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Abstract
Melatonin (N-acetyl-5-methoxytriptamine) is a novel plant regulatory molecule currently under study. Its role as a biostimula-
tor and protector against abiotic and biotic stressors, through the regulation of the redox network and change in the expression 
of many elements of primary and secondary metabolism, is of great interest. The possible protective effect of melatonin 
in mungbean seedlings, previously primed seed treated with the fungicide copper oxychloride, was studied. The effect 
of melatonin and fungicide in growth of seedlings and photosynthetic pigments, leakage membranes, lipid peroxidation, 
antioxidant activity, and phytomelatonin content was studied. Also, the effect of exogenous melatonin on endogenous plant 
hormones indoleacetic acid, gibberellins, cytokinins, abscisic acid, salicylic acid, and jasmonic acid levels, in the absence 
and presence of fungicide, was analyzed. Melatonin improved growth of roots and aerial parts in the presence of fungicide; 
chlorophyll and carotenoid contents were protected by melatonin in the presence of melatonin and in melatonin-fungicide 
co-treatments. Membrane damage due to fungicide was lessened by melatonin. The hormonal profile (auxin, gibberellins, 
cytokinins, abscisic acid, ethylene precursor, salicylic acid, and jasmonic acid) in roots and leaves was greatly affected by 
copper fungicide and melatonin treatments. In general, an increasing in plant tolerance response has been detected, propos-
ing melatonin as a natural safener molecule of plants in the presence of copper fungicide.
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Introduction

Melatonin (MEL, N-acetyl-5-methoxytryptamine), an 
important hormone that regulates day/night rhythms and acts 
as a chronological signal giving information to the brain 
and peripheral organs, was discovered in 1958 in the pineal 
gland of the cow and also in humans (Lerner et al. 1958, 
1959a, b). In plants, it was discovered in 1995 almost simul-
taneously by three research groups (Dubbels et al. 1995; 
Hattori et al. 1995; Kolar et al. 1995). Among the physio-
logical processes, phytomelatonin (name given to melatonin 
in plants) plays a role related to the germination, growth and 
rooting of plants, and also foliar senescence (Hernández-
Ruiz et al. 2004, 2005; Arnao and Hernández-Ruiz 2007, 
2009a). Additionally, phytomelatonin is presented with a 
leading role as a protective molecule and activator of toler-
ance and resistance responses to many stressors (Lei et al. 
2004; Afreen et al. 2006; Arnao and Hernández-Ruiz 2009b; 
Posmyk et al. 2009). Currently, it has been shown that MEL 
acts as a phytohormone with biostimulation capacity of 
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plants against biotic stress caused by plant pathogens such 
as bacteria, fungi, and viruses (Sharif et al. 2018; Moustafa-
Farag et al. 2020a; Tiwari et al. 2021; Zhao et al. 2021a), and 
also against abiotic stresses such as drought, waterlogging, 
salinity, cold/heat, toxic agents and heavy metals, UV radia-
tion, etc. (Arnao and Hernández-Ruiz 2014, 2019c, 2021b; 
Moustafa-Farag et al. 2020b, c; Altaf et al. 2021a; Arnao 
et al. 2022).

This role as a protective agent has been widely studied in 
many plant species and in multiple stressful situations. Sev-
eral recent reviews on this topic can be consulted (Moustafa-
Farag et al. 2020a, c; Pardo-Hernández et al. 2020; Sharma 
et al. 2020; Nawaz et al. 2020; Ahn et al. 2021; Arnao and 
Hernández-Ruiz 2021a, 2022; Hoque et al. 2021; Tripathi 
et al. 2021; Zhao et al. 2021a, 2022; Giraldo-Acosta et al. 
2022). Generally, phytomelatonin actions through phytome-
latonin receptor (PMTR1), and it appears to activate meta-
bolic, hormonal, and defense responses, providing the plant 
with greater tolerance against biotic/abiotic stressor (Wei 
et al. 2018a; Wang et al. 2021; Yang et al. 2021; Li et al. 
2022).

The properties of copper as a fungicide and bactericide 
product were discovered to control mildew on the vine by 
Dr. Millardet and Gayon in France, elaborating the “Bor-
deaux formula” in the 1880s (https:// fr. wikip edia. org/ wiki/ 
Bouil lie_ borde laise). Although copper pesticides are one of 
the oldest classes of fungicides, they are still used for the 
management of many different diseases today. The active 
ingredient in all copper-based formulations is the positively 
charged copper ion  (Cu+2). Cu-based products have broad-
spectrum activity against microorganisms due to copper’s 
interaction with nucleic acids, interference with energy 
transport and disruption of enzyme activity and integrity 
of cell membranes. Copper at moderate to high doses can 
become toxic for plants. Diverse copper forms are used for 
plant disease management, such as copper hydroxide, cop-
per oxide, copper oxychloride, and copper octanoate, which 
were formulated to produce low doses of free Cu ions, 
reducing toxicity to plants (Burkhead et al. 2009; Elalfy 
et al. 2021).

