Skip to main content
Log in

Lipid Peroxidation Induced by Reactive Oxygen Species via NADPH-Dependent Oxidative Burst Triggers the Occurrence of Internal Browning in Radish Root

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The occurrence of internal browning in radish root is closely related to lipid peroxidation caused by excessive ROS production via NADPH-dependent ROS burst during the latter half of maturation. Japanese radish (Raphanus sativus L.) roots with differing severities of internal browning (IB) disorder grown under different soil temperatures were collected, and expression analysis of genes involved in NADPH-dependent ROS burst, mitochondrial electron transport chain, and ascorbate–glutathione cycle was performed. Roots with IB disorder were frequently found in higher soil temperature plots but rarely in the low soil temperature plot. Accumulation of metabolic products derived from the Maillard reaction and oxidative stress response was greater at higher soil temperatures. Although the content of hydrogen peroxide increased at higher soil temperatures, no clear correlation was found for sugar content among the experimental plots. Higher gene expressions related to NADPH-dependent ROS burst were detected at higher soil temperatures. Comparison of gene expression related to the mitochondrial electron transport chain in roots grown under different soil temperatures showed that the expression of complexes I- and III-related genes did not differ among the experimental plots. Furthermore, higher gene expressions related to the ascorbate–glutathione cycle were detected at higher soil temperatures. These facts indicate that the activation of NADPH-dependent oxidative burst induced by high temperatures increases lipid peroxidation, resulting in IB disorder in radish root.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data will be made available on reasonable request.

References

  • Adachi H, Nakano T, Miyagawa N, Ishihama N, Yoshioka M, Katou Y, Yaeno T, Shirasu K, Yoshioka H (2015) WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. Plant Cell 27:2645–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrera G (2012) Oxidative stress and lipid peroxidation products in cancer progression and therapy. IJER 2012:137289

    Google Scholar 

  • Bowler C, Camp WV, Montagu MV, Inze D, Asada PK (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13:199–218

    Article  CAS  Google Scholar 

  • Chen LY, Cheng CW, Liang JY (2015) Effect of esterification condensation on the Folin-Ciocalteu method for the quantitative measurement of total phenols. Food Chem 170:10–15

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Yang G (2020) Signal function studies of ROS, especially RBOH-dependent ROS, in plant growth, development and environmental stress. J Plant Growth Regul 39:157–171

    Article  Google Scholar 

  • Davidson JF, Schiestl RH (2001) Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Cell Mol Biol 21:8483–8489

    Article  CAS  Google Scholar 

  • Davies KM, Stauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, Kuhlbrandt W (2011) Macromolecular organization of ATP synthase and compex I in whole mitochondria. Proc Natl Acad Sci USA 108:14121–14126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedyaeva AV, Stepanov AV, Lyubushkina IV, Pobezhimova TP, Rikhvanov EG (2014) Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells. Biochem 79:1202–1210

    CAS  Google Scholar 

  • Fry SC, Miller JG, Dumville JC (2002) A proposed role for copper ions in cell wall loosening. Plant Soil 247:57–67

    Article  CAS  Google Scholar 

  • Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19:1617–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuoka N, Enomoto T (2001) The occurrence of internal browning induced by high soil temperature treatment and its physiological function in Raphanus root. Plant Sci 161:117–124

    Article  CAS  Google Scholar 

  • Fukuoka N, Kudou T, Sajiki T, Masuda D, Kanamori Y, Enomoto T (2007) Statistical analysis of the development of internal browning in Japanese radish in relation to thermal condition using logit model. Hort Res (Japan) 6:559–564

    Article  Google Scholar 

  • Fukuoka N, Miyata M, Hamada T, Takeshita E (2019) Occurrence of internal browning in tuberous roots of sweetpotato and its related starch biosynthesis. Plant Physiol Biochem 135:233–241

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka N, Hirabayashi H, Hamada T (2020) Oxidative stress via the Maillard reaction is associated with the occurrence of internal browning in roots of sweetpotato (Ipomoea batatas). Plant Physiol Biochem 154:21–29

