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Abstract
Purpose To predict the occurrence of calcium oxalate kidney stones based on clinical and gut microbiota characteristics.
Methods Gut microbiota and clinical data from 180 subjects (120 for training set and 60 for validation) attending the West 
China Hospital (WCH) were collected between June 2018 and January 2021. Based on the gut microbiota and clinical data 
from 120 subjects (66 non-kidney stone individuals and 54 kidney stone patients), we evaluated eight machine learning 
methods to predict the occurrence of calcium oxalate kidney stones.
Results With fivefold cross-validation, the random forest method produced the best area under the curve (AUC) of 0.94. We 
further applied random forest to an independent validation dataset with 60 samples (34 non-kidney stone individuals and 26 
kidney stone patients), which yielded an AUC of 0.88.
Conclusion Our results demonstrated that clinical data combined with gut microbiota characteristics may help predict the 
occurrence of kidney stones.
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Introduction

Nephrolithiasis is a common urological disease, with a 
constantly increasing prevalence in recent years. Calcium 
oxalate stones, which accounts for about 80% of kidney 
stone types, is the most common category of kidney stones 
[1]. The calcium oxalate stone pathogenesis often includes 
a high concentration of oxalate ions, which, by combining 
with calcium ions or other cations in the urine produces 

small crystals that adhere to the renal tubular epithelial cells 
of the kidney, cause a series of reactions, such as inflamma-
tion and oxidative stress. These crystals crystallize, nucle-
ate and grow into kidney stones. Among them, oxalic acid 
increases urinary calcium oxalate saturation about ten times 
more than calcium, and a mild increase in urinary oxalate 
can significantly increase the risk of nephrolithiasis [2]. 
Urinary citrate binds to calcium and inhibits crystallization, 
thus reducing stone formation. Urine composition can be 
used to assess stone risk and monitor treatment response in 
patients with kidney stones [3].

The gut microbiota is crucial in maintaining environ-
mental homeostasis in the gut. 16S ribosomal RNA(rRNA) 
sequencing offers more possibilities to reveal the diversity 
of microbes, as several studies have shown significant differ-
ences in the gut microbiota between patients with and with-
out kidney stones [4, 5]. Short-chain fatty acids (SFCA) are 
health-friendly metabolites, produced by the gut microbiota 
[6] and through different metabolic pathways [7, 8], that pro-
vide an ideal environment for the production of acetate, pro-
pionate and butyrate [9]. Huang [10] found that short-chain 
fatty acids have an inhibitory effect on the oxidative stress 
and inflammatory response of glomerular lineage membrane 
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cells, and that oxidative stress and inflammatory response is 
involved in stone formation.

Machine learning has been used to analyze microbiome 
data to identify disease-related biomarkers. Some well-
known machine learning algorithms include k-nearest neigh-
bors, random forest, support vector machines, and linear dis-
criminant analysis, and have found applications in genomics, 
proteomics, systems biology and many other fields [11]. 
Some studies have developed predictive models for kidney 
stone recurrence, but with moderate predictive accuracy [12, 
13]. With a total of 806 Chinese patients, Wu [14] identified 
300 biomarkers from the microbiome and built a predictive 
model with a moderate predictive accuracy. Overall, there 
is a lack of works on prediction of calcium oxalate kidney 
stones, especially based on Chinese patients. Moreover, it is 
unclear what methods would be most suitable for the predic-
tion of kidney stones, given a variety of available machine 
learning methods.

To address these questions, we collected microbial data 
and clinical data from 180 Chinese patients and explored 
a variety of machine learning methods for predicting the 
occurrence of calcium oxalate stones. Applications of 
machine learning methods may help compare their predic-
tiveness using the criterion of area under the curve (AUC) 
and identify biomarkers that can inform treatment decisions 
for calcium oxalate stones.

