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Abstract
Storage and maintenance of horticultural products in optimal conditions for a reasonable period, once they have been har-
vested is a technological challenge. Diverse methods are generally used, i.e., low temperature but, in many cases, it may 
provoke undesirable collateral effects such as softening or promoting pathogens infections, thus causing their deterioration. 
Nitric oxide (·NO) and hydrogen sulfide  (H2S) are compounds generated endogenously by plants with signaling properties 
that mediate fruit development and ripening. Additionally, when these molecules are applied exogenously, they can provide 
benefits such as maintaining the quality of horticultural products and even prolonging their shelf-life once they are stored. 
This review provides a broad perspective of ·NO and  H2S metabolism in plant cells and, in addition, different plant models 
are described of how the exogenous application of either NO or  H2S to horticultural products preserves nutritional quality 
during postharvest storage.
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Introduction

In the agricultural sector, from the time the seed sapling 
is planted until the harvest of the corresponding products, 
numerous factors can affect the proper development and 
productivity of crops. The whole process requires great 
effort and planning to safeguard the quality of the veg-
etables and fruits against different types of environmental 
stress (extreme temperature, drought, flooding, patho-
gens, etc.). Furthermore, after their harvest, preserving 
the quality of vegetables and fruits is also one of the 
key stages that connect the agricultural productive sec-
tor with the industrial one considering that storage and 
distribution may be achieved either locally, nationally, or 
internationally.

From the point of view of consumers, the quality of 
fruits and vegetables includes external features such as 
color, firmness, size, and shape but also other sensorial 
properties including aroma and taste (flavor). All these 
parameters influence the consumers’ decision to purchase 
specific products. Therefore, all the participants involved 
in each step should care about how specific horticultural 
products reach the consumers. Different agents can cause 
the deterioration of fruits and vegetables such as soften-
ing, water loss, or microbial decay triggered but bacteria, 
fungi, viruses, or yeasts. However, many of these effects 
are due to an uncontrolled overproduction of reactive oxy-
gen species (ROS) that can cause oxidative stress (Lum 
et al. 2016; Decros et al. 2019). All these factors will influ-
ence the storage conditions. For these reasons, postharvest 
technology procedures acquire great relevance since they 
have the goal of providing optimal storage conditions to 
preserve the properties of horticultural products (Ziv and 
Fallik 2021). Thus, the products can reach the consumer in 
optimal nutritional conditions thus avoiding the economic 
losses that may occur.

At present, there are several strategies for storing fruit 
and vegetables mostly consisting of keeping them under 
controlled atmospheres. Thus, the normal air atmosphere 
is replaced by an atmosphere poor in oxygen  (O2) but rich 
in carbon dioxide  (CO2). For example, when pears and 
apples are under 1–3%  O2 and 1–3%  CO2, their storage 
is usually extended for three months (Wang et al. 2021). 
This procedure is usually combined with low temperatures 
(Majidi et al. 2014; Fang and Wakisaka 2021; Dong et al. 
2022). However, the storage conditions must be optimized 
for each type of horticultural product, and in the case of 
fruits, another consideration to keep in mind is whether 
the fruit is climacteric because, in such a case, the levels 
of ethylene must be reduced (Cocetta and Natalini 2022). 
Heat treatment of fruits and vegetables has also been 
used to maintain the quality attributes during postharvest 

storage (Yang et al. 2021; Yi et al. 2021; Dai et al. 2021). 
Currently, other complementary options are being studied 
consisting of covering horticultural products with edible 
coatings that protect them from adverse external factors 
and that allow their shelf-life to be extended (Tavassoli-
Kafrani et al. 2020; Rangaraj et al. 2021; Nian et al. 2022; 
Yadav et al. 2022). There are other strategies to preserve 
the quality fruit and vegetable during postharvest which 
include physical treatments (Usall et al. 2016; Palumbo 
et al. 2022) such as microwave (Martínez-Hernández et al. 
2016), pulsed electric-field (López-Gámez et al. 2021), 
high hydrostatic pressure treatment (Ramos-Parra et al. 
2019), and dipping and vacuum impregnation, for exam-
ple, with calcium salts, pectin methylesterase, or citric 
acid (Yan et al. 2021).

