Skip to main content
Log in

Differential Transcriptional Regulation of Drought Stress Revealed by Comparative RNA-seq Analysis of Contrasting indica Rice from North East India

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Indica rice varieties especially from North East India show a broad variation in drought tolerance due to the rich biodiversity of the region. In this study, genome-wide analysis of drought-responsive regulons was performed by comparing the stress-tolerant, Tampha and stress-sensitive, Chandan, indica rice genotypes. The results showed that drought stress induces greater number of differentially expressed transcripts in the Tampha as compared to Chandan. Sixty-one drought-regulated transcripts showed higher expression level in Tampha and these included dehydrins, glycosyltransferases, DnaK molecular chaperones and several transcription factors. The drought-responsive transcripts formed co-expression gene modules and were majorly associated with redox pathways and carbohydrate metabolism. The gene regulation was coordinated by transcription factors and miRNAs. The Tampha transcriptome also exhibited significant changes in ASE under drought stress. Therefore, the results demonstrate that substantial differences in both transcriptional variations and post-transcriptional regulations determine the transcriptome profiles to regulate the plant response to drought stress in varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Accession

Sample_title

Cultivar

SAMN32723754

Ch-0_R1_RNAseq

Chandan

SAMN32723755

Ch-0_R2_RNAseq

Chandan

SAMN32723756

Ch-20_R1_RNAseq

Chandan

SAMN32723757

Ch-20_R2_RNAseq

Chandan

SAMN32723758

T-0_R1_RNAseq

Tampha

SAMN32723759

T-0_R2_RNAseq

Tampha

SAMN32723760

T-20_R1_RNAseq

Tampha

SAMN32723761

T-20_R2_RNAseq

Tampha

References

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, Wang LC (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci 8:69

    PubMed  PubMed Central  Google Scholar 

  • Aoki Y, Okamura Y, Ohta H, Kinoshita K, Obayashi T (2016) ALCOdb: gene coexpression database for microalgae. Plant Cell Physiology 57:e3

    PubMed  Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77

    CAS  PubMed  Google Scholar 

  • Awasthi JP, Chandra T, Mishra S, Parmar S, Shaw BP, Nilawe PD, Chauhan NK, Sahoo S, Panda SK (2019) Identification and characterization of drought responsive miRNAs in a drought tolerant upland rice cultivar KMJ 1–12-3. Plant Physiol Biochem 137:62–74

    CAS  PubMed  Google Scholar 

  • Awasthi JP, Kusunoki K, Saha B, Kobayashi Y, Koyama H, Panda SK (2020) Comparative RNA-Seq analysis of the root revealed transcriptional regulation system for aluminum tolerance in contrasting indica rice of North East India. Protoplasma 258:517–528

    PubMed  Google Scholar 

  • Babu RC, Zhang J, Blum A, Ho THD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa) via cell membrane protection. Plant Sci 166(4):855–862

    CAS  Google Scholar 

  • Banerjee S (2021) Sulphate transporters in plant response to drought and salinity. In: Roychoudhury A, Tripathi DK, Deshmukh R (eds) Transporters and plant osmotic stress. Elsevier, Amsterdam, pp 77–87

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (oxford, England) 30(15):2114–2120

    CAS  PubMed  Google Scholar 

  • Bowles D, Lim EK, Poppenberger B, Vaistij FE (2006) Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 57:567–597

    CAS  PubMed  Google Scholar 

  • Borgohain P, Saha B, Agrahari R, Chowardhara B, Sahoo S, van der Vyver C, Panda SK (2019) Sl NAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism. Protoplasma 256(4):1065–1077

    CAS  PubMed  Google Scholar 

  • Chen TT, Liu FF, Xiao DW, Jiang XY, Li P, Zhao SM, Hou BK, Li YJ (2020) The Arabidopsis UDP-glycosyltransferase75B1, conjugates abscisic acid and affects plant response to abiotic stresses. Plant Mol Biol 102:389–401

