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Abstract
Halophytes are species able to grow and complete their life cycle under NaCl concentrations above 0.2 M. In a context of 
growing population and uncertain agricultural food sustainability, there is an interest on halophytes as potential source of food 
and fodder. However, scarce research has addressed in vitro propagation of halophytes as a tool for study, conservation, and 
propagation of elite germplasm. In this study, an efficient method for micropropagation of the succulent and salt accumula-
tor halophyte Arthrocaulon macrostachyum has been established for the first time, using shoot tips from in vitro-germinated 
plant material. During shoot multiplication stage, superior genotypes were selected from explants grown in high strength 
and NaCl content medium and subsequently rooted and acclimatized to ex vitro conditions. A comprehensive characteriza-
tion including determination of oxidative stress, photosynthesis performance, and mineral nutrient contents was done. This 
research gains insight into the physiological and biochemical characterization of halophytes during micropropagation and 
provides a solid platform for the production of elite A. macrostachyum germplasm for ulterior uses.
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Introduction

The Mediterranean basin is one of the main regions in 
terms of global biodiversity, whereas it is also among the 
most threatened regions by climate change, according to 
the International Union of Conservation of Nature IUCN 
(Hilton-Taylor et al. 2009). Recently, the estimated area of 
salt-affected soils in Europe was calculated to be over 2% 
of the total affected area in the world (Hassani et al. 2020). 
Concerning the Mediterranean area, a 25% of the irrigated 
area is salt affected (Ben Hamed et al. 2021a). In addition, 

lower water availability than the benchmark threshold of 1 
dam3/person/year is reported for many Mediterranean coun-
tries (Mancosu et al. 2015). Considered as marginal lands, 
the salt-affected agricultural soils in the Mediterranean area 
could be subject of alternative solutions to mitigate this 
problem, as the use of salt-tolerant plants.

Halophytes are species able to grow and complete their 
life cycle under NaCl concentrations above 0.2 M (Flowers 
and Colmer 2008). A total of 350 species, mainly belong-
ing to the orders Caryophyllales and Alismatales, have been 
listed (Flowers et al. 2010). Halophytes have a number of 
strategies to survive in saline environments, such as ana-
tomic, morphological, and biochemical adaptations (Flowers 
and Colmer 2008); the latter including osmolyte accumu-
lation, ion homeostasis, and up-regulation of antioxidant 
defenses (Ben Hamed et al. 2021b). In the last years, the 
nutraceutical and nutritional properties of halophytes have 
been well reported (Ben Hamed et al. 2005; Abideen et al. 
2015; Ventura et al. 2015; Barreira et al. 2017). Among oth-
ers, high contents of essential micronutrients, antioxidant 
compounds, essential fatty acids, and polysaccharides have 
been found (Ben Hamed et al. 2005; Ksouri et al. 2012; 
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Abideen et  al. 2015; Barreira et  al. 2017; Duarte et  al. 
2019). In a scenario where a growing population has to deal 
with an uncertain agricultural food sustainability, there is 
an increasing demand of halophytes as potential source of 
food and fodder (Koyro et al. 2011; Centofanti and Bañuelos 
2019). As a consequence, a growing body of research has 
been conducted in this topic worldwide (Duarte and Caçador 
2021). The major number of publications to date have dealt 
with metabolite research and potential nutraceutical appli-
cations, followed by halophyte cultivation and sustainable 
agricultural solutions, halophyte ecology, and physiologi-
cal- and biochemical-related research (Rodrigues et al. 2014; 
ElNaker et al. 2020; Ben Hamed et al. 2021a; Duarte and 
Caçador 2021). However, in spite of in vitro culture advan-
tages for both fundamental and applied research purposes 
over traditional approaches – e.g., controlled production in 
absence of microorganisms and higher multiplication rates 
of clonal plants –, very few papers, and mainly in the last 
decade, have addressed in vitro propagation of halophytes 
(Aly et al. 2002; Grigoriadou and Maloupa 2008; Joshi et al. 
2012; Kulpa et al. 2020; López-Corona et al. 2019; de Jesus 
Raposo and de Morais 2021; Oliveira et al. 2016; Papafotiou 
et al. 2016; Regalado et al. 2020; Sedun et al. 2021; Singh 
et al. 2015; Vyas et al. 2021; Xiong et al. 2019; Yao et al. 
2021). Therefore, there is still much scope for improving 
knowledge on halophyte in vitro culture, especially con-
cerning multiplication of species with limited sexual and 
vegetative propagation, production of bioactive compounds, 
and propagation of endangered species (Gulzar et al. 2020; 
Custódio et al. 2023). Moreover, in vitro techniques are 
pointed out as the most suitable for screening of stress-toler-
ant genotypes in comparison to conventional screening tools 
(Rai et al. 2011; Singh et al. 2020). Major research on these 
topics would facilitate the integration of halophytes into a 
sustainable production system, by which a large number of 
plant clones could be provided along the year independently 
on seasonal variations and seed productivity.