Materials and methods

Subject

Our study was in a case–control setting with subjects 
recruited by the West China Hospital (WCH) from June 
2018 to January 2021. Patients were diagnosed with kidney 
stones by renal ureteral X-ray, urinary ultrasound or abdomi-
nal CT examination, while controls were those without renal 
colic or subclinical retained stone attacks by abdominal 
ultrasound. All patients received percutaneous nephroscopic 
lithotripsy or flexible ureteroscopy, with stone composition 
confirmed by infrared spectroscopy.

The study was approved by the Research Ethics Com-
mittee of the WCH, and informed consent was obtained 
from each participant. The following types of kidney stone 
patients were excluded: the main component is not calcium 
oxalate, calcium oxalate is mixed with other components 
of stones (such as infectious stones or uric acid stones), 
urinary tract abnormalities, metabolic diseases (includ-
ing metabolic syndrome), hyperthyroidism, hyperpar-
athyroidism, and long-term use of drugs that may cause 
kidney stones. Participants were also excluded if they used 
antibiotics or immunosuppressants three months prior 
to stool sampling, or had inflammatory bowel disease, 

irritable bowel syndrome, gastrointestinal tract infections 
or digestive tumors, bowel surgery, diarrhea and constipa-
tion within one month before stool sampling.

A total of 66 non-kidney stone individuals (NS) and 54 
patients with kidney stone (KS) were included in this study 
as training samples, while additional 60 subjects (34 NS 
and 26 KS) were sampled for validation. Thus, a total of 
180 samples were included for this study.

Data preparation

Microbial DNA extracted from fecal samples was 
sequenced with 16S rRNA. OTU analysis was performed 
on 180 samples using Usearch (version 7.0, http:// drive5. 
com/ uparse/), and the RDP classifier algorithm was used 
to annotate taxonomic information. Following the filtering 
processes as in [15], we excluded samples which were less 
than 100 reads and OTUs were less than 10 reads, and dis-
carded OTUs which happened < 1% of all the samples. We 
calculated the relative abundance of each OTU by dividing 
its value by the total number of reads per sample. Stool 
SCFA was determined using gas chromatography–mass 
spectrometry, and urinary oxalate was tested using liquid 
chromatography–mass spectrometry.

Feature selection

With the 16 s rRNA data, we collapsed OTUs to the genus 
level based on a commonly used approach: we first sum 
their relative abundances respectively, and then drop any 
OTUs which cannot be annotated at the genus level. The 
genera selected by both the LDA effect size (LEfSe) (LDA 
score > 1, P < 0.05) [16] and the hierarchical feature engi-
neering (HFE) [17] were used as candidate features. We 
performed univariate analysis, including Chi-squared test, 
t-test and Wilcoxon rank sum test, for feature selection.

Machine learning

On the training set, we used fivefold cross validation to 
compare the average AUC in order to assess the predictive 
performance of support vector machines (SVM), random 
forest (RF), gradient boosted trees (Gboost), lasso, ridge, 
elastic net (Enet), k-nearest neighbor (KNN) and linear 
discriminant analysis (LDA). Using the average AUC as 
the criterion, we found that RF performed the best. We 
further used the independent validation set to validate the 
model performance of RF. Analysis was conducted by 
Python (version 2.7) and R (version 3.6).

http://drive5.com/uparse/
http://drive5.com/uparse/
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Results

Taxonomic analysis of microbiota between NS 
controls and KS patients

The 16S rRNA sequencing data were processed to obtain 
5868 OTUs. LEfSe and HFE analysis yielded 243 genera 
and 14 genera, respectively. The three common genera 
were: g__Flavobacterium, g__Rhodobacter, g__Gordonia 
(Fig. 1). Predictive models were built using only these three 
genus, with AUCs ranging from 0.682 to 0.763 across the 
eight models (Fig. 2a).

Clinical characteristics of NS controls and KS 
patients

In our descriptive analyses, we presented means and stand-
ard deviations for continuous variables which were approxi-
mately normally distributed; otherwise, we used medians 
and quartiles. Univariate association analyses revealed no 
significant differences in age, sex, BMI, propionic acid con-
centration, isobutyric acid concentration, isovaleric acid 
concentration, valeric acid concentration, hexanoic acid 

concentration, calcium concentration and uric acid concen-
tration between NS and KS (Table 1). However, there were 
significant differences in oxalate concentration, acetic acid 
concentration, citrate concentration, phosphorus concentra-
tion and urinary PH between NS and KS (all P < 0.05).

The predictive models were built based on five clinical 
characteristics: oxalate concentration, acetic acid concen-
tration, citrate concentration, phosphorus concentration and 
urinary PH. The random forest model had the highest AUC 
value of 0.902, while the other models presented AUCs 
around 0.89 (Fig. 2b).

Comparisons of prediction models of Genus 
plus clinical data

We next combined three genus and four clinical indicators 
for prediction and found the AUC in general improved for 
all of the methods. Indeed, the AUCs of Gboost, ridge, Enet, 
LDA and SVM were all above 0.89, except for lasso(0.884) 
and KNN(0.879), and the RF had the highest AUC of 0.936 
(Fig. 2c).

In summary, we found that using the genera data com-
bined with the clinical data produced a more accurate pre-
diction than using the genera or clinical data alone, and 

Fig. 1  Intersection of genus of 
LEfSe and HFE
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random forest produced the best predictive models (Table 2). 
We next use the validation dataset to further evaluate ran-
dom forest, which gave an AUC of 0.88 (Fig. 2d).

Discussion

Comparing eight machine learning methods, we found 
that random forest outperformed the other machine learn-
ing algorithms. Moreover, genera combined with clinical 
features improved prediction, which suggested that renal 

stone disease could be diagnosed with clinical indicators 
in conjunction with gut microbiota data.

Our study identified three disease-related bacteria, 
among which g__Flavobacterium belongs to Flavobac-
teriaceae. The relative abundance of Flavobacterium 
was reduced in obese patients compared to healthy con-
trols [18]. The other two bacteria, g__Rhodobacter and 
g__Gordonia, belong to the Rhodobacterace and Nocar-
diaceae, respectively. It was reported that some genera 
of Rhodobacterace and Nocardiaceae Nocardiaceae can 
cause infection in humans [19].

Fig. 2  Receiver operating characteristic (ROC) curves were utilized 
to evaluate the performance of eight methods for predicting kidney 
stone occurrence (a using three genera b using five clinical informa-
tion c using three genera plus five clinical indicators). d receiver-

operating characteristic (ROC) curves were utilized to evaluate the 
performance of RF for predicting kidney stone occurrence using three 
genera plus five clinical indicators
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Included in our models were oxalate concentration, ace-
tic acid concentration, citrate concentration, phosphorus 
concentration and urinary pH. Oxalate and acetic acid con-
centrations are also important indicators of kidney stone 
occurrence, and higher oxalate is related with a higher 
risk of calcium oxalate stone [20]. Reducing dietary intake 
or body synthesis of oxalate is effective in preventing 
and treating calcium oxalate stones. Acetate is the most 
abundant SCFA and is an important cofactor for bacterial 
growth [21, 22]. Citrate can inhibit the formation of CaOx 
stones [23]. In addition, the pH of urine has been reported 
to alter several types of stones, including calcium oxalate, 
calcium phosphate, and uric acid [3]. A study [24] has 
suggested that urinary phosphorus may play a role in the 
formation of kidney stones, but not urinary calcium, which 

agreed to our results that calcium does not differ between 
patients with stones and healthy individuals.

Random forest is commonly used as an effective clas-
sification method in microbiome prediction models. Stat-
nikov [25] used OTUs to perform different classification 
tasks on eight datasets and found that random forest and 
support vector machines are the most effective machine 
learning techniques for performing accurate classification 
from these microbiome data. Duvallet [15] used the ran-
dom forest method to classify the 10 diseases and found 
that for the CRC (colorectal cancer) dataset, the random for-
est The AUC reached 0.92. Bacteria associated with CRC 
include Fusobacterium, Porphyromonas, Peptostreptococ-
cus, Parvimonas, and Enterobacter genera. Pasolli [26] used 
the microbiota as features to classify five diseases, including 
cirrhosis, colorectal cancer, and inflammatory bowel dis-
ease (IBD), using a random forest classifier. In the cirrhosis 
dataset, using Veillonella and Streptococcus genera as fea-
tures, random forest had AUC of 0.945. In the CRC dataset, 
P. stomatitis, Fusobacterium nucleatum and Streptococcus 
salivarius correlated with CRC, the AUC of random forest 
was 0.873. In the IBD dataset, the AUC was 0.89.