Copper excess is highly toxic in plants because it gen-
erates hydroxyl radicals through Fenton reactions, causing 
several damage to lipids, proteins, and nucleic acids, and 
important changes in antioxidative enzymes (Mocquot et al. 
1996; Dra̧zkiewicz et al. 2004). Generally, Cu excess symp-
toms are the reduction of plant biomass, the inhibition of 
root growth, chlorosis, bronzing, and necrosis (Maksymiec 
1997; Pätsikkä et al. 2002; Zhao et al. 2009). Also, tolerance 
mechanisms to decrease the accumulation of Cu ions in cells 
are activated by plants (Burkhead et al. 2009; Lequeux et al. 
2010).

One of the most interesting aspects is the possible role 
of MEL as a protective agent (safener) in treatments with 

pesticides, such as herbicides, fungicides, and others (Hoff-
man 1969). The use of melatonin (MEL) as a natural safener 
against herbicides was first studied in 2013 in rice. That 
safener effect of MEL has also been described by paraquat 
and bentazone, two widely used herbicides (Szafranska 
et al. 2017; Wei et al. 2018b; Ding et al. 2018a; Caputo 
et al. 2020). This safener action against herbicides was pro-
posed in sweetpotato (Ipomoea batatas L.) (Caputo et al. 
2020) treated with the herbicide bentazone (a post-emer-
gence contact diazinone herbicide) used to control annual 
weeds in a variety of crops (Motsenbocker and Monaco 
1991). Bentazone-treated sweet potato seedlings caused 
severe losses (41–75%), but applied together with MEL, 
30% fewer injuries and twice the biomass yield compared 
to treatments with the herbicide alone was observed. The 
authors suggested using MEL as a possible safener in weed 
control. Also, the application of MEL in co-treatments with 
butafenacil (a protoporphyrinogen IX oxidase inhibitor) 
prevented damage by the herbicide on the photosynthetic 
apparatus, improving yields (Park et al. 2013). About 20–30 
herbicide safeners have been developed and applied so far in 
pre- and post-emergence. In recent years, no new safeners 
have appeared due to legal restrictions on the use of syn-
thetic substances in crops.

On the other hand, in some studies combining fungicides 
and MEL, the protective action of MEL has been proven, 
along with a synergistic action against fungal infection. 
Thus, due to the mode of action of MEL as a plant master 
regulator in the redox network (Arnao and Hernández-Ruiz 
2019a, c), regulating reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) levels, joint fungicide, and 
MEL treatments appear to decrease ROS production and 
lipid peroxidation levels, improving fungicidal efficacy. In 
addition, an optimal modulation of the ascorbic acid-glu-
tathione (ASC-GSH) cycle by MEL was verified, increasing 
the levels of ASC, GSH, and antioxidant enzymes, improv-
ing the detoxification capacity of plant cells and being able 
to metabolize the fungicide with minimal collateral dam-
age. Thus, according to some authors, MEL makes plants 
"smarter" to withstand stressful phytotoxic conditions (Yan 
et al. 2019).

In this paper, we present a study of the protective effect 
of MEL in mungbean seedlings primed with the fungicide 
copper oxychloride (F). The action of MEL on root and aer-
ial growth; also the chlorophyll and carotenoid content, the 
membrane damage, and the antioxidant activity in roots and 
leaves have been measured. Also, the effect of MEL and/or 
F on the hormonal profile in roots and leaves was presented. 
A proposal of MEL as a safener molecule for plants in F 
treatments was proposed.

https://fr.wikipedia.org/wiki/Bouillie_bordelaise
https://fr.wikipedia.org/wiki/Bouillie_bordelaise
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Materials and Methods

Chemicals

The chemicals, solvents (methanol, ethanol, acetone, 
acetonitrile, and ethyl acetate) and reagents used were 
from Sigma-Aldrich Co. (Madrid, Spain). Milli-Q system 
(Milli-Q Corp, Merck KGaA, Darmstadt, Germany) ultra-
pure water was used. The fungicide (F) used was cop-
per oxychloride  (H6Cl2Cu4O6) from Sigma-Aldrich Co. 
(Madrid, Spain).