Recently, molecular studies determined the separation of 
the North American and the Eurasian Arthrocnemum mac-
rostachyum into two new genera, Arthroceras subterminale 
and Arthrocaulon macrostachyum (Ball et al. 2017; Piirainen 
et al. 2017). The latter is native of salt marshes of the Medi-
terranean basin (Murakeözy et al. 2007; Rodrigues et al. 
2014; Duarte and Caçador 2021). In the Iberian peninsula, 
A. macrostachyum occurs in inland and coastal locations in 
the South (Castroviejo 2012). This halophyte is a succulent 
species characterized by articular stems with carnose seg-
ments, reduced and stem-united leaves (Castroviejo 2012). 
Regarding salt tolerance, it displays a wide tolerance of soil 
salinity, covering concentrations from 170 to 510 mM NaCl 
(Redondo-Gómez et al. 2010). Due to its high Na+ accu-
mulative capacity, A. macrostachyum has been proposed as 
a candidate for phytoremediation of hypersaline and sodic 

soils (ElNaker et al. 2020; Munir et al. 2021). Antibacterial, 
hypoglycemic, antioxidant, and anti-inflammatory properties 
have also been determined in A. macrostachyum extracts 
(ElNaker et al. 2020).

In this study, for the first time, we have achieved efficient 
micropropagation of A. macrostachyum using shoot explants 
derived from in vitro-grown seedlings. During shoot mul-
tiplication stage, superior genotypes were selected from 
explants grown in high strength and NaCl content medium 
and subsequently rooted and acclimatized to ex vitro con-
ditions. A comprehensive characterization including deter-
mination of oxidative stress, photosynthesis performance, 
and mineral nutrient contents was done. This research gains 
insight into the physiological and biochemical characteriza-
tion of halophytes during micropropagation and provides a 
solid platform for the production of elite A. macrostachyum 
germplasm for ulterior uses.

Materials and Methods

Plant Material Collection

Vigorous plants of A. macrostachyum were collected 
from an inland salt marsh in the Region of Murcia (Spain) 
(38°3′17.16″ N, 1°12′47.2″ W) in October 2020. Out of 
these plants, seeds from mature and dry inflorescences were 
obtained. Soil samples associated to the sampling spots were 
also taken using a soil sample drill at a depth of 10–15 cm.

In Vitro Seed Germination

Seeds were stored at 4 °C for two months to overcome the 
presence of seed dormancy. Then, seeds were disinfected by 
successive inmersions in a 20% commercial bleach solution 
containing 0.05% tween-20 for 20 min, esterilized distilled 
water (× 3), 70% ethanol for 1 min, and esterilized distilled 
water (× 3). Subsequently, seeds were placed onto germi-
nation (G) media, consisting of half-strength Murashige & 
Skoog solid (MS) (Murashige and Skoog 1962) medium 
with or withouth the addition of 7.5-g L−1 NaCl (Table 1) 
in polypropylene boxes equipped with a filter to allow gas 
exchange (Duchefa Biochemie, Haarlem, the Netherlands). 
Boxes were incubated at 25 °C under white light fluores-
cence lamps (16-h photoperiod, 80 µmol  m−2 s−1). Four 
weeks later, germination percentage was calculated and the 
most vigourous seedlings used in multiplication.