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka N, Hamada T (2021) Effects of heat stress on the biological maillard reaction, oxidative stress, and occurrence of internal browning in Japanese radish (Raphanus sativus L.). J Plant Physiol 256:153326

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Alam MM, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Res 2014:757219

    Google Scholar 

  • Imada I, Satou E, Inoue M (1999) Production and elimination of active oxygen and free radicals in the living body. Chem Biol 37:411–419

    CAS  Google Scholar 

  • Ishihama N, Yoshioka H (2012) Post-translational regulation of WRKY transcription factors in plant immunity. Curr Opin Plant Biol 15:431–437

    Article  CAS  PubMed  Google Scholar 

  • Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karanja BK, Fan L, Xu L, Wang Y, Zhu X, Tang M, Wang R, Zhang F, Muleke EM, Zhang F (2017) Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses. Plant Cell Rep 36:1757–1773

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Asthir B (2017) Molecular responses to drought stress in plants. Biol Plant 61:201–209

    Article  CAS  Google Scholar 

  • Kawashiro H, Takeda H (1988) Studies on factors influencing the occurrence of akashin a physiological disorder in radish.1. Influences of temperature and cultivars. Bull Chiba-Ken Agri Exp Sta 29:63–70

    Google Scholar 

  • Kawashiro H (1990) Studies on the occurrence of internal browning in root of Japanese radishes. 1. Effect of seedling time on the occurrence of various internal browning in root and comparison among cultivars. J Japan Soc Hort Sci 59:340–341

    Google Scholar 

  • Kim SH, Hamada T (2005) Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L.). Lam Biotechnol Lett 27:1841–1845

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Kawakita K, Maeshima M, Doke N, Yoshioka H (2006) Subcellular localization of Strboh proteins and NADPH-dependent O2–generating activity in potato tuber tissues. J Exp Bot 57:1373–1379

    Article  CAS  PubMed  Google Scholar 

  • Kudla J, Xu Q, Harter K, Gruissem W, Luan L (1999) Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Pro Natl Aca Sci USA 96:4718–4723

    Article  CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zhang Q, Lai L, Wen X, Zheng T, Cheung C, Zhou S, Xu S (2013) Neuroprotective effect of ginkgolide B on bupivacaine-induced apoptosis in SH-SY5Y cells. Oxid Med Cell Longev 2013:159864

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Xing D (2011) Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques. J Exp Bot 62:331–343

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Yuan Y, Liu YY, Liu Y, Fu JJ, Zheng J, Wang GY (2012) Gene families of maize glutathione-ascorbate redox cycle respond differently to abiotic stresses. J Plant Physiol 169:183–192

    Article  CAS  PubMed  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones J, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress response in plants. Pro Natl Aca Sci 102:10736–10741

    Article  CAS  Google Scholar 

  • Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F (2012) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J Exp Bot 63:305–317

    Article  CAS  PubMed  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marbois BN, Clarke CF (1996) The COQ7 gene encodes a protein in Saccharomyces cerevisiae necessary for ubiquinone biosynthesis. J Biol Chem 271:2995–3004

    Article  CAS  PubMed  Google Scholar 

  • Medina E, Kim SH, Yun M, Choi WG (2021) Recapitulation and role of ROS generated in response to heat stress in plants. Plants 10:371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Kenton P, Lloyd A, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520

    Article  CAS  PubMed  Google Scholar 

  • Nevin C, McNeil L, Ahmed N, Murgatroyd C, Brison D, Carroll M (2018) Investigating the glycating effects of glucose, glyoxal and methylglyoxal on human sperm. Sci Rep 8:9002

    Article  PubMed  PubMed Central  Google Scholar 

  • Pilarska M, Bartels D, Niewiadomska E (2021) Differential regulation of NAPDH oxidases in salt-tolerant Eutrema salsugineum and salt-sensitive Arabidopsis thaliana. Int J Mol Sci 22:10341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulos TL, Kraut J (1980) The stereochemistry of peroxidase catalysis. J Biol Chem 255:8199–8205