Using discriminant analysis, Chiang [27] utilized 151 cal-
cium oxalate stones patients and 105 healthy controls of four 
genetic polymorphisms: vascular endothelial growth factor 
(VEGF), E-calcine adhesion, urokinase, and cytochrome 
p450c17, as well as relevant environmental factors (milk, 
water, outdoor activity and coffee consumption), presented 
a prediction model of kidney stones. The results showed 

Table 1  Characteristics of 
individuals in the training test

*Wilcoxon rank sum test
 + t-test
# Chi-squared test

NS
N = 66

KS
N = 54

p value

Age 51(48,56) 51(45.5,61) 0.614*
Gender, female (%) 26(39.4) 21(38.9) 0.955#
Body mass index(BMI) 24.28(2.39) 23.86(3.28) 0.442 + 
Oxalate(μg/ml) 10.11(4.89, 15.62) 15.62(9.35, 27.88) 0.001*
Acetic acid(ug/mg) 20.79(15.15, 24.32) 43.93(17.59, 57.38) 0.000*
Propionic acid(ug/mg) 0.079(0.055, 0.107) 0.092(0.057, 0.112) 0.650*
Isobutyric acid(ug/mg) 0.007(0.005, 0.012) 0.007(0.004, 0.010) 0.887*
Butyric acid(ug/mg) 0.087(0.061, 0.112) 0.096(0.062, 0.115) 0.650*
Isovaleric acid(ug/mg) 0.006(0.002, 0.011) 0.006(0.004, 0.010) 0.476*
Valeric acid(ug/mg) 0.007(0.001, 0.015) 0.007(0.002, 0.015) 0.728*
Hexanoic acid(ug/mg) 0.0006(0.0004, 0.0011) 0.0007(0.0004, 0.0011) 0.580*
Phosphorus(mmol/L) 15.74( 8.85, 22.71) 11.24(5.68, 16.30) 0.008*
Calcium(mmol/L) 2.30(1.19, 3.87) 1.95(0.91, 4.12) 0.652*
Uric acid(umol/L) 2384(1950, 2788) 1984(1272.5, 2895) 0.260*
Citrate(mg/L) 523.38(255.82, 711.37) 219.95(134.03, 370.59) 0.000*
PH 6.34(5.95, 6.70) 6.77(6.44, 7.14) 0.000*

Table 2  AUCs of eight machine learning models

Method Genus Clinical Genus plus clinical

rf 0.7629 0.9018 0.9360
xgboost 0.7427 0.8976 0.9136
svm 0.7082 0.8830 0.8928
lasso 0.7489 0.8939 0.8844
ridge 0.7461 0.8998 0.8993
enet 0.7492 0.8953 0.8973
knn 0.6824 0.8916 0.8678
lda 0.7304 0.8869 0.8976
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that when only genetic factors were considered, the clas-
sification success rate of DA was 64%; but with all relevant 
factors considered (genetic and environmental factors), the 
classification success rate for DA was 74%. In [28], an SVM 
model for detecting kidney stone types by using 42 features 
of 936 kidney stone patients, including sex, acid urine status, 
calcium levels, back pain and urinary tract infection, reached 
an AUC of 86.9%.

To our knowledge, no research has been done to combine 
gut microbiota with clinical characteristics to predict the 
occurrence of kidney stones. Filling this gap, we constructed 
a prediction model of calcium oxalate kidney stones using 
microbiota, metabolites of microbiota and urinary param-
eters. Our machine learning results may provide new and 
non-invasive potential diagnostic biomarkers for calcium 
oxalate kidney stones.
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