Skip to main content
Log in

The role of oral antioxidants in the improvement of sperm parameters in infertile men

  • Invited Review
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

A variety of pathologic conditions may increase oxidative stress in semen resulting in structural modifications to spermozoa’s plasma membrane that interfere with sperm motility, morphology, and count. Antioxidants are currently being marketed to treat male infertility. In semen, antioxidants may decrease oxidative stress and potentially improve sperm parameters. In this narrative, mini-review we evaluated the effectiveness of antioxidants in infertility.

Methods

This mini-review of the current literature has been carried out through searching of the PubMed and Google scholar databases.

Results and conclusions

The literature review suggests that there is evidence that oral antioxidants such as selenium, carnitine, zinc, coenzymeQ10, vitamins E and C, etc. alone or in combinations, improve sperm count, motility, morphology as well as pregnancy rates in infertile men with idiopathic oligoasthenospermia. Unfortunately, most of these studies are poorly designed, limited by sample size, varying in dosage, differing in primary end points, and most notably lacking live birth data. Importantly, large randomized, well-designed, placebo-controlled trials are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availbaility

A data availability statement is not applicable for this review.

References

  1. Sharlip ID, Jarow JP, Belker AM et al (2002) Best practice policies for male infertility. Fertil Steril 77(5):873–882

    Article  PubMed  Google Scholar 

  2. Kumar N, Singh AK (2015) Trends of male factor infertility, an important cause of infertility: a review of literature. J Hum Reprod Sci 8(4):191–196

    Article  PubMed  PubMed Central  Google Scholar 

  3. Infertility [Internet] (2023) https://www.who.int/health-topics/infertility. Accessed 18 Apr 2023

  4. Agarwal A, Allamaneni SSR (2005) Sperm DNA damage assessment: a test whose time has come. Fertil Steril 84(4):850–853

    Article  PubMed  Google Scholar 

  5. Esteves SC (2014) Clinical relevance of routine semen analysis and controversies surrounding the 2010 World Health Organization criteria for semen examination. Int Braz J Urol 40(4):443–453

    Article  PubMed  Google Scholar 

  6. Aitken RJ, Best FS, Warner P, Templeton A (1984) A prospective study of the relationship between semen quality and fertility in cases of unexplained infertility. J Androl 5(4):297–303

    Article  CAS  PubMed  Google Scholar 

  7. Lewis SEM (2007) Is sperm evaluation useful in predicting human fertility? Reproduction 134(1):31–40

    Article  CAS  PubMed  Google Scholar 

  8. Wang C, Swerdloff RS (2014) Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil Steril 102(6):1502–1507

    Article  PubMed  PubMed Central  Google Scholar 

  9. Guzick DS, Overstreet JW, Factor-Litvak P et al (2001) Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 345(19):1388–1393

    Article  CAS  PubMed  Google Scholar 

  10. Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:8416763

    Article  PubMed  PubMed Central  Google Scholar 

  11. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  PubMed  Google Scholar 

  12. Bouayed J, Bohn T (2010) Exogenous antioxidants–Double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 3(4):228–237

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A (2009) Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update 15(5):553–572

    Article  CAS  PubMed  Google Scholar 

  14. Bisht S, Faiq M, Tolahunase M, Dada R (2017) Oxidative stress and male infertility. Nat Rev Urol 14(8):470–485

    Article  CAS  PubMed  Google Scholar 

  15. Gosalvez J, Tvrda E, Agarwal A (2017) Free radical and superoxide reactivity detection in semen quality assessment: past, present, and future. J Assist Reprod Genet 34(6):697–707

    Article  PubMed  PubMed Central  Google Scholar 

  16. Agarwal A, Virk G, Ong C, du Plessis SS (2014) Effect of oxidative stress on male reproduction. World J Mens Health 32(1):1–17

    Article  PubMed  PubMed Central  Google Scholar 

  17. Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79(4):829–843

    Article  PubMed  Google Scholar 

  18. Darbandi M, Darbandi S, Agarwal A et al (2018) Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol 16(1):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281(1–2):9–19

    Article  CAS  PubMed  Google Scholar 

  20. He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44(2):532–553

    Article  PubMed  Google Scholar 

  21. Zini A, San Gabriel M, Baazeem A (2009) Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet 26(8):427–432

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miner SA, Robins S, Zhu YJ et al (2018) Evidence for the use of complementary and alternative medicines during fertility treatment: a scoping review. BMC Complement Altern Med 18(1):158

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heo HJ, Choi SJ, Choi SG, Shin DH, Lee JM, Lee CY (2008) Effects of banana, orange, and apple on oxidative stress-induced neurotoxicity in PC12 cells. J Food Sci 73(2):H28-32

    Article  CAS  PubMed  Google Scholar 

  24. Heo HJ, Kim DO, Choi SJ, Shin DH, Lee CY (2006) Apple phenolics protect in vitro oxidative stress-induced neuronal cell death. J Food Sci 69(9):S357–S360

    Google Scholar 

  25. Pitozzi V, Jacomelli M, Zaid M et al (2010) Effects of dietary extra-virgin olive oil on behaviour and brain biochemical parameters in ageing rats. Br J Nutr 103(11):1674–1683

    Article  CAS  PubMed  Google Scholar 

  26. Chepulis LM, Starkey NJ, Waas JR, Molan PC (2009) The effects of long-term honey, sucrose or sugar-free diets on memory and anxiety in rats. Physiol Behav 97(3–4):359–368