In Vitro Multiplication, Salt Screening, and Rooting

In vitro seedlings of A. macrostachyum (3 to 5 cm long) 
were excised into 1.5 cm length segments and placed half 
embedded into multiplication (M) medium, which contains 



1633Journal of Plant Growth Regulation (2024) 43:1631–1641	

30-g L−1 NaCl (Table 1), in the same boxes and environ-
mental conditions as for seed germination. Then, regular 
subcultures every fourth to fifth week were done under the 
same conditions, using tip and axilary node shoot segments. 
In parallel, the response of explants to salinity was tested 
in a range of concentrations from 0 to 120-g L−1 (Table 1).

Vigorous explants having high proliferation rate (deter-
mined as new formed shoots) and stem elongation were 
selected along four to six subcultivation cycles in M 
medium. Subsequently, such clones were transferred into 
rooting (R) medium (Table 1) in 220-mL screw cap con-
tainers (Deltalab, Barcelona,Spain). Rhizogenesis was then 
followed over a 2-month period.

Acclimatization

Plantlets were carefully washed to remove the agar and 
placed in pots in a esterilized mix of peat/perlite (2/1, v/v), 
inside an acclimatization chamber (UBBINK propagator, 
Northampton, UK), which displays two ventilation grills for 
the control of relative humidity (RH). Then, acclimatization 
was followed over an 8-week period. Environmental condi-
tions were as follows: 16-h photoperiod and 25 °C under 
white light fluorescence. The light intensity was progresively 
increased from 80 µmol m−2 s−1 (day 0) to 140 µmol m−2 s−1 
(from day 35 forward). In parallel, the ventilation grills were 
gradually open to decrease the humidity progressively. Sub-
strate was moistened either with distilled water or a 30-g L−1 
NaCl solution from day 1. A systemic fungicide–bacteri-
cide (Beltanol-L, Probelte, Murcia, Spain) at 0.1% (v/v) was 
sprayed to the plantlets at days 0, 2, 5, and 7.

Nutrient Analysis

Fresh plant material (shoots and roots) and consociated soil 
samples from field and explants (shoot clusters) obtained at 
the end of the in vitro salt screening were dried to a constant 
weight at 60 °C for 2 days. Then, samples were ground into a 
fine powder using a blender. One gram of the ground powder 
was used to measure the different macronutrients and micro-
nutrients, by Inductively Coupled Plasma–Optical Emission 
Spectrometry (ICP–OES) using a ICAP 6000SERIES spec-
trometer (Thermo Scientific, Madrid, Spain) according to 
standardized protocols (Ionomic Services of CEBAS-CSIC; 
Thermo Scientific, Madrid, Spain).

Measurement of Chlorophyll Fluorescence

Chlorophyll fluorescence was determined in the plant leaves 
with a chlorophyll fluorimeter (IMAGIM-PAM M-series, 
Heinz Walz, Effeltrich, Germany) during the acclimatiza-
tion period at days 0, 2, 5, 7, 14, 21, 28, 35, 42, 49, and 
56. Plants were incubated in darkness for 20 min before the 
minimum and maximal fluorescence yields were determined. 
Kinetic analyses were done with actinic light (81 µmol 
quanta m−2 s−1 PAR) and repeated pulses of saturating light 
at 2700 µmol quanta m−2 s−1 PAR for 0.8 s, at intervals of 
20 s. The following parameters were also analyzed: effective 
PSII quantum yield [Y(II))]; non-photochemical quenching 
(NPQ); and coefficients of non-photochemical quenching 
(qN) and photochemical quenching (qP) (Acosta-Motos 
et al. 2019).

Determination of Lipid Peroxidation Levels

The extent of lipid peroxidation was estimated based on the 
determination of thiobarbituric acid-reactive substances 

Table 1   Composition of 
media used for the in vitro 
germination (G), salt screening 
(S), regular multiplication 
(M), and rhizogenesis (R) of 
Arthrocaulon macrostachyum 

In all cases, 8-g L−1 agar was added and pH was adjusted to 6. All components were obtained from Duch-
efa Biochemie (Haarlem, the Netherlands). Growth regulators [6-Benzylaminopurine (BAP); 1-Naphtha-
leneacetic acid (NAA); kinetin; and Indole-3-butyric acid (IBA)] were added from 1-g L−1 stock solutions