Nitric oxide (·NO) and hydrogen sulfide  (H2S) are two 
gasotransmitters that are endogenously generated in plant 
cells exerting multiple functions from seed germination, 
root formation, growth and development, leaf senescence, 
flowering, and fruit ripening (Zhang et al.,2014; Ziogas 
et al.,2018; Corpas et al. 2019; Mishra et al., 2021; Li et al. 
2022; He et al. 2023). However, experimental evidence 
has shown that when ·NO and  H2S, either individually or 
in combination, are exogenously applied, they can alleviate 
or preserve the quality of the horticultural products against 
negative damage to plants during different types of environ-
mental stress, both biotic and abiotic (Siddiqui et al. 2023; 
Gupta and Seth 2023; Prajapati et al. 2023). This review 
aims to provide an outline of ·NO and  H2S metabolism in 
higher plants, the main available donors of these molecules, 
and their use in horticultural products (fruits and vegeta-
bles) as an alternative to extending their shelf-life during 
postharvest storage.

Overview of Endogenous Metabolism of ·NO 
and  H2S in Higher Plants

The first reports on the emissions and presence of ·NO 
in higher plants in the late 1970s and mid-1980s (Klep-
per 1979, 1987; Dean and Harper 1986) were received 
with some skepticism among plant researchers because 
this molecule was considered toxic as part of atmospheric 
pollution and the greenhouse effect. However, the signifi-
cance of this molecule acquired more and more relevance 
due to its regulatory functions in numerous physiological 
processes, including seed germination, root formation and 
development, growth, stomatal closure, senescence, flow-
ering, and fruit ripening, but also in the mechanisms of 
response against biotic and abiotic stresses (Leshem et al. 
1998; Leshem and Pinchasov 2000; Corpas et al. 2011; Xuan 
et al.,2012; Kolbert et al. 2019).
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Nitric oxide has a family of derived molecules designated 
as reactive nitrogen species (RNS) such as peroxynitrite 
 (ONOO−), S-nitrosothiols (SNOs) like S-nitrosoglutathione 
(GSNO), nitrogen dioxide (·NO2), nitroxyl (HNO), nitro-
γ-tocopherol, and so on (Kolbert et al. 2019; Arasimow-
icz-Jelonek et al. 2023). Although the endogenous source 
responsible for the enzymatic generation of ·NO is still under 
debate in plants, there are currently two recognized possible 
sources of ·NO, nitrate reductase (NR) and an l-arginine-
dependent ·NO synthase-like activity (Mohn et al. 2019; 
Corpas et al. 2022a). Additionally, another key enzyme 
involved in NO metabolism is S-nitrosoglutathione reductase 
(GSNOR) which catalyzes the NADH-dependent reduction 
of GSNO to GSSG and  NH3 (Sakamoto et al. 2002; Leterrier 
et al. 2011). Thus, this enzyme can module the trans-nitros-
ation equilibrium between GSNO and S-nitrosated proteins 
and consequently participates in the cellular homeostasis of 
RNS (Lee et al. 2008; García et al. 2018; Treffon et al. 2021) 
as well as hormone homeostasis (Romera et al. 2023; Zuc-
carelli et al. 2023). However, among the mechanisms that 
allow the RNS to exert their signaling function are those that 
imply post-translational modifications (PTMs) of proteins, 
mainly S-nitrosation, tyrosine nitration, and metal nitrosyla-
tion (Asgher et al. 2017; Gupta et al. 2020), as well as the 
regulation of gene expression throughout the transcription 
factors (TFs), or probably by epigenetic events such as DNA 
methylation or histone modification.