    Article  CAS  PubMed  Google Scholar 

  27. Alahmar AT (2018) The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clin Exp Reprod Med 45(2):57–66

    Article  PubMed  PubMed Central  Google Scholar 

  28. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J (2005) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26(3):349–353

    Article  CAS  PubMed  Google Scholar 

  29. Alahmar AT (2017) Effect of vitamin C, vitamin E, zinc, selenium, and coenzyme Q10 in infertile men with idiopathic oligoasthenozoospermia. IJIFM 8(2):45–49

    Article  Google Scholar 

  30. ElSheikh MG, Hosny MB, Elshenoufy A, Elghamrawi H, Fayad A, Abdelrahman S (2015) Combination of vitamin E and clomiphene citrate in treating patients with idiopathic oligoasthenozoospermia: a prospective, randomized trial. Andrology 3(5):864–867

    Article  CAS  PubMed  Google Scholar 

  31. Khalaji N, Namyari M, Rasmi Y, Pourjabali M, Chodari L (2018) Protective effect of curcumin on fertility of rats after exposure to compact fluorescent lamps: an experimental study. Int J Reprod Biomed 16(7):447–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Akmal M, Qadri JQ, Al-Waili NS, Thangal S, Haq A, Saloom KY (2006) Improvement in human semen quality after oral supplementation of vitamin C. J Med Food 9(3):440–442

    Article  CAS  PubMed  Google Scholar 

  33. Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S (2012) Effects of the reduced form of coenzyme Q10 (ubiquinol) on semen parameters in men with idiopathic infertility: a double-blind, placebo controlled, randomized study. J Urol 188(2):526–531

    Article  CAS  PubMed  Google Scholar 

  34. Enomoto A, Wempe MF, Tsuchida H et al (2002) Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem 277(39):36262–36271

    Article  CAS  PubMed  Google Scholar 

  35. Arduini A, Bonomini M, Savica V, Amato A, Zammit V (2008) Carnitine in metabolic disease: potential for pharmacological intervention. Pharmacol Ther 120(2):149–156

    Article  CAS  PubMed  Google Scholar 

  36. Lenzi A, Sgrò P, Salacone P et al (2004) A placebo-controlled double-blind randomized trial of the use of combined l-carnitine and l-acetyl-carnitine treatment in men with asthenozoospermia. Fertil Steril 81(6):1578–1584

    Article  CAS  PubMed  Google Scholar 

  37. Moslemi Mehni N, Ketabchi AA, Hosseini E (2014) Combination effect of Pentoxifylline and L-carnitine on idiopathic oligoasthenoteratozoospermia. Iran J Reprod Med 12(12):817–824

    PubMed  PubMed Central  Google Scholar 

  38. Qazi IH, Angel C, Yang H et al (2019) Role of selenium and selenoproteins in male reproductive function: a review of past and present evidences. Antioxidants (Basel) 8:8

    Google Scholar 

  39. Safarinejad MR, Safarinejad S (2009) Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study. J Urol 181(2):741–751

    Article  CAS  PubMed  Google Scholar 

  40. Zhao J, Dong X, Hu X et al (2016) Zinc levels in seminal plasma and their correlation with male infertility: a systematic review and meta-analysis. Sci Rep 6:22386

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Schill WB, Krizic A, Rjosk H (1979) Determination of various semen parameters and sex hormone levels in subfertile men during kallikrein therapy. Adv Exp Med Biol 120A:537–546

    Article  CAS  PubMed  Google Scholar 

  42. Cavallini G, Biagiotti G, Ferraretti AP, Gianaroli L, Vitali G (2003) Medical therapy of oligoasthenospermia associated with left varicocele. BJU Int 91(6):513–518

    Article  CAS  PubMed  Google Scholar 

  43. Wirleitner B, Vanderzwalmen P, Stecher A et al (2012) Dietary supplementation of antioxidants improves semen quality of IVF patients in terms of motility, sperm count, and nuclear vacuolization. Int J Vitam Nutr Res 82(6):391–398

    Article  CAS  PubMed  Google Scholar 

  44. Gharagozloo P, Gutiérrez-Adán A, Champroux A et al (2016) A novel antioxidant formulation designed to treat male infertility associated with oxidative stress: promising preclinical evidence from animal models. Hum Reprod 31(2):252–262

    Article  CAS  PubMed  Google Scholar 

  45. de Ligny W, Smits RM, Mackenzie-Proctor R et al (2022) Antioxidants for male subfertility. Cochrane Database Syst Rev 5(5):CD007411

    PubMed  Google Scholar 

  46. Joseph T, Mascarenhas M, Karuppusami R, Karthikeyan M, Kunjummen AT, Kamath MS (2020) Antioxidant pretreatment for male partner before ART for male factor subfertility: a randomized controlled trial. Hum Reprod Open 2020(4):hoaa050

    Article  PubMed  PubMed Central  Google Scholar 

  47. Steiner A, Hansen K, Diamond M, Coutifaris C (2018) Antioxidants in the treatment of male factor infertility: results from the double blind, multi-center, randomized controlled males, antioxidants, and infertility (MOXI) trial. Hum Reprod 2018:152

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James N. Tsoporis.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallinikas, G., Tsoporis, J.N., Haronis, G. et al. The role of oral antioxidants in the improvement of sperm parameters in infertile men. World J Urol 42, 71 (2024). https://doi.org/10.1007/s00345-023-04766-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00345-023-04766-5

Keywords

Navigation