Medium

Component [g L−1] G S M R

MS salts (including vitamins) 2.2 8.8 8.8 3.3
MES monohydrate 0.5 0.5 0.5 0.5
Saccharose 30 30 30 60
NaCl 0; 7.5 0; 7.5; 15; 30; 60; 120 30
BAP – 0.001 × 10–3 0.001 × 10–3 –
NAA – 0.002 × 10–3 0.002 × 10–3 –
Kinetin – – – 0.0001
IBA – – – 0.0005
Casein hydrolysate – 0.15 0.15 0.15
Sequestrene – 0.03 0.03 0.03
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(TBARS) (Barba-Espín et al. 2014), using a UV/Vis V-630 
Bio spectrophotometer (Jasco, Tokyo, Japan). In brief, sam-
ples (0.2 g) were homogenated in 1-M perchloric acid (1/10, 
w/v) followed by centrifugation at 12,000 × g for 10 min. 
The resulting supernatant was mixed with 0.5% thiobarbi-
turic acid in 1-M perchloric acid (1/4, v/v) and incubated at 
90 °C for 20 min. Subsequently, samples were centrifuged at 
10,000 × g for 5 min, and supernatant was used to determine 
TBARS based on the extinction coefficient 155 mM−1 cm−1. 
Samples consited of shoot clusters at the end of the in vitro 
salt screening and plantlets (roots and aerial part) during the 
acclimatization to ex vitro conditions.

Statistical Analysis

Statistical analysis were done with at least four biological 
replicates. Data were compared using a two-way analysis of 
variance (ANOVA) followed, when suitable, by a Duncan 
post hoc test (p ≤ 0.05), using the SPSS Statistics software 
version 27 (IBM, Endicott, NY, USA).

Results and Discussion

In the present work, we have explored in vitro culture as a 
tool for micropropagation and physiological characteriza-
tion of elite germplasm, in terms of salt tolerance, of A. 
macrostachyum.

Firstly, disinfected seeds were germinated in vitro on G 
medium in the absence or the presence (7.5-g L−1) of NaCl 
(Fig. 1). The highest germination rate (78%) was achieved 
at 28 days in the absence of salt, whereas, at the same day, 
7.5-g L−1 NaCl caused germination to reach 57% (Fig. 1A). 
Moreover, early seedling growth and vigor was visually 
superior in the absence of NaCl (Fig. 1B). Salinity toler-
ance of A. macrostachyum seeds have been reported to reach 
1M (Ajmal Khan and Gul 1998); however, it is well reported 
that seed germination of most halophytes is optimal in fresh 
water and is reduced in the presence of salts, although salin-
ity is not necessarily toxic at this stage as seeds may recover 
and germinate when transferred to less saline conditions 
(Chadwick 1981; Ungar 2001). More recently, germination 

Fig. 1   In vitro germination and 
seedling growth of Arthrocau-
lon macrostachyum. A Seed 
germination percentage in the 
presence or absence of NaCl 
during 28 days. Data represent 
the mean ± standard error, n = 5. 
B Seedlings at day 10 in the 
presence or absence of NaCl. 
C Seedlings at day 40 in the 
absence of NaCl utilized for 
multiplication. Asterisks denote 
significant differences between 
pairwise comparisons (½ MS 
vs. ½ MS + NaCl) at the 99.9% 
(***), 99% (**), or 95% (*) 
level of probability from two-
way ANOVA
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experiments in Salicornia spp. and Sarcocornia spp. showed 
that the percentage germination was superior at lower salini-
ties and temperatures of 20/10 °C (day/night) (Singh et al. 
2014). This has been related to ecology aspects, since seed 
germination in European coastal halophytes occurs in early 
spring, when temperatures are lower and salinity is reduced 
by high soil moisture content (Ajmal Khan and Weber 1986).

Therefore, our results are in accordance with the higher 
germination and seedling growth for halophyte species 
found at low salinity.