In the mid-90s, it was described that animal cells were 
available to generate hydrogen sulfide  (H2S), a molecule 
considered toxic for living organisms, which later showed 
to have signaling properties in the neuronal system (Abe 
and Kimura 1996). Afterward, it was observed that plant 
cells were also capable of generating  H2S as part of the sul-
fate assimilation pathway and in the cysteine metabolism 
(Fuentes-Lara et al. 2019; González-Gordo et al. 2020). 

Currently, several enzymes with the capacity to generate 
 H2S located in the different subcellular compartments have 
been identified. These include the chloroplastic sulfite reduc-
tase (SiR), the cytosolic l-cysteine desulfhydrase (LCD) 
and cysteine synthase (OASA 1), and the mitochondrial 
d-cysteine desulfhydrase (DDC) and cyanoalanine synthase 
(CAS) (Asada 1967; Álvarez et al. 2012; Hu et al. 2021a, b; 
Muñoz-Vargas et al. 2023a, b).

Like ·NO,  H2S can also modulate protein function through 
a PTM called persulfidation in which a thiol (-SH) group of 
cysteine residues interacts with  H2S and is then converted 
into the corresponding persulfide (-SSH) (Aroca et al. 2015; 
Corpas et al. 2021; Vignane and Filipovic 2023). Figure 1 
provides a simple working model showing the enzymatic 
components involved in the generation of ·NO and  H2S in 
plant cells.

Remarkably, the cysteine residues of some specific pro-
teins could be targets of both molecules and, in fact, ·NO and 
 H2S compete in the modulation of these target proteins and 
the final effect is the result of the balance of their relative 
abundance around the target protein and their subcellular 
location (Corpas et al. 2022b). Some of the most notable 
examples of this regulation are some antioxidant enzymes 
that regulate the ROS metabolism such as catalase (Palma 
et  al. 2020) and ascorbate peroxidase (APX) (Begara-
Morales et al. 2014a, b; Aroca et al. 2015). Likewise, other 
enzymes such as the NADPH oxidase also designated as res-
piratory burst oxidase homologs (RBOHs) directly involved 
in the generation of superoxide radicals  (O2

·−), as well as 
enzymes involved in ·NO/H2S metabolism such as S-nitro-
soglutathione reductase (GSNOR) or the  H2S-generating 
l-cysteine desulfhydrase are also targets of S-nitrosation and 
persulfidation (Yun et al. 2011; Guerra et al. 2016; Shen 
et al. 2020), as well as tyrosine nitration (Muñoz-Vargas 
et al. 2023b). All these data indicate the close relationship 

Fig. 1  Main enzymatic compo-
nents involved in the generation 
of ·NO and  H2S generation in 
plant cells. CAS, cyanoalanine 
synthase. CS, cysteine synthase. 
DCD, D-cysteine desulfhydrase. 
GSH, reduced glutathione. 
GSSG, glutathione disulfide. 
GSNO, S-nitrosoglutathione. 
GSNOR, GSNO reductase. 
LCD, L-cysteine desulfhydrase. 
PTMs, post-translational modi-
fications. NiR, nitrite reductase. 
NOS-like, L-arginine-dependent 
NO synthase-like activity. 
NR, nitrate reductase. OAS, 
O-acetylserine. SiR, sulfite 
reductase
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between the metabolism of ·NO,  H2S, and ROS, since key 
enzymes involved in the metabolism of all these molecules 
are regulated among themselves, which creates a complex 
signaling network that affects numerous biological processes 
from the germination, development, senescence, and to fruit 
ripening.

Biochemistry of ·NO and  H2S

Besides the protein PTMs mediated by ·NO and  H2S, another 
lesser-known aspect is the biochemical reactions resulting 
from the own chemistry and interactions between both mol-
ecules and ROS. Thus, the protonated product of the one-
electron reduction of ·NO generates nitroxyl (HNO), also 
designated as azanone, which has specific biological effects 
in animal cells (Fukuto and Carrington 2011; Fukuto et al. 
2013). This issue has been unexplored in plants until very 
recently, where it has been involved in the cellular redox 
balance under senescence and hypoxia conditions (Arasi-
mowicz-Jelonek et al. 2023).