    CAS  PubMed  Google Scholar 

  • Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genom 7:111–134

    CAS  Google Scholar 

  • Dias MC, Brüggemann W (2011) Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica 48:96–102

    Google Scholar 

  • Dong NQ, Sun Y, Guo T, Shi CL, Zhang YM, Kan Y, Xiang YH, Zhang H, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Wang Y, Ye WW, Shan JX, Lin HX (2020) UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat Commun 11(1):1–16

    CAS  Google Scholar 

  • Dudhate A, Shinde H, Yu P, Tsugama D, Gupta SK, Liu S, Takano T (2021) Comprehensive analysis of NAC transcription factor family uncovers drought and salinity stress response in pearl millet (Pennisetum glaucum). BMC Genom 22(1):1–15

    Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91

    CAS  PubMed  Google Scholar 

  • Fathi A, Tari DB (2016) Effect of drought stress and its mechanism in plants. Int J Life Sci 10:1–6

    Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20(1):45–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foissac S, Sammeth M (2007) ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res 35(2):W297–W299

    PubMed  PubMed Central  Google Scholar 

  • Garg R, Bhattacharjee A, Jain M (2015) Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Mol Biol Report 33(3):388–400

    CAS  Google Scholar 

  • Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2013) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 21(1):69–84

    PubMed  PubMed Central  Google Scholar 

  • Gelaw TG, Sanan-Mishra N (2021) Non-coding RNAs in response to drought stress. Int J Mol Sci 22(22):12519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami K, Tripathi A, Gautam B, Sanan-Mishra N (2019) Impact of Next Generation Sequencing in elucidating the role of microRNA related to multiple abiotic stresses. In: Roychoudhury A, Tripathi DK (eds) Molecular plant abiotic stress: biology and biotechnology. Wiley, New York, pp 389–426

    Google Scholar 

  • Goswami K, Mittal D, Gautam B, Sopory SK, Sanan-Mishra N (2020) Mapping the salt stress-induced changes in the root miRNome in Pokkali rice. Biomolecules 10(4):E498

    Google Scholar 

  • Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N (2016) MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns 20(2):88–98

    CAS  PubMed  Google Scholar 

  • Hernandez Y, Goswami K, Sanan-Mishra N (2020) Stress induced dynamic adjustment of conserved miR164:NAC module. Plant Environ Interact 1(2):134–151

    PubMed  PubMed Central  Google Scholar 

  • Hernandez Y, Sanan-Mishra N (2017) miRNA mediated regulation of NAC transcription factors in plant development. Plant Gene 11B:190–198

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stat 347:1–39

    Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    PubMed  PubMed Central  Google Scholar 

  • Jain M (2011) Next-generation sequencing technologies for gene expression profiling in plants. Brief Funct Genomics 11(1):63–70

    PubMed  Google Scholar 

  • Jin H, Liu S, Zenda T, Wang X, Liu G, Duan H (2019) Maize leaves drought-responsive genes revealed by comparative transcriptome of two cultivars during the filling stage. PLoS ONE 14(10):e0223786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Li J, Gao S, Tian C, Zha X (2017) Overexpression of the leucine-rich receptor-like kinase gene LRK 2 increases drought tolerance and tiller number in rice. Plant Biotechnol J 15(9):1175–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur G, Asthir B (2017) Molecular responses to drought stress in plants. Biol Plant 61:201–209

    CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keppler BD, Showalter AM (2010) IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis. Mol Plant 3(5):834–841

    CAS  PubMed  Google Scholar 

  • Kumar M, Lee SC, Kim JY, Kim SJ, Kim SR (2014) Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J Plant Biol 57(6):383–393

    CAS  Google Scholar 

  • Kumar S, Sachdeva S, Bhat KV, Vats S (2018) Plant responses to drought stress: Physiological, biochemical and molecular basis. In Biotic and abiotic stress tolerance in plants. Springer, Singapore, pp 1–25

  • Kusunoki K, Nakano Y, Tanaka K, Sakata Y, Koyama H, Kobayashi Y (2017) Transcriptomic variation among six Arabidopsis thaliana accessions identified several novel genes controlling aluminium tolerance. Plant Cell Environ 40(2):249–263

    CAS  PubMed  Google Scholar 

  • Lafitte HR, Yongsheng G, Yan S, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–217

    CAS  PubMed  Google Scholar 

  • Lenka SK, Katiyar A, Chinnusamy V, Bansal KC (2011) Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J 9(3):315–327

    CAS  PubMed  Google Scholar 

  • Liao Z, Wang L, Li C, Cao M, Wang J, Yao Z, Zhou S, Zhou G, Zhang D, Lou Y (2022) The lipoxygenase gene OsRCI-1 is involved in the biosynthesis of herbivore-induced JAs and regulates plant defense and growth in rice. Plant, Cell Environ 45(9):2827–2840

    CAS  PubMed  Google Scholar 

  • Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, Hou BK (2017) The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J 89:85–103

    CAS  PubMed  Google Scholar 

  • Li YJ, Li P, Wang T, Zhang FJ, Huang XX, Hou BK (2018) The maize secondary metabolism glycosyltransferase UFGT2 modifies flavonols and contributes to plant acclimation to abiotic stresses. Ann Bot 122:1203–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Yan JP, Li DK, Luo Q, Yan Q, Liu ZB, Ye LM, Wang JM, Li XF, Yang Y (2015) UDP-glucosyltransferase71c5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis. Plant Physiol 167(4):1659–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Song Q, Li D, Yang X, Li D (2017) Multifunctional roles of plant dehydrins in response to environmental stresses. Front Plant Sci 8:1018

    PubMed  PubMed Central  Google Scholar 

  • Ma Y, Dias MC, Freitas H (2020) Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci 11:591911

    PubMed  PubMed Central  Google Scholar 

  • Ma K, Xiao J, Li X, Zhang Q, Lian X (2009) Sequence and expression analysis of the C3HC4-type RING finger gene family in rice. Gene 444(1–2):33–45

    CAS  PubMed  Google Scholar 

  • Mahmood T, Khalid S, Abdullah M, Ahmed Z, Shah MKN, Ghafoor A, Du X (2020) Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells 9(1):105

    CAS  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genom 283(2):185–196

    CAS  Google Scholar 

  • Mishra S, Kumar S, Saha B, Awasthi J, Dey M, Panda SK, Sahoo L (2016) Crosstalk between salt, drought, and cold stress in plants: towarda genetic engineering for stress tolerance Abiotic stress response in plants, 1. In: Tuteja N, Gill SS (eds) Abiotic stress response in plants. Wiley, New York, pp 57–88

    Google Scholar 

  • Mutum RD, Kumar S, Balyan S, Kansal S, Mathur S, Raghuvanshi S (2016) Identification of novel miRNAs from drought tolerant rice variety Nagina 22. Sci Rep 6(1):1–15

    Google Scholar 

  • Nadarajah K, Kumar IS (2019) Drought response in rice: the miRNA story. Int J Mol Sci 20(15):3766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86

    PubMed  PubMed Central  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–888

    CAS  PubMed  Google Scholar 

  • Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen ZH, Siddique KHM, Zhuang W, Varshney RK (2022) Developing drought-smart, ready-to-grow future crops. Plant Genome. https://doi.org/10.1002/tpg2.20279

    Article  PubMed  Google Scholar 

  • Rocha PS (2016) Plant abiotic stress-related RCI2/PMP3s: multigenes for multiple roles. Planta 243(1):1–12

    CAS  PubMed  Google Scholar 

  • Saha B, Mishra S, Awasthi JP, Sahoo L, Panda SK (2016) Enhanced drought and salinity tolerance in transgenic mustard [Brassica juncea (L.) Czern & Coss.] overexpressing Arabidopsis group 4 late embryogenesis abundant gene (AtLEA4-1). Environ Exp Bot 128:99–111