Shoots derived from in vitro-grown seedlings are fre-
quently used in micropropagation of different species, 
including halophytes (Binh et al. 1989; Wang et al. 2005; 
Sun and Hong 2009; Reyes-Vera et al. 2010). In this study, 
forty-day-old seedlings in the absence of NaCl were utilized 
for multiplication, by placing 1.5 cm length segments into M 
medium, which had a high salinity and osmotic pressure due 
to its content of NaCl (30-g L−1), sucrose (30-g L−1), and 
MS salts (double strength). To our knowledge, no previous 
research conducted micropropagation on a medium having 
a similarly high nutrient concentration. This medium also 
contains BAP and NAA, as growth regulators frequently 
used in the micropropagation of halophyte and glycophyte 
species, at concentrations previously tested (Joshi et al. 
2012; Acosta-Motos et al. 2019; Lee et al. 2019; Custódio 
et al. 2023). Moreover, based on preliminary trials (data not 
show), casein hydrolysate, as a growth adjuvant, and seques-
trene, as an iron chelate form (Ahmad and Anis 2005; Clapa 
et al. 2018; de Jesus Raposo and de Morais 2021), were 
added to the medium.

A gradual habituation of the explants to the in vitro condi-
tions was achieved over the successive multiplication cycles; 
at the end of the third subculture on M medium, a stable 
multiplication behavior of the explants was achieved, char-
acterized by a high number of explants forming new shoots 
and a proliferation rate ≥ 5 (Fig. 2).

During ex situ conservation of wild plants from salt 
marshes using tissue culture, NaCl has been found to be a 
critical factor for in vitro propagation (Martini and Papa-
fotiou 2020). In this study, the response of explants to 
salinity (0- to 120-g L−1) was tested in terms of average 
biomass per explant and lipid peroxidation levels (Fig. 3). 
In this sense, the average biomass per explant was statisti-
cally equivalent for most of the salt concentrations, whereas 
only the highest concentrations (60- and 120-g L−1 NaCl) 
led to a significant decrease in the biomass, of about 75% 
with respect to the explants grown in the absence of NaCl 
(Fig. 3A). The levels of lipid peroxidation are a useful target 
for assessment of oxidative stress in plants. In halophytes, 
lipid peroxidation has been mostly evaluated by measuring 
TBARS in in vivo studies (Ozgur et al. 2013). In this sense, 
the damage produced by salinity was found to vary with 
the species, the saline levels (from 8.8- to 58-g L−1 mM), 

and the duration of the treatment (Ozgur et al 2013). In this 
study, lipid peroxidation was estimated to be lower at inter-
mediate concentrations (15- and 30-g L−1 NaCl), whereas it 
was highest in 120-g L−1 NaCl, followed by 60- and 0-g L−1 
NaCl (Fig. 3B). Moreover, the extent of lipid peroxidation 
was positively associated to a reduced development of the 
explants and the presence of necrosis symptoms (data not 
shown). This may indicate that intermediate NaCl concen-
trations do not induce a damaging oxidative burst; on the 
contrary, the presence of this salt levels can be necessary for 
an optimal micropropagation, as it is for growth stimulation 
of in vivo plants (Ben Hamed et al. 2021a).

Additionally, a mineral nutrient analysis was conducted 
in the explants in response to the different salt concentra-
tions (Table 2; Supplementary Table 1). The analysis of the 
macronutrients showed an increase of Na level with the NaCl 
concentration, ranging from 24.5- to 216-g kg−1 dry weight 
(DW). On the other hand, overall, the rest of the macronu-
trients analyzed decreased their concentration with the NaCl 
level, this effect being more pronounced at salt concentra-
tions above 30-g L−1 (Table 2). Likewise, the content of 
most of the micronutrients detected were reduced along with 
the increase in NaCl concentration (Supplementary Table 1). 
There are a lack of data reporting mineral nutrient composi-
tion in halophytes in response to increasing salinity in vitro. 
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Fig. 2   Proliferation of Arthrocaulon macrostachyum shoots after 
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the successive multiplication cycles. B View of several shoot clusters 
in polypropylene boxes and detail of a shoot cluster
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However, it is well reported that nutrient availability and 
uptake by plants are influenced by salinity; in this sense, def-
icit or imbalance of nutrients can be provoked by competi-
tion with Na+ and Cl− in glycophytes and halophytes (Flow-
ers and Colmer 2008; Ehtaiwesh 2022). Accordingly, the 
concentrations of K+, Ca+, and Mg+, among other nutrients, 
descended in Salicornia ramosissima in function of salin-
ity (Lima et al. 2020). Similarly, NaCl irrigation reduced 
the contents of mineral nutrients of A. macrostachyum and 

Salicornia europaea plants grown under greenhouse condi-
tions (Ushakova et al. 2005; Redondo-Gómez et al. 2010).

Complementarily, plants from which seeds were origi-
nally collected and consociated soil samples were also sub-
jected to the same nutrient mineral analysis (Supplemental 
Tables 2 and 3), with the aim of establishing a comparison 
between the nutrient profile of in vivo and in vitro condi-
tions. The shoots and the roots were collected in the flower-
ing period. In this regard, overall, macronutrients analyzed 
showed a higher concentration in the aerial part shoots, with 
the exception of Mg2+, whose levels were markedly higher in 
the soil. The analysis showed a high content of Na in the aer-
ial shoots and its concentration being several times lower in 
the roots (Supplemental Table 2). This is in accordance with 
the salt tolerance mechanism of A. macrostachyum, whose 
Na+ accumulation relies mainly in the vacuoles (Khan et al. 
2005; Redondo-Gómez et al. 2010). Interestingly, Na+ con-
tents in the shoot (81.2-g kg−1 DW) and soil (15.5-g kg−1 
DW) resemble the corresponding levels found in the explants 
(86.2-g kg−1 DW) when exposed to 15-g L−1 NaCl in the 
medium (Table 2), which suggest that micropropagation in 
the present study have been conducted at higher NaCl con-
centration (30-g L−1) than the observed in field conditions. 
Concerning micronutrients (Supplemental Table 3), soil Al 
and Fe were detected at very high concentrations (14- and 
8.6-g kg−1 DW, respectively); however, these levels were 
not reflected in a high accumulation in the plant, which may 
result from a low availability of these elements in the soil. 
Halophytes have stronger metal accumulation capacity than 
glycophytes (Peng et al. 2022). In this sense, the accumula-
tion of Pb and Ni was nearly 10 times higher in the root than 
in the shoot, which is in accordance with the reported ability 
of certain halophytes for immobilizing heavy metals in the 
root system (Caparrós et al. 2022). In addition, Cu and Zn2+ 
were accumulated at equivalent concentrations in the plant 
and in the soil (Supplemental Table 3). These results suggest 
an uninvestigated potential of A. macrostachyum in heavy 
metals phytoremediation.

Subsequently, vigorous explant clusters that had been 
multiplied in 30-g  L−1 NaCl for four to six cycles were 
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Table 2   Macronutrients 
detected by Inductively Coupled 
Plasma–Optical Emission 
Spectrometry in Arthrocaulon 
macrostachyum explants

Data are presented as the mean ± standard error, n = 4. Different letters denote statistical significance 
according to Duncan’s test (p ≤ 0.05)

NaCl [g L−1] Macronutrients [g kg−1 dry weight]

Ca K Mg Na P S

0 3.58 ± 0.08a 25.9 ± 0.5ab 0.88 ± 0.02a 24.5 ± 1.3e 2.31 ± 0.09a 3.03 ± 0.07a
7.5 2.36 ± 0.06b 30.0 ± 0.39a 0.79 ± 0.01b 76.0 ± 3.7d 2.44 ± 0.15a 3.21 ± 0.04a
15 1.79 ± 0.47bc 25.6 ± 1.3ab 0.55 ± 0.05c 86.2 ± 9.1d 1.77 ± 0.03b 2.92 ± 0.33ab
30 1.68 ± 0.01bc 23.2 ± 2.7bc 0.54 ± 0.04c 142 ± 9c 1.43 ± 0.04c 2.44 ± 0.15bc
60 1.58 ± 0.17bc 18.9 ± 0.75c 0.43 ± 0.01d 180 ± 18b 1.09 ± 0.03d 1.96 ± 0.08c
120 1.24 ± 0.04c 6.92 ± 0.47d 0.28 ± 0.02e 216 ± 5a 0.55 ± 0.05e 1.32 ± 0.08d
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transferred to R medium, where rooting was followed over 
an 8-week period (Fig. 4). As a result, over 75% and 80% 
of explants were rooted after 45 and 60 days, respectively 
(Fig. 4A). This is the first study reporting in vitro rooting of 
A. macrostachyum; on the other hand, in vitro rhizogenesis 
have been reported for Salicornia spp. (Joshi et al. 2012; 
Lee et al. 2019). After 60 days, plantlets having a profuse 
root system (Fig. 4B) were used for the acclimatization to 
ex vitro conditions. In this sense, a 90% of plantlets sur-
vived after 8 weeks of acclimatization, regardless of whether 
plants were subjected to water or NaCl irrigation (data not 
shown). Similarly, high acclimatization percentages have 
been reported for other halophytes such as Limoniastrum 
monopetalum (Martini and Papafotiou 2020).

During the acclimatization process, plantlets are usually 
subjected to light intensities progressively higher, which 
might induce leaf wilting. Moreover, the transfer to ex vitro 
conditions may lead to a transient decrease in photosyn-
thetic parameters (Kshitij 2012). On the other hand, in many 
halophytes, photosynthesis was shown to be unaffected by 

salinity, or even stimulated at low salt concentrations (Kur-
banl et al. 1999; Parida et al. 2004). In this work, the evo-
lution of chlorophyll fluorescence variables was monitored 
(Figs. 5 and 6), in order to associate the state of photosyn-
thesis with the progression of the acclimatization. Visually, 
fluorescence data were transformed onto a false color system 
in which plants were colored from black (0) to magenta (1) 
(Fig. 5A). In this sense, decreased levels of both photochem-
ical [Y(II) and qP] and non-photochemical quenching (NPQ 
and qN) variables, as well as of ETR, could be noted until 
day 7, followed by a progressive increase until the end of 
the experiment. Moreover, no substantial differences were 
observed between NaCl and water irrigation for any of the 
variables measured (Figs. 5 and 6).

Over the whole period, a remarkable increase in plant size 
could also be observed, especially from day 28 (Fig. 5A), 
which, likewise, reflects adaptation to ex vitro conditions 
(Kshitij 2012). In most plant species, leaves grown under 
in vitro conditions are unable to develop further under ex 
vitro conditions, and newly formed leaves are necessary to 
complete plant adaptation to ex vitro conditions (Pospíšilová 
et al. 1999; Kshitij 2012). However, due to A. macrostach-
yum leaf morphology, consisting of minor fleshy scales 
covering the stems, leaf decay was not observed under our 
experimental conditions. This was also reflected on a homo-
geneous coloration of the whole plantlet for the different 
photosynthetic quenching variables (Fig. 5A).

Complementarily, the levels of lipid peroxidation, an 
indicator of oxidative stress, were measured in leaves and 
roots of plantlets subjected to acclimatization at days 0, 1, 
and 56 (Fig. 7). The first days of the acclimatization process 
are the most critical to the survival of the plantlet (Kshitij 
2012). In this sense, during ex vitro acclimatization of Stevia 
rebaudiana, a peak of leaf lipid peroxidation was observed 
at day 2, followed by a decrease to initial values, which was 
related to a transient stress due to an excess of light and a 
drop in relative humidity (Acosta-Motos et al. 2019). In this 
study, lipid peroxidation levels increased at day 1, especially 
in leaves, whereas at the end of the experiment, these levels 
decreased to the observed at day 0. Moreover, no differences 
were observed between NaCl and water irrigation (Fig. 7). 
Two months after the finalization of the experiment, plants 
displayed a normal development and yet no visual differ-
ences between NaCl and water irrigation were observed 
(Supplemental Fig. 1).

Conclusion

This work reports for the first time an efficient micropropa-
gation scheme for a halophyte comprising multiplication, 
rooting and acclimatization to ex vitro conditions. NaCl con-
centration was found to be critical for explant multiplication, 
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since the absence of NaCl and the highest contents (60- 
and 120-g L−1) affected growth and nutrient contents and 
caused an oxidative stress in the explants. Elite germplasm 
was selected by its superior performance on 30-g L−1 NaCl-
containing high-strength medium (equivalent to 513-mM 
NaCl) over several multiplication cycles. After a profuse 
rooting of selected germplasm was obtained, acclimatization 
to ex vitro conditions was characterized using photosynthe-
sis fluorescence parameters as a marker of the process. As 
a prospect, the obtained halophyte clones can be used for 
phytoremediation of salt-contaminated soils.
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