Likewise, peroxynitrite  (ONOO−) is the product of the 
chemical interaction between ·NO and  O2

·−. This reaction is 
very fast, with a second-order rate constant (k) of approxi-
mately 4–6 ×  109  M−1  s−1 (Goldstein and Czapski 1995) 
which is even greater than that of many enzymatic reactions. 
The relevance of this molecule is its great reactivity with 
macromolecules including proteins, fatty acids, and nucleic 
acids exerting its immediate oxidizing/nitrating action, thus 
promoting the formation of nitrated proteins (Bartesaghi 
and Radi 2018; Corpas et al. 2021; Piacenza et al. 2022), 
nitrated fatty acids (Mata-Pérez et al. 2016), and nitrogua-
nine in nucleic acids (Niles et al. 2006). Nitric oxide can 
also interact with reduced glutathione (GSH) to generate 

S-nitrosoglutathione (GSNO), a cellular ·NO reservoir with 
the capacity to mediate the process of trans-nitrosation (Cor-
pas et al. 2013; Broniowska et al. 2013). Figure 2 displays 
some of the reactions where ·NO is involved.

H2S is a weak acid and can be dissociated into hydro-
sulfide  (HS–) and sulfide  (S2

–) anions in an aqueous solu-
tion. At physiological conditions, approximately 20% 
of  H2S exists in the not dissociated form, and the rest is 
dissociated into  HS– and  H+, the amount of sulfide anion 
 (S2−) being very low at physiological pH (Fig. 2).  H2S can 
mediate the generation of persulfides (RSSH) through the 
interaction with either (i) oxidized thiol derivatives such as 
disulfides (RSSR′), sulfenic acid (RSOH) or (ii) oxidized 
sulfur derivatives such as polysulfides (HSnS-, n ≥ 1) (Fil-
ipovic et al. 2018; Ogata et al. 2023; Kasamatsu et al. 2023). 
Thus,  H2S can react with GSH to generate glutathione per-
sulfide (GSSH) (Benchoam et al. 2020). On the other hand, 
the chemical interaction between  H2S and ·NO can produce 
thionitrous acid (HSNO) which is the smallest S-nitrosothiol 
(Marcolongo et al. 2019). It should be mentioned that in 
plants, the information about the function of this molecule 
is, to the best of our knowledge, inexistent due to the diffi-
culty to detect it. Recently, a novel fluorescent probe (SNP-
1) has been described for the detection of HSNO in animal 
cells in vivo (Zhang et al. 2022), which opens an opportu-
nity to investigate this topic in plants. Figure 2 shows some 
of these reactions. Despite being molecules with a simple 
structure, their biochemistry is not straightforward since dif-
ferent intermediary molecules are involved, and due to their 
reactivity, they are difficult to identify and quantify at the 
cellular level.

NO and  H2S Donors used in Animal and Plant 
Research

The battery of compounds capable of releasing ·NO or  H2S 
is significant and continues to grow, mainly due to their use 
in the area of medicine for the treatment of numerous pathol-
ogies as both molecules mediate relevant functions in multi-
ple systems including the circulatory, nervous, and immune 
systems (Burgaud et al. 2002; Corvino et al. 2021). The 
pharmaceutical industry is still working on developing new 
compounds that might be the most suitable for each type of 
pathology (Huang et al. 2023; Powell et al. 2018; Iciek et al. 
2023) including the development of releasing nanoparticles 
(Hu et al. 2021a, b; Liu et al. 2023a, b). Table 1 summarizes 
some of the most representative used donors for ·NO and 
 H2S. In the case of  H2S, there are natural sources such as 
garlic or onion and other members of the genus Allium (Pow-
ell et al. 2018; Muñoz-Vargas et al. 2023a; Wen et al. 2023).