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen MW, Roux M, Peterson M, Mundy J (2012) MAP kinase cascades in Arabidopsis innate immunity. Front Plant Sci 3:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe LA, Degtyareva N, Doetsch PW (2008) DNA damage-induced Reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med 45:1167–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker U, Oba S (2018) Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep 8:16496

    Article  PubMed  PubMed Central  Google Scholar 

  • Sena CM, Matafome P, Crisostomo J, Rodrigues L, Fernandes R, Pereira P, Seica RM (2012) Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharm Res 65:497–506

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2008) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  PubMed  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van LA, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2005) Reactive oxygen species and temperature stresses: a decline balance between signaling destruction. Physiol Plant 29:45–51

    Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Tamas L, Mistrik L, Zelinova V (2017) Heavy metal-induced reactive oxygen species and cell death in barley root tip. Environ Exp Bot 140:34–40

    Article  CAS  Google Scholar 

  • Torre F, Beltran EG, Jaime YP, Chakravarthy S, Martin GB, Pozo O (2013) The tomato calcium sensor cbl10 and its interacting protein kinase cipk6 define a signaling pathway in plant immunity. Plant Cell 25:2748–2764

    Article  PubMed  PubMed Central  Google Scholar 

  • Tossi V, Amenta M, Lamattina L, Cassia R (2011) Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway. Plant Cell Environ 34:909–921

    Article  CAS  PubMed  Google Scholar 

  • Vacca RA, Pinto MC, Valenti D, Passarella S, Marra E, Gara LD (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol 134:1100–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan B, Lin Y, Mou T (2007) Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 581:1179–1189

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang MM, Wang YJ, Gao YT, Li R, Wang GF, Li VQ, Liu WT, Chen KM (2016) The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice. Physiol Plant 156:421–443

    Article  CAS  PubMed  Google Scholar 

  • Xing T, Wang XJ, Malic K, Miki BL (2001) Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. Mol Plant Microbe Interact 14:1261–1264

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah W (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium calmodulin. Pro Natl Aca Sci USA 99:4097–4102

    Article  CAS  Google Scholar 

  • Yim HS, Kang SO, Hah YC, Chock PB, Yim MB (1995) Free radicals generated during the glycation reaction of amino acids by methylglyoxal. J Biol Chem 270:28228–28233

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kirkham MB (1996) Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants. Plant Sci 113:139–147

    Article  CAS  Google Scholar 

  • Zhao Q, Zhou L, Liu J, Du X, Asad M, Huang F, Pan G, Cheng F (2018) Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress. Plant Physiol Biochem 122:90–101

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Kong L, Yu X, Ottosen CO, Zhao T, Jiang F, Wu Z (2019) Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiol Plant 41:20

    Article  Google Scholar 

  • Zur I, Kopec P, Surowka E, Dubas E, Krzewska M, Nowicka A, Janowiak F, Juzon K, Janes A, Barna B, Fodor J (2021) Impact of ascorbate-glutathione cycle components on the effectiveness of embryogenesis induction in isolated microspore cultures of barley and triticale. Antioxidants 10:1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP21K05567. We thank Ms. Mikiko Sasazuka of the Ishikawa Prefectural University for collaborating on the fieldwork.

Author information

Authors and Affiliations

Authors

Contributions

RW and NF conceived and designed the research. RW and NF wrote the manuscript. RW performed immunohistochemical observation and contributed to data analysis. RW and TH contributed the gene expression analysis. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Nobuyuki Fukuoka.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Juan Pablo Martínez Castillo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 64 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, R., Fukuoka, N. & Hamada, T. Lipid Peroxidation Induced by Reactive Oxygen Species via NADPH-Dependent Oxidative Burst Triggers the Occurrence of Internal Browning in Radish Root. J Plant Growth Regul 43, 1479–1495 (2024). https://doi.org/10.1007/s00344-023-11199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11199-2

Keywords

Navigation