Plant Material

Seeds of mungbean (Vigna radiata L., Fabaceae) were 
sterilized with 10% sodium hypochlorite, for 5 min with 
gentle agitation. Then, the seeds were washed 3 times with 
distilled water. Fifty seeds were placed in Petri dishes 
containing four filter paper disks. There were at least 
three biological replicates per treatment. The following 
hydropriming treatments with fungicide (F) and melatonin 
(MEL) were applied in seeds: distilled water (C), 0.3 mM 
fungicide (F0.3), 3 mM fungicide (F3), 30 mM fungi-
cide (F30), combined with 20 μM melatonin (MEL20), 
or 100 μM melatonin (MEL100). The petri dishes were 
placed in a controlled chamber in darkness at 22 ℃, 
allowed to germinate for 4 days.

Then, 45 seedlings per treatment were transferred to 
trays (15 plants per tray) containing vermiculite as an inert 
substrate. Trays were initially irrigated with 500 mL of 
water and 3 mL of an NPK universal liquid fertilizer and 
the third and fifth day of growth with two water irriga-
tions of 200 mL. Trays were placed in a controlled cham-
ber with a photoperiod light/darkness (18/6 h) equipped 
with 18-Watt fluorescent white light lamps (PAR: 35.6 μE/
m2·s), at 24 ℃. Then, three samples (root, stem, and leaf) 
of 10-day-old seedlings from each treatment were frozen 
in liquid nitrogen and stored at −80 ℃ until analysis. There 
were at least three biological replicates per treatment.

Mungbean and copper oxychloride have been selected 
because they are a model plant and a widely used fun-
gicide, respectively. The concentrations of MEL and F 
selected for the study were chosen after a previous study 
of a wider range.

Measurement of Morphological Parameters

Seed germination was recorded after 4 days of treatment 
application. A seed was considered to be germinated if 
its radicle was emerged. The germination percentage was 

calculated from the number of total seeds (50) and germi-
nated seeds in a petri dish.

The length of the roots of 45 seedlings of 4 and 10 day 
old were measured using a graph paper. Also, the number 
of secondary roots and length of stem in 45 seedling of 10 
day old were determinate.

Twenty seedlings of 10 day old were selected to measure 
the fresh and dry weight. The fresh weight of the plants was 
measured on a precision scale. Then, seedlings were dried in 
an oven for 48 h at a temperature of 55 ℃ and its dry weight 
was recorded.

The first two leaves of 15 seedlings per treatment were 
selected and scanned to determine the leaf area, using the 
image processing software ImageJ.

Determination of Chlorophyll and Carotenoid 
Content

Chlorophyll and carotenoid contents were determined 
according to (Lichtenthaler and Wellburn 1983). Briefly, fro-
zen leaf disks (0.3 g) and 5 mL acetone (80%) were ground 
in a mortar to extract pigments. Three consecutive extrac-
tions were made, and the supernatants were collected and 
centrifuged at 10000xg for 10 min at 4 ℃. The absorbance of 
the supernatant was measured at 470, 645, 652, and 663 nm 
to determine the chlorophylls a and b, and carotenoid con-
tent. The determinations were made by triplicate. Results 
were expressed in mg of chlorophyll (a or b) or carotenoid/g 
FW.

Determination of Malondialdehyde

Malondialdehyde (MDA) content was estimated using thio-
barbituric acid (TBA) assay, which is related to cell mem-
brane damage (Niehaus Jr. and Samuelsson 1968). Briefly, 
frozen plant material (0.2 g) was homogenized in 5 mL of 
5% trichloroacetic acid (TCA) and centrifuged at 10000xg 
for 10 min at 4 ℃. The supernatant was collected, and 1 mL 
was added to 4 mL of TCA (20%) and TBA (0.5%) solu-
tion. The resultant solution was heated at 90 ℃ for 30 min, 
and then the solution was cooled in ice and centrifuged at 
10000xg for 10 min at 4 ℃. The changes in absorbance at 
450, 532, and 600 nm were monitored in a Perkin-Elmer 
Lambda-2 UV–visible spectrophotometer (Überlingen, Ger-
many). A standard curve with MDA was made, and results 
were expressed in µg MDA/g FW. The determinations were 
made by triplicate.

Determination of Electrolyte Leakage

Electrolyte leakage (EL) was determined according to 
(Hatsugai and Katagiri 2018), obtaining information on the 
integrity of cell membranes. Measurements were obtained 
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using a conductivity meter (Bante Instruments, Shanghai, 
China) and expressed in % of EL (EL1/EL2·100%). Frozen 
plant material (0.2 g) was immersed in 8 mL of distilled 
water. The initial EL measurement was performed after leav-
ing the samples for 1 h at room temperature (EL1). The final 
EL measurement of the samples was recorded after an hour 
in a boiling water bath (EL2). The determinations were made 
by triplicate.