NONOate has the general chemical formula 
 R1R2N–(NO−)–N = O, where R1 and R2 correspond to 

Fig. 2  Some chemical reactions involving nitric oxide (·NO) and 
 H2S that generate different derived molecules such as peroxynitrite, 
nitroxyl, nitrosoglutathione, glutathione (Glu-Cys-Gly) persulfide, 
and the thionitrous acid
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alkyl groups, and it can release two molecules of ·NO 
(Horton and Schiefer 2019). These compounds are rela-
tively stable in alkaline solution (pH 8.0) and, usually, 
they will release ·NO in a controlled way (Fig. 3). On the 
other hand, S-nitrosothiols (SNOs) are compounds that 
enclose a nitroso group (–NO) attached to the S-atom of a 
thiol group. SNOs release one molecule of ·NO and they 
are more stable under different conditions such as high 
temperature, metal ions, UV light, or enzymes. GSNO is 
considered the most physiological SNO that can mediate 
trans-nitrosation processes (Corpas et al. 2013; Jedelská 
et al. 2021). More recently, ·NO-releasing nanomaterials, 
for example, ·NO donors linked to chitosan, have been used 

in plant research (Murgia et al. 2004; Begara-Morales et al. 
2014a, b; Silveira et al. 2019; Muñoz-Vargas et al. 2020; 
Seabra et al. 2022). However, the most commonly used 
·NO donor has been sodium nitroprusside (SNP) because it 
is the cheapest and most handling one. Nevertheless, sev-
eral concerns must be considered when the SNP is applied 
such as pH, temperature, and light conditions. SNP is a 
sodium salt consisting of iron complexed with five cya-
nide anions (Fig. 3). A concentration of 30 μM SNP (at 
37 °C) releases ·NO in a pH-dependent manner. Thus, SNP 
at pH 5.0 releases the greatest quantity of ·NO which is 
significantly decreased at pH 7.2; nevertheless, in the acid 
solution and under light conditions for a few hours, SNP 

Table 1  Some of the main ·NO and  H2S donors used in animal and plant research

CNPs, chitosan nanoparticles; GSNO, S-nitrosoglutathione; SNAC, S-nitroso-N-acetylcysteine; SN-MSA; S-nitroso-mercaptosuccinic acid; 
SNP, sodium nitroprusside

·NO donors

NONOate
 Diethylamine NONOate
 Diethylenetriamine NONOate
 Dipropylenetriamine NONOate
 Proline NONOate
 Spermine NONOate
 Diazeniumdiolate (NOC-18)

Nitrosothiols
 S-nitroso-N-acetylpenicillamine (SNAP)
 S-nitrosoglutathione (GSNO)
 S-nitrosocyteine (CysNO)
 Thionitrous acid (HSNO)

Other compounds
 Sodium nitroprusside (SNP)
 ·NO gas
 Nitro-fatty acid  (NO2-FA)

·NO-releasing nanoparticles (NPs)
 SN-MSA-CNPs
 GSNO-CNPs
 SNAC-CNPs
 SNP-CNPs

H2S donors

Inorganic sulfide salts
 Sodium sulfide  (Na2S) and sodium polysulfides  (Na2Sn, n = 2–5)
 Sodium hydrosulfide (NaHS)

Organic polysulfides
 Polysulfides species (R-Sn-R´; n > 2) (R = cysteine, glutathione, polypeptides)

SulfoBiotics-H2S
 5a [N-(Benzoylthio)benzamide]
 8o [N-Butyl-N2-acetyl-S-pivaloylsulfanyl-dl-penicillamine amide]
 8ℓ [N-Butyl-N2-acetyl-S-acetylsulfanyl-dl-penicillamine amide]
 GYY4137 [(p-methoxyphenyl)morpholino-phosphinodithioic acid]
 ADTOH 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione
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is decomposed producing blue smog and a cyanide odor. 
Moreover, SNP in an aqueous solution is degraded when 
exposed to white or blue light but not to red light (Grossi 
and D’Angelo 2005).

Among the  H2S donors, the most used in plant research 
is sodium hydrosulfide (NaHS). In an aqueous solution, this 
compound dissociates into  Na+ and  HS−, and then, this lat-
ter binds partially to  H+ to form undissociated  H2S. On the 
other hand, other compounds such as polysulfides (Fukuto 
et al. 2018; Sawa et al. 2022), GYY4137 (Li et al. 2009), 
and other chemical donors (Zhao et al. 2011a, b), designated 
sulfobiotics-H2S donors 5a, 8ℓ, and 8o (Table 1; Dojindo 
Laboratories, Kumamoto, Japan), have been used mainly in 
medical research, although there are also some reports in 
plants (Yamasaki et al. 2019). A characteristic of this group 
of reagents (5a, 8ℓ, and 8o) is that the release of  H2S is by 
reaction with molecules containing thiol groups (Fig. 3).

It should be mentioned that nitrite  (NO2
−) and sulfite 

 (SO3
2−) are part of the endogenous metabolism of ·NO and 

 H2S in plant cells (Corpas et al. 2022a; González-Gordo 
et al. 2020), but they are not used as direct donors of these 
gas transmitters. In fact,  NaNO2 and  Na2SO3 have been used 
for food preservation (designated E250 and E221, respec-
tively) but, at present, their use is limited or even forbidden 
due to collateral health problems (Chazelas et al. 2022; Liu 
et al. 2021). Thus,  Na2SO3 was used for raw fruits and veg-
etable preservation but, in the mid-80s, the US Food and 
Drug Administration forbade its use.

In summary and as has been mentioned previously, in 
the area of plant physiology, some of these donors are used 
mainly in research through either experiments in the labora-
tory or at the field level, seeking a balance between the quan-
tity needed and their cost. Thus, for larger-scale treatment of 
plants, the most widely used are SNP for ·NO, and NaHS for 
 H2S, since they are the cheapest ones and the easiest to use.

NO,  H2S and Postharvest Storage 
of Horticultural Products

Once fruits and vegetables are harvested and are not con-
sumed immediately, they must be stored until they reach the 
consumers. The shelf-life of each product, in which it main-
tains its good properties, varies significantly among species 
and, during postharvest storage, a wide of symptoms begins 
to appear (Aghdam et al.,2020; Brizzolara et al. 2020), either 
due to the senescence process itself, infections provoked by 
different pathogens (fungi, bacteria, or viruses), or the stor-
age conditions, for example, at low temperatures.

Accumulating experimental data demonstrates that 
exogenous treatment with ·NO and  H2S has become a new 
and complementary tool to delay leaf and fruit senescence 
and consequently extends the shelf-life of products during 
postharvest storage (Chen and Zhu et al.,2023; Zhu et al. 
2022; Wang et al. 2022a, b, c, d). But also, both gases can 
improve the nutritional quality of horticultural crops (Huo 

Fig. 3  Chemical structures of 
some representative donors 
of ·NO (NONOate and SNP) 
and  H2S (NaHS and 5a 
[N-(Benzoylthio)benzamide]) 
and mechanism for their release
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et al. 2018; Zhong et al. 2021), palliate chilling injuries, and 
prevent fungal infection (Zhang et al. 2019). Although the 
concentration and application way of these molecules must 
be optimized for each horticultural product, generally these 
gasotransmitters can exert regulatory functions at different 
levels including the increase of the ROS metabolism through 
an enhancement of enzymatic antioxidant systems including 
catalase, superoxide dismutase isozymes, ascorbate peroxi-
dase (APX), dehydroascorbate reductase (DHAR), mono-
dehydroascorbate peroxidase (MDAR), and glutathione 
reductase (GR), these last four enzymes being components 
of the ascorbate–glutathione cycle. Furthermore, there is an 
increase in non-enzymatic antioxidants such as ascorbic acid 
(AsA), glutathione (GSH), melatonin, phenolic compounds, 
flavonoids, and other compounds of the phenylpropanoids’ 
group (Rodríguez-Ruiz et al. 2017a; Li et al. 2017; Zhang 
et al. 2020; Deng et al. 2021; Zuccarelli et al. 2021, 2023). 
All these antioxidants provide greater protection during stor-
age but also contribute to a higher nutritional value since 
antioxidants have associated beneficial health effects.

Throughout the fruit ripening of pepper (Capsicum ann-
uum L.), a model of non-climacteric fruit, it has been shown 
the relevance of the ROS metabolism and part of its inter-
action with ·NO and  H2S (Corpas et al. 2023). Thus, it was 
found an increase in lipid peroxidation and  O2

·−-generating 
RBOH activity (Chu-Puga et al. 2019), which was associated 
with an increase in the content of nitrated and S-nitrosated 
proteins (Chaki et al. 2015); this latter one connected with a 
lower GSNOR activity and protein expression (Rodríguez-
Ruiz et al. 2017b), where catalase is a key target of these 
·NO-mediated PTMs (Palma et al. 2020). These data support 
that the ripening of pepper fruit has a very active nitro-oxi-
dative metabolism. Furthermore, the application of exoge-
nous ·NO gas (5 ppm for 1 h) during the pepper fruit ripen-
ing caused a delay in this process that is accompanied by a 
significant increase (40%) in the AsA content. The analysis 
of the AsA biosynthesis pathway confirmed an increase in 
the activity and gene expression of the galactono-1,4-lactone 
dehydrogenase (GalLDH), a mitochondrial enzyme that 
catalyzes the final step of AsA production, involving the 
oxidation of L-galactono-1,4-lactone to AsA (Rodríguez-
Ruiz et al. 2017a).

Lipoxygenases (LOXs) and small heat shock proteins 
(sHSP) play significant functions in plant development 
and stress response. The LOX analyses during pepper fruit 
ripening allowed identifying a total of eight LOX genes 
whose expression was differentially regulated during rip-
ening and by the treatment with ·NO gas (González-Gordo 
et al. 2022a, b). Complementarily, the analysis of the sHSP 
system indicated the presence of 19 sHSP genes in pepper 
fruits, where the ·NO treatment triggered the upregulation 
of 7 sHSP genes and the downregulation of 3 sHSP genes 
(González-Gordo et al. 2023). Furthermore, the analysis 

of the  H2S metabolism showed that it was also modulated. 
Thus, the  H2S-generating l-cysteine desulfhydrase (LCD) 
and d-cysteine desulfhydrase (DCD) activities were down-
regulated during pepper ripening, but this effect was reverted 
after ·NO treatment of fruits (Muñoz-Vargas et al. 2023b). 
Similarly, in the climacteric goji berry (Lycium barbarum 
L.) fruit, experimental data support the beneficial effect 
of the exogenous applications of ·NO and  H2S. Thus, after 
NaHS treatment, the senescence of goji berry fruits was 
delayed, whereas the postharvest quality improved. This was 
due to a modulation of the ROS metabolism since the con-
tent of  H2O2,  O2

·−, and lipid peroxidation was diminished, 
whereas the activity and gene expression of catalase, SOD, 
APX, and GR were increased. At the same time, the gene 
expression of LOX and RBOH was down-regulated (Wang 
et al. 2023). Similar observations have been found with the 
exogenous application of SNP as an ·NO donor (Elam et al. 
2022). All these data support the metabolic relationship 
among the metabolisms of ·NO,  H2S, and ROS.

Although the available information is still very limited, 
the couple ·NO/H2S can also modulate the gene expression 
by affecting either promoters, cis-acting regulatory elements, 
or epigenetic factors such as DNA methylation, chromatin 
remodeling, histone methylation/demethylation, and acety-
lation (Kuang et al. 2012; Mengel et al. 2017; Hao et al. 
2020). Thus, the analysis of tomato (Solanum lycopersi-
cum cv. Lichun) fruit pretreated with the ·NO donor SNP 
and then stored at 2 °C indicates that the ·NO reduces the 
content of malondialdehyde (MDA) and ion leakage, rep-
resentative markers of lipid peroxidation, and stability of 
the cell membrane, respectively. Furthermore, it was found 
that the transcription factor C-repeat/dehydration-responsive 
element (CRT/DRE)-binding factor (CBF), which partici-
pates in the mechanism of response against low temperature, 
had higher expression levels in fruit treated with ·NO (Zhao 
et al. 2011a, b). Similarly, in cucumber (Cucumis sativus 
L.), the exogenous application of 200 μM SNP mitigates 
the damage associated with low temperature (10 °C during 
the day and 6 °C at night). Among the effects exerted by 
·NO, it has been reported that it reduces the chilling damage 
index, the MDA content, and alters the expression of genes 
related to the metabolism of phenylalanine, lignin synthesis, 
and hormones such as ethylene and salicylic acid. Further-
more, it was found that two transcription factors, HD-ZIP 
(Homeodomain leucine zipper) and b-ZIP (basic region/
leucine zipper motif), responded to exogenous ·NO under 
low-temperature stress (Wu et al. 2022).

Recently, the exogenous application of 0.1 mM NaHS 
in grapes (Vitis vinifera L.) berry triggered their color 
change, particularly by the anthocyanin accumulation. A 
deeper analysis at the molecular and biochemical level 
revealed an increase in the expression of the transcrip-
tion factor WRKY30, which, at the same time, promotes 
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the increase in the expression of SiR (sulfite reductase) 
that encoded an enzyme involved in the  H2S generation. 
Furthermore, these genes mediate the upregulation of the 
expression of genes involved in anthocyanin synthesis (Liu 
et al. 2023a, b).

Table 2 and Table 3 summarize the main effect of exog-
enous ·NO and  H2S, respectively, on some representative 
examples of horticultural crops including vegetables, and 
fruits of herbaceous plants and trees, either climacteric or 
non-climacteric fruits. 

Figure 4 illustrates a working model indicating the 
mechanism of action after the exogenous application of 
·NO or  H2S which would act directly on the activities of 
specific protein targets through the different PTMs or 
through the expression of genes that code for target pro-
teins, either by transcription factors (TFs) or by epigenetic 
processes. In this cascade of signals, ROS metabolism is 
significantly affected and in general is characterized by 
an increase in enzymatic and non-enzymatic antioxidant 
systems, thus allowing to palliate possible oxidative dam-
age to macromolecules. The final beneficial effects depend 
on the horticultural product and they could include delay 
of fruit senescence, shelf-life extension, and improvement 
of the nutritional quality, palliate chilling injury, and/or 
prevent fungal infection.

Conclusion and Future Perspectives

There are currently different compounds that are being 
studied because they provide beneficial effects on horti-
cultural products such as melatonin (Zhang et al. 2020; 
Aghdam et al. 2023; Corpas et al. 2022a, b, c), chitosan 
(Mahmoudi et al. 2022), silicon (Peris-Felipo et al. 2020; 
Tripathi et al. 2021, 2023), nanoparticles (Seabra et al. 
2022; Zhou et al. 2022), and edible coatings (Tavassoli-
Kafrani et  al. 2020), among other. NO and  H2S have 
become good candidates, either alone or in combinations, 
for exogenous treatments. These signaling gas molecules 
should be greatly considered, since they can help to pre-
serve the quality of horticultural products as well as to 
expand the self-life during storage, mainly through the 
stimulation and the homeostasis of the ROS and the anti-
oxidant metabolisms. To our knowledge, the exogenous 
application of either ·NO or  H2S has only been carried 
out at the research level and, although there are still many 
aspects that have to be investigated at the biochemical 
level to determine how they exert their beneficial effects, 
the reality is that, to the best of our knowledge, there is 
no application in the horticultural industry that has used 
these molecules. Therefore, one of the aspects that should 
be explored at the agro-industrial level is that for a given 
horticultural crop, the type of donor to be used, concen-
tration, and exposure time must be optimized to corrobo-
rate its beneficial effects. Although we must be aware of 
the difficulties of transferring the information obtained in 
the laboratories to its possible application at the industry 
level, we hope that what is mentioned in this review can 
contribute modestly to cover this gap soon.
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post-translational modifications. SOD, superoxide dismutase. TFs, 
transcription factors
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