 69.38 ± 8.90 68.06 ± 7.81 0.41
NLR 2.79 ± 1.54 2.91 ± 1.97 0.72
PLR 132.82 ± 50.11 128.40 ± 48.47 0.64
DRR 1.21 ± 0.50 1.06 ± 0.46 0.10
Mentzer Index 18.15 ± 3.12 17.45 ± 2.46 0.19
LMR 3.38 ± 1.28 3.71 ± 1.51 0.23
SIRI 1.92 ± 1.42 1.59 ± 1.09 0.17
SII 708.42 ± 442.11 642.34 ± 390.01 0.41
WBC 8.19 ± 2.50 7.63 ± 2.06 0.21
HGB 14.37 ± 1.83 14.58 ± 1.28 0.47
HCT 43.07 ± 4.81 43.33 ± 3.91 0.75
PLT 251.75 ± 70.54 228.44 ± 56.72 0.06
RBC 4.93 ± 0.63 5.02 ± 0.50 0.40
MCV 87.69 ± 5.79 86.53 ± 5.47 0.28
MCH 29.23 ± 2.46 29.13 ± 2.22 0.81
MCHC 33.33 ± 1.52 33.66 ± 0.97 0.17
PDW 11.54 ± 2.41 16.56 ± 2.22  > 0.001*
MPV 9.85 ± 0.94 8.27 ± 1.18  > 0.005*
PCT 0.25 ± 0.07 0.19 ± 0.05  > 0.001*
NE# 5.19 ± 2.08 4.83 ± 1.74 0.33
LY# 2.08 ± 0.74 1.98 ± 0.74 0.48
MO# 0.66 ± 0.23 0.58 ± 0.27 0.09
EO# 0.20 ± 0.16 0.18 ± 0.15 0.61
BA# 0.06 ± 0.07 0.04 ± 0.04 0.26
NE% 61.98 ± 10.01 62.60 ± 10.83 0.75
LY% 26.61 ± 8.82 26.73 ± 8.88 0.94
MO% 8.17 ± 2.87 7.66 ± 2.61 0.33
EO% 2.41 ± 1.95 2.34 ± 1.56 0.84
BA% 0.63 ± 0.56 0.67 ± 0.41 0.66
PSA 8.04 ± 9.26 5.21 ± 8.05 0.09
ALT 17.60 ± 13.16 21.30 ± 10.70 0.11
AST 18.53 ± 9.14 19.65 ± 5.70 0.44
APTT 27.53 ± 2.60 26.09 ± 2.81  > 0.006*
PT INR 1.01 ± 0.07 1.03 ± 0.08 0.3
PT 9.12 ± 0.89 11.11 ± 0.92  > 0.001*
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revealed significant disparities in PDW (16.56 ± 2.22 
vs. 11.54 ± 2.41; p < 0.001) and PT (11.11 ± 0.92 vs. 
9.12 ± 0.89; p < 0.001) levels in patients who developed 
urethral stricture compared to those who did not exhibit 
this condition (Table 1). In stark contrast, patients devoid of 
urethral stricture showcased noteworthy elevations in MPV 
(9.85 ± 0.94 vs. 8.27 ± 1.18; p < 0.001), PCT (0.25 ± 0.07 
vs. 0.19 ± 0.05; p < 0.001), and APTT (27.53 ± 2.60 vs. 
26.09 ± 2.81; p = 0.006) levels, when scrutinized against 
their counterparts who eventually developed urethral stric-
ture (Table 1). On the other hand, there was no statistically 
significant difference between the two groups in terms of 
age, preoperative prostate volumes and operation times.

Machine‑learning models

A comprehensive predictive modeling effort used various 
machine learning algorithms, including decision trees, logis-
tic regression, random forests, SVM, k-NN, and naive Bayes. 
These models aimed to predict the likelihood of urethral 
stricture after TUR-P using a robust dataset with 35 patient-
specific variables. The predictive performance of each 
model was evaluated, and results are summarized in Fig. 1. 
Accuracy scores for the algorithms were as follows: deci-
sion trees (0.82), logistic regression (0.82), random forests 
(0.91), SVM (0.86), k-NN (0.82), and naive Bayes (0.77). 
Corresponding AUC values from ROC curves were:decision 
trees (0.82), logistic regression (0.79), random forests (0.96), 
SVM (0.91), k-NN (0.85), and naive Bayes (0.73), empha-
sizing the discriminative potential of these models (Fig. 2).

To thoroughly evaluate machine learning models pre-
dicting urethral stricture development, confusion matri-
ces (Fig. 3) were included. These matrices offer a detailed 
breakdown of true positives, true negatives, false positives, 
and false negatives. This provides a nuanced view of model 
accuracy and discriminatory capability in identifying ure-
thral stricture cases.

Discussion

Urethral stricture incidence post-TUR-P ranges from 2.2% to 
9.8%, posing significant challenges [5]. Higher risk is noted 
in those with prior endoscopic urologic surgery. The propen-
sity for urethral stricture after TUR-P is not fully understood. 
While prior studies explored blood parameters as predic-
tors, our study is the first to integrate these parameters with 
machine learning for a comprehensive analysis.

Fibroblasts primarily contribute to urethral stricture 
development, with scarring arising from heightened inflam-
mation due to urine extravasation and minimal bleeding 
[10]. In urethroplasty specimens, 44% showed chronic 
inflammation, suggesting inflammation as a key factor [10]. 
Studies have explored parameters like PLR, NLR, and SII 
as indicators of inflammation.

Plasma NLR and PLR, nonspecific markers of systemic 
inflammation, were studied for their role in urethral stricture 
development post-TUR-P. A 2016 study on PLR's predictive 
efficacy for anterior urethral strictures reported 84% sensi-
tivity and 64% specificity, focusing exclusively on anterior 
strictures from TUR-P [12]. In our inclusive study covering 

Fig. 1   Machine learning model 
performance metrics heatmap
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all urethral strictures post-TUR-P, PLR showed no signifi-
cant difference between groups, and NLR did not exhibit a 
significant relationship. Another 2018 study found increased 
NLR values in patients with recurrent urethral stricture post 

internal urethrotomy, compared to those without stricture 
[13].

A recent investigation found higher SII levels in recur-
rent urethral stricture cases, with a reported sensitivity of 

Fig. 2   ROC curves of machine learning models
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59.62% and specificity of 70.41% [16]. However, our study 
observed no statistically significant differences in PLR, 
NLR, SII, MI, DRR, and SIRI values between the two 
groups. Notably, MPV and PCT were significantly higher 

in the group without urethral stricture (MPV: 9.85 ± 0.94 fL 
vs. 8.27 ± 1.18 fL, PCT: 0.25 ± 0.07 vs. 0.19 ± 0.05), while 
PDW values were notably higher in the urethral stricture 
group (PDW: 11.54 ± 2.41 fL vs. 16.56 ± 2.22 fL). These 

Fig. 3   Confusion matrices of machine learning algorithms
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platelet-related parameter disparities between groups may 
hold significant predictive value for urethral stricture occur-
rence post-TUR-P.

Six machine learning algorithms were employed to pre-
dict urethral stricture development post-TUR-P. Unlike con-
ventional statistical methods, machine learning algorithms 
excel in predicting and estimating medical conditions due 
to their ability to handle heterogeneous and interrelated 
medical data. Our study utilized preoperative laboratory 
data from patients with urethral stricture after TUR-P to 
construct a predictive model. Machine learning is widely 
applied in modern medicine, assisting in differential diag-
noses, cancer staging, treatment response determination, and 
supporting healthcare professionals in various scenarios. In 
urology, these algorithms have been used to predict postop-
erative mortality after radical cystectomy for bladder cancer 
[17], evaluate surgical performance in robot-assisted radi-
cal prostatectomy [18], and identify biochemical recurrence 
post robot-assisted radical prostatectomy [19]. A 2022 study 
using machine learning on retrograde urethrography images 
accurately detected urethral stricture in 88.5% of cases. 
Another study successfully employed machine learning 
on endoscopic images for urethral and ureteral strictures, 
achieving a sensitivity of 0.96 [14, 15].

We utilized logistic regression, SVM, random forest, 
decision tree, k-NN, and naive bayes algorithms in our study. 
To assess model performance, we calculated various met-
rics, including ROC AUC values, negative predictive value, 
positive predictive value, Youden Index, sensitivity, specific-
ity, F1 score, and accuracy. Random Forest demonstrated the 
highest accuracy (0.91), while Naive Bayes had the lowest 
(0.77). However, relying solely on accuracy may be mis-
leading. The Youden Index, considering both sensitivity and 
specificity, is more appropriate. The Random Forest model 
had the highest Youden Index (0.82), while Naive Bayes had 
the lowest (0.53). Both models successfully discriminate, as 
their Youden Index values exceed 0.5. In terms of ROC AUC 
values, Random Forest achieved the highest (0.96), whereas 
Naive Bayes had the lowest (0.73).

Despite the retrospective nature of our study and its lim-
ited sample size, it holds potential significance in identify-
ing patients at risk of developing urethral stricture during 
the preoperative phase prior to Transurethral Resection of 
the Prostate (TUR-P). By leveraging our findings, clini-
cians can proactively inform patients about the likelihood 
of urethral stricture development, enabling the formulation 
of preemptive treatment strategies aimed at averting such 
complications. Furthermore, our study stands out in the 
realm of medical research by pioneering the development of 
a machine learning model based on blood parameters rather 
than conventional focus on image processing. This innova-
tive approach underscores the versatility and potential appli-
cability of machine learning techniques beyond traditional 

domains, promising broader utility in clinical practice. We 
are optimistic that further refinement and validation of such 
models could pave the way for their integration into routine 
clinical workflows, thereby enhancing patient care and out-
comes in the future.

The study has limitations, being single-center, retrospec-
tive, and conducted in a tertiary university hospital. Due to 
its retrospective design, inflammation markers couldn't be 
assessed, and immunohistochemical data from pathology 
samples are lacking. However, our focus was to enhance the 
understanding of the urethral stricture-inflammation rela-
tionship by including diverse indices and parameters like 
DRR, NLR, MI, PLR, LMR, SIRI, and SII.

Conclusion

The utilization of machine learning models holds promise 
in the prediction of urethral stricture, a notable complication 
subsequent to TUR-P. We posit that the potential utility of 
such models is particularly pronounced in the context of risk 
stratification for individuals predisposed to developing ure-
thral stricture following TUR-P. Future studies with larger 
cohorts and added parameters could enhance specificity and 
sensitivity, further advancing predictive capabilities for ure-
thral stricture after TUR-P.
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