Determination of Hydrophilic Antioxidant Activity

Hydrophilic antioxidant activity (HAA) was determined 
according to (Arnao et al. 1999). This method is based on 
the ability of the antioxidants of a sample to reduce the 
radical cation of 2,2′-azino-bis-3-(ethylbenzothiazoline-6-
sulfonic acid) (ABTS· +), determined by the discoloration 
of ABTS· + and measuring the quenching of the absorbance 
at 730 nm. This activity was calculated by comparing the 
values of the sample with a standard curve of ascorbic acid 
and is expressed as mg of ascorbic acid equivalents/g FW 
(Cano and Arnao 2018). The determinations were made by 
triplicate.

Determination of Melatonin and Phytohormones

MEL content was measured by liquid chromatography with 
fluorescence detection (LC-FLUO) according to (Arnao 
and Hernández-Ruiz 2009c). Briefly, 0.2 g of plant mate-
rial (leaves or roots) was placed in vials with ethyl acetate 
(4 mL) and left overnight (15 h) in darkness with shak-
ing. The extract of each sample was evaporated to dryness 
under vacuum using a SpeedVac (ThermoSavant SPD11V, 
Thermo-Fisher Sci, Waltham, MA, USA) coupled to a refrig-
erated RCT400 vapor trap. The dry residue was redissolved 
in methanol (1 mL), filtered (0.2 µm), and analyzed. A Jasco 
liquid chromatograph Serie-2000 (Tokyo, Japan) equipped 
with an online degasser, binary pump, auto sampler, thermo-
stated column, and a Jasco FP-2020-Plus fluorescence detec-
tor were used to analyze the endogenous MEL. A Waters 
Spherisorb-S5 ODS2 column (250 × 4.6 mm) was used. 
The mobile phase consisted of water:acetonitrile (80:20) at 
a flow rate of 0.5 mL/min. The fluorescence detector was 
programmed with an excitation value of 280 and 350 nm of 
emission. The data were analyzed using the Jasco Chrom-
NAV v.1.09.03 Data System Software (Tokyo, Japan). MEL 
identification was carried out by comparing the excitation 
and emission spectra of standard MEL with the correspond-
ing peak of MEL in the samples. MEL quantification was 
determined using a standard curve, and data were expressed 
as mg MEL/g FW. The determinations were made by 
triplicate.

The determination of phytohormones was carried out 
by Q-Exactive LC–MS/MS according to (Villanova et al. 

2017). Briefly, 0.1 g of fresh plant material (leaf or root) 
was extracted twice with 1 mL of cold (4 ℃) extraction 
mixture of methanol:water (80:20) and separated by cen-
trifugation (20000xg, 15 min). Pooled supernatants were 
passed through a Sep-Pak Plus-C18 cartridge (SepPak Plus, 
Waters, USA) and evaporated to dryness. The residue was 
resuspended in 1 mL of methanol:water (20:80). Filtered 
extracts (10 µL) were injected into a U-HPLC–MS system 
consisting of an Accela Series U-HPLC (ThermoFisher Sci-
entific Waltham, MA, USA) coupled to a Q-ExactiveMass 
Orbitrap Spectrometer (ThermoFisher Scientific) using 
heated electrospray ionization (HESI) interface. Mass spec-
tra were obtained using the Xcalibur software version 2.2 
(ThermoFisher Scientific). For quantification of the plant 
hormones, calibration curves were constructed for each ana-
lyzed component (1, 10, 50, and 100 µg  L−1) and corrected 
for 10 µg  L−1 deuterated internal standards. The determina-
tions were made by triplicate.

Statistical Analysis

All the data were graphically illustrated using SigmaPlot 
program version 14 (SYSTAT Software Inc., California, 
USA). Analysis of variance was performed using IBM SPSS 
Statistics 22.0 (IBM, New York, USA). All data are repre-
sented as mean ± standard error (SE) values. The statistical 
significance was considered for p values less than 0.05 in 
ANOVA and a post-hoc with Duncan Test.

Results

Melatonin Alleviated the Harmful Effects 
of Fungicide on Morphological Parameters

An extensive set of germination and growth assays in mung-
bean to determine the possible safener properties of MEL 
against chemical stress induced by the fungicide copper 
oxychloride (F) were conducted. In the seed germination 
test, no significant differences in germination in the differ-
ent treatments were observed, presenting a germination per-
centage greater than 96.6% (see Table S1 in supplementary 
material).

The root length was measured in 4- and 10-day-old seed-
lings (Fig. 1). In the absence of F, MEL exerts a beneficial 
effect on root length, clearly observed at 4 days in 20 μM 
MEL, increasing the root length by 15–20%, compared to 
control (C) (Fig. 1A). In the presence of F, root length was 
severely affected at 3 and 30 mM F, but not at lower F treat-
ment (F0.3). In co-treatments (F + MEL), MEL improved 
root length at 20 and 100 µM in lower F treatment, but a sig-
nificant effect of MEL at 3 mM F and 100 µM MEL at 4 days 
was observed (Fig. 1A). In addition, significant differences 
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in root length in 10-day-old seedlings were also obtained in 
the 30 mM F and 100 µM MEL co-treatments when com-
pared to the F alone treatment. In 10-day old seedlings, the 
positive effect of MEL in 0.3 mM F treatment was observed 
(Fig. 1B).

Fresh and dry weights were determined in 10-day-old 
seedlings (Fig. 2). MEL treatments improved both param-
eters (FW and DW), both in the absence and in the presence 
of the F. It is observed that the increasing concentrations of 
F significantly decreased the values of FW and DW, MEL 
significantly increased both parameter in a concentration 

depending on way except for F30ME20 in FW, being these 
values in FW around 7% at 0.3 and 30 mM F and 14% at 
3 mM F (Fig. 2A), and DW up to 23% in treatments with 
F30 (Fig. 2B).

Figure 3 shows the effect of MEL and F on parameters 
such as leaf area, stem length, and secondary root number in 
10-day-old seedlings. It can be observed how the presence of 
F negatively affects all of them, having MEL co-treatments 
a clear safener effect, so in the leaf area at 0.3 mM F only, 
compared to its counterpart (Fig. 3A), respect to stem length 
both treatments with MEL improved significantly to F 0.3 y 

Fig. 1  Root length of 4-day-old (A) and 10-day-old (B) seedlings of 
Vigna radiata L. treated with distilled water (C, white bars), mela-
tonin (MEL, 20 or 100  µM, yellow bars), fungicide (F, 0.3, 3, or 
30 mM, blue bars), and yellow-blue bars represent the co-treatments. 
Data are represented as means ± SE (n = 45). Different superscript let-
ters indicate statistically significant differences at p < 0.05 (Color fig-
ure online)

Fig. 2  Fresh (A) and dry weight (B) of 10-day-old seedlings of Vigna 
radiata L. treated with distilled water (C, white bars), MEL (MEL, 
20 or 100  µM, yellow bars), fungicide (F, 0.3, 3, or 30  mM, blue 
bars), and yellow-blue bars represent the co-treatments. Data are rep-
resented as means ± SE (n = 20). Different superscript letters indicate 
statistically significant differences at p < 0.05  (Color figure online)
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30 (Fig. 3B), and in the number secondary roots both MEL 
treatments improved them (Fig. 3C).

Melatonin Protects Photosynthetic Pigments at Low 
Fungicide Concentrations

A set of biochemical tests were carried out on roots and leaves 
of mungbean seedlings subjected to stress by F, and the effect 
of MEL was analyzed. The effects of co-treatment (F + MEL) 
were studied in photosynthetic pigments (Fig. 4). In chloro-
phyll-a (Chl-a) only the combination 0.3 mM F + 100 µM MEL 
showed significant results compared to only F hydroprimed 
seedlings, while the chlorophyll-b content increased not only 
in the 0.3 mM F + 100 µM MEL combination but also in both 
MEL only treatments (Fig. 4A and B). The F had a decreas-
ing effect on the contents of Chl-a and Chl-b, but not in a 
concentration-dependent manner, decreasing total Chls levels 
by a maximum approximately of 17% with 30 mM F com-
pared to control without treatments (Fig. 4C). Only in the case 
of 0.3 mM F, a significant protective effect of MEL100 was 
observed on Chl-a, Chl-b, and total Chl contents, but also in 
the latter case, a slight effect was also observed with MEL20. 
These protective effects, only at low F, are possibly due to the 
fact that, at high concentrations of F, the protective system is 
overloaded and does not work properly. Respect to carotenoids, 
the presence of MEL alone increases their contents, but no 
significant effect is showed in co-treatment with F (Fig. 4D).

Membrane Damage is Reduced by Melatonin

Malondialdehyde (MDA) is a final product of lipid peroxida-
tion that can be determined by TBA assay. MDA content in 
leaves and roots of 10-day-old seedlings by each treatment 
is shown in Fig. 5. Figure 5A shows that when the higher 
concentration of F is applied, the highest value of MDA 
is obtained, being 42% higher than control without treat-
ments, reflecting lipid peroxidation damage caused by the 
F in leaves. Only in the combination F30MEL20, a protec-
tive effect of MEL is observed against the F. In the roots 
(Fig. 5B), compared to only F-primed plants, MEL priming 
significantly decreased the MDA contents, a maximum value 
of 16% for F30MEL20 treatment. The protective effect of 
MEL against the F followed this order F30MEL20 > F3M
EL20 = F0.3MEL20 = F30MEL100 > F0.3MEL100 > F3M
EL100.