    CAS  Google Scholar 

  • Sahoo S, Saha B, Awasthi JP, Omisun T, Borgohain P, Hussain S, Panigrahi J, Panda SK (2019) Physiological introspection into differential drought tolerance in rice cultivars of North East India. Acta Physiol Plant 41(4):53

    Google Scholar 

  • Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10(1):1–18

    Google Scholar 

  • Shankar R, Bhattacharjee A, Jain M (2016) Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci Rep 6:23719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao M, Zheng H, Hu Y, Liu D, Jang JC, Ma H, Huang H (2004) The GAOLAOZHUANGREN1 gene encodes a putative glycosyltransferase that is critical for normal development and carbohydrate metabolism. Plant Cell Physiol 45(10):1453–1460

    CAS  PubMed  Google Scholar 

  • Song Y, Ci D, Tian M, Zhang D (2014) Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses. Plant Mol Biol 86(1–2):139–156

    CAS  PubMed  Google Scholar 

  • Staiger D, Brown JW (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25(10):3640–3656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45(W1):W122–W129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Kodaira KS, Takebayashi Y, Kojima M, Sakakibara H, Toyooka K, Sato M, Fernie AR, Shinozaki K, Yamaguchi-Shinozaki K (2017) Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J 90:61–78

    CAS  PubMed  Google Scholar 

  • Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs KA, Inzé D, Breusegem V, Fs. (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660–2679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31(1):46–53

    CAS  PubMed  Google Scholar 

  • Upton GJG (1992) Fisher’s exact test. J R Stat Soc Ser A 155:395–402

    Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47(7):570–577

    CAS  PubMed  Google Scholar 

  • Xiang J, Chen X, Hu W, Xiang Y, Yan M, Wang J (2018) Overexpressing heat-shock protein OsHSP50. 2 improves drought tolerance in rice. Plant Cell Rep 37(11):1585–1595

    CAS  PubMed  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115(1):35–46

    CAS  PubMed  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokosho K, Yamaji N, Fujii-Kashino M, Ma JF (2016) Functional analysis of a MATE gene OsFRDL2 revealed its involvement in Al-induced secretion of citrate, but a lower contribution to Al tolerance in rice. Plant Cell Physiol 57(5):976–985

    CAS  PubMed  Google Scholar 

  • Yu J, Lai Y, Wu X, Wu G, Guo C (2016) Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochem Biophys Res Commun 478(2):703–709

    CAS  PubMed  Google Scholar 

  • Yuan X, Wang H, Cai J, Li D, Song F (2019) NAC transcription factors in plant immunity. Phytopathol Research 1:3

    Google Scholar 

  • Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, Zhuang R, Lu Z, He Z, Fang X, Chen L, Tian W, Tao Y, Kristiansen K, Zhang X, Li S, Yang H, Wang J, Wang J (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20(5):646–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YN, Shi DQ, Ruan MB, Zhang LL, Meng ZH, Liu J, Yang WC (2013) Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L). PLoS ONE 8(11):e80218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17 0 and OsHsp23 7 enhances drought and salt tolerance in rice. J Plant Physiol 169(6):628–635

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the core grant from DBT, India.

Author information

Authors and Affiliations

Authors

Contributions

SKP, NSM and HK conceived and designed the study. SS performed the experiments. KK performed RNA-seq data processing, transcriptome analysis and interpretation of the data. KG performed the miRNA analysis. SS, KK and KG wrote the manuscript. NSM, HK and SKP edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Neeti Sanan-Mishra or Sanjib Kumar Panda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mikihisa Umehara.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Kusunoki, K., Goswami, K. et al. Differential Transcriptional Regulation of Drought Stress Revealed by Comparative RNA-seq Analysis of Contrasting indica Rice from North East India. J Plant Growth Regul 42, 5780–5795 (2023). https://doi.org/10.1007/s00344-023-10964-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-10964-7

Keywords

Navigation