Protection of Membrane Integrity by Melatonin 
in Fungicide‑Stressed Seedlings

Electrolyte leakage (EL) is a useful parameter to determine 
membrane operativity. In both leaves and roots, EL was 
clearly increased by F due to its damage in membranes, and 
significantly decreased by the protective action of MEL, in 
a concentration-dependent manner (Fig. 6).

Fig. 3  Leaf area (A), stem length (B), and number of secondary roots 
(C) of 10-day-old seedlings of Vigna radiata L. treated with distilled 
water (C, white bars), MEL (MEL, 20 or 100 µM, yellow bars), fun-
gicide (F, 0.3, 3, or 30 mM, blue bars), and yellow-blue bars repre-
sent the co-treatments. Data are represented as means ± SE (n = 15 
to Fig.  3A, n = 45 to Figs.  3B and C). Different superscript letters 
indicate statistically significant differences at p < 0.05  (Color figure 
online)
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Antioxidant Activity is Compromised by Fungicide 
but Restored by Melatonin

Hydroprimed seeds with MEL significantly change the 
antioxidant activity of roots and leaves of 10-day old seed-
lings (Fig. 7). In leaves, in the absence of F, MEL at both 
concentrations (MEL20 and MEL100) showed an increase 
in the antioxidant capacity (Fig. 7A). Only the F30 treat-
ment caused a significant decrease in antioxidant activ-
ity. The co-treatments with MEL increased the values of 
antioxidant activity, especially at 100 μM MEL. A similar 
behavior appeared in roots, with a gradual response in the 
co-treatments at 0.3, 3, and 30 mM F, in both MEL treat-
ments (Fig. 7B).

Phytohormone and Melatonin Content are 
Differently Affected in Roots and Leaves

MEL content in leaves and roots of 10-day-old seedlings 
grown from hydroprimed seeds in the different treatments 
was determined (Fig. 8). In leaves (Fig. 8A), the endog-
enous MEL content was 0.3 µg/g FW approximately (C). 

The presence of F (F0.3, F3, and F30) produces an increase 
in endogenous melatonin compared with the control (C). In 
roots (Fig. 8B), increased amounts of MEL in the absence 
of fungicide were measured due to exogenous MEL treat-
ments (MEL20 and MEL100), and natural endogenous MEL 
content was around 0.7 µg/g FW (C). The presence of F at 3 
and 30 mM decreased MEL contents in roots, but its content 
was recovered in exogenous MEL treatments, especially at 
100 μM. A higher MEL content in 0.3 mM F + 100 μM MEL 
(F0.3MEL100) than in its respective treatment without F 
(MEL100) was found, which points to a possible stimulat-
ing effect of MEL biosynthesis due to F. In the roots, co-
treatments with 100 μM MEL, an increase in MEL content 
was observed, being the highest value for the 0.3 mM F 
(Fig. 8B).

Table S2 shows the analysis of several phytohormones 
in the roots and leaves of 10-day-old seedlings grown from 
hydroprimed seeds. In this case, for simplicity, only one 
treatment (3 mM F and 100 μM MEL) was analyzed. As a 
first assessment, note that the contents of the different phyto-
hormones differed significantly between the roots and leaves 
in many cases. Antagonist responses were observed between 

Fig. 4  Chlorophyll a (A), chlo-
rophyll b (B), total chlorophyll 
(C), and carotenoid (D) contents 
of 10-day-old seedlings of 
Vigna radiata L. treated with 
distilled water (C, white bars), 
MEL (MEL, 20 or 100 µM, 
yellow bars), fungicide (F, 0.3, 
3 or 30 mM, blue bars), and 
yellow-blue bars represent the 
co-treatments. Data are repre-
sented as means ± SE (n = 3). 
Different superscript letters 
indicate statistically significant 
differences at p < 0.05  (Color 
figure online)
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both organs for some treatments regarding phytohormone 
contents. Thus, for a simpler visualization, some of the data 
in Table S2 have been shown graphically (Fig. 9).

MEL alone increased the content of abscisic acid (ABA), 
1-aminocyclopropane-1-carboxylic acid (ACC), and total 
cytokinins (CKs) in the leaves, as well as total gibberel-
lins (GAs) in the roots. Fungicide alone increased the con-
tent of CKs, GAs, and jasmonic acid (JA) in the leaves, and 
salicylic acid (SA) and indoleacetic acid (IAA) contents 
were increased in the roots. In the leaves, all the phytohor-
mones except IAA increased their values in the co-treatment 

(F + MEL) compared to control, while in the roots, only IAA 
and SA showed an increase.

In particular, total CKs were increased by MEL and 
higher in co-treatment in the leaves (Fig. 9A). Total GAs 
were decreased by MEL and increased by F and co-treatment 
in the leaves but decreased by fungicide in the roots (Fig. 9C 
and D). IAA content was not changed by MEL, induced by 
F and, in a minor extension, in co-treatment in the roots; but 
in the leaves, the decrease in IAA content by F was reduced 
in co-treatment with MEL (Fig. 9E and F). As for ACC, 
the precursor of ethylene, F and MEL acted synergically to 

Fig. 5  MDA content in leaves (A) and roots (B) of 10-day-old seed-
lings of Vigna radiata L. treated with distilled water (C, white bars), 
MEL (MEL, 20 or 100  µM, yellow bars), fungicide (F, 0.3, 3, or 
30 mM, blue bars), and yellow-blue bars represent the co-treatments. 
Data are represented as means ± SE (n = 3). Different superscript let-
ters indicate statistically significant differences at p < 0.05  (Color fig-
ure online)

Fig. 6  Electrolyte leakage (EL) percentage in leaves (A) and roots 
(B) of 10-day-old seedlings of Vigna radiata L. treated with distilled 
water (C, white bars), MEL (MEL, 20 or 100 µM, yellow bars), fun-
gicide (F, 0.3, 3, or 30 mM, blue bars), and yellow-blue bars represent 
the co-treatments. Data are represented as means ± SE (n = 3). Differ-
ent superscript letters indicate statistically significant differences at 
p < 0.05  (Color figure online)
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minimize ACC content in roots (Fig. 9H). ABA was accu-
mulated in MEL treatment in the leaves, being reduced its 
content by F, but in a minor extension in co-treatment. The 
effects of F and co-treatment were similar in the roots than 
in the leaves (Fig. 9I and J). JA content was decreased by 
MEL but increased by F and more by co-treatment in the 
leaves. On the other hand, in the roots, the opposite effect 
was observed, a decrease in the JA content induced by F 
and in the co-treatment (Fig. 9K and L). Regarding SA, 

co-treatment induced higher SA content, in both leaves and 
roots, with a higher effect in the roots (Fig. 9M and N).

Discussion

Effect of Cu‑Fungicide on Plants

In most studies with toxic agents such as Cu-fungicides, 
plants are continuously exposed to specific concentra-
tions of the toxic agent, assessing the plant’s physiological 
response. In our case, we developed an experimental model 
in which the toxic agent (copper oxychloride) was in contact 
with plant tissues from the beginning of its development. 

Fig. 7  Antioxidant activity in leaves (A) and roots (B) of 10-day-old 
seedlings of Vigna radiata L. treated with distilled water (C, white 
bars), MEL (MEL, 20 or 100 µM, yellow bars), fungicide (F, 0.3, 3, 
or 30  mM, blue bars), and yellow-blue bars represent the co-treat-
ments. Data are represented as means ± SE (n = 3). Different super-
script letters indicate statistically significant differences at p < 0.05  
(Color figure online)

Fig. 8  Melatonin content in leaves (A) and roots (B) of 10-day-old 
seedlings of Vigna radiata L. treated with distilled water (C, white 
bars), MEL (MEL, 20 or 100 µM, yellow bars), fungicide (F, 0.3, 3, 
or 30  mM, blue bars), and yellow-blue bars represent the co-treat-
ments. Data are represented as means ± SE (n = 3). Different super-
script letters indicate statistically significant differences at p < 0.05  
(Color figure online)
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Thus, the seeds were exposed to Cu-fungicide solutions by 
hydropriming, being able to integrate Cu ions in tissues, to 
subsequently monitor its effects on plant development dur-
ing the initial days.

The applied F does not show any negative effect on the 
germination rate (Table S1), in a similar way that mungbean 
seeds treated with copper sulfate (Verma et al. 2011), but 
inhibition in the development of seedlings was measured. 
Thus, roots showed a noticeable decreasing growth con-
cerning control seedlings without F, being higher for higher 
concentration of F, at 4- and 10-day-old seedlings (Fig. 1). 
This inhibition action of F can be seen also in other organs 
such as leaf, stem, and secondary roots (Fig. 3). By observ-
ing the fresh and dry weight of the seedlings, we could also 

see this inhibitory effect respecting control (Fig. 2). How-
ever, it should be noted that, of the three concentrations of 
F applied, the lowest (0.3 mM) hardly shows inhibition or 
appears slightly in almost all the parameters studied.

Effect of Melatonin and Cu‑Fungicide Co‑Treatments 
on Plants

Co-treatments of F and MEL (F + MEL) showed a positive 
effect in most parameters, showing the effect in a concen-
tration-dependent manner. Practically in all the parameters 
studied, the presence of MEL together with the F induced 
growth in the roots, especially in 0.3 mM F (Fig. 1), in 
fresh weight and dry weight at the three concentrations of 

Fig. 9  Phytohormone content of 
10-day-old seedlings of Vigna 
radiata L. treated with distilled 
water (C, white bars), MEL 
(MEL, 100 µM, yellow bars), 
fungicide (F, 3 mM, blue bars), 
and yellow-blue bars repre-
sent the co-treatments. Total 
cytokinin (CK) content in leaves 
(A) and roots (B), total gib-
berellin (GA) content in leaves 
(C) and roots (D), indoleacetic 
acid (IAA) content in leaves 
(E) and roots (F), 1-aminocy-
clopropane-1-carboxylic acid 
(ACC) content in leaves (G) and 
roots (H), abscisic acid (ABA) 
content in leaves (I) and roots 
(J), jasmonic acid (JA) content 
in leaves (K) and roots (L), and 
salicylic acid (SA) content in 
leaves (M) and roots (N). Data 
are represented as means ± SE 
(n = 3). Different superscript 
letters indicate statistically sig-
nificant differences at p < 0.05  
(Color figure online)



4928 Journal of Plant Growth Regulation (2023) 42:4918–4934

1 3

Fig. 9  (continued)
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fungicide tested (Fig. 2), and in the leaf area, stem length, 
and number of secondary roots (Fig. 3).

When the mungbean seeds were primed with MEL alone, 
a growth-promoting action was observed on roots, in fresh 
and dry weight, the leaf area, in the number of secondary 
roots (Figs. 1, 2, 3A and B, respectively), but not in stem 
length (Fig. 3B). Thus, the inhibitory action of Cu-fungi-
cide, widely described in many plant species (Mocquot et al. 
1996; Maksymiec 1998; Yruela and Yruela 2009; Lequeux 
et al. 2010), was also observed in our assay in mungbean 
seedlings, where the inhibitory action of F was reversed or 
diminished by the presence of MEL as observed in the co-
treatments for all growing parameters, in a widely described 
action of MEL as a biostimulator compound. Many reviews 
on the biostimulator role of MEL in stress conditions in 
plants can be consulted (Arnao and Hernández-Ruiz 2019b, 
c, d; Menhas et al. 2022; Altaf et al. 2021a; Arnao et al. 
2022; Moustafa-Farag et al. 2020b, c). Similar results were 
obtained in red cabbage seedlings where the toxic effect of 
Cu was not observed in seedlings grown with seeds primed 
with MEL (Posmyk et al. 2008). Also, in Cu-treated cucum-
ber seedlings, several growth and morphological parameters 
were improved in the presence of MEL (Cao et al. 2018).

A common response of plants to excess Cu-fungicide is 
the appearance of chlorosis (Mocquot et al. 1996; Adrees 
et al. 2015; Ambrosini et al. 2018). In our study, the effect of 
F on chlorophyll contents (a, b and total, Fig. 4A, B and C) 
was very noticeable, decreasing up to 20% in its total chlo-
rophyll content at high fungicide concentrations (Fig. 4C). 
Melatonin had a positive effect on Chl-b and total Chls 
contents without the presence of F. In the co-treatments 
(F + MEL), at low F concentration (F0.3 + MEL), a positive 
effect of MEL was observed on the contents of Chl-a, b and 
total, but not at high concentrations of F. Concerning carot-
enoids, MEL alone slightly increased its content in the seed-
ling leaves, having a slightly positive effect on co-treatments 
(Fig. 4D). Our results fit well with existing knowledge about 
melatonin's role in photosynthesis and photosynthetic pig-
ments (Arnao et al. 2022). MEL protected the chlorophyll 
and carotenoid contents in the leaves through two mecha-
nisms: (i) MEL protected from dark-induced senescence in 
barley leaves, preserving chlorophyll contents (Arnao and 
Hernández-Ruiz 2009a, b, c). Later, several studies demon-
strated that MEL promoted a higher level of chlorophylls and 
carotenoids in treated plants compared with control plants 
(Li et al. 2012; Sarropoulou et al. 2012; Szafranska et al. 
2017), and in some algae such as Ulva sp. (Tal et al. 2011) 
and Chara australis (Lazar et al. 2013). MEL downregulates 
key senescence leaf genes, such as senescence associated 
genes (SAG12 and SEN4), and chlorophyll degradation-
related genes such as pheophorbide a oxygenase (PAO), 
stay-green (SGR) and red chlorophyll catabolite reductases 
(RCCR), preserving high chlorophyll contents (Wang et al. 

2012, 2013; Arnao and Hernández-Ruiz 2019c; Arnao et al. 
2022), and (ii) MEL increased α-, β-carotene, lutein, and 
zeaxanthin levels in kiwifruit leaves (Liang et al. 2019). 
Also, several carotenogenesis transcripts, such as 1-deoxy-
D-xylulose-5-phosphate synthase (DXS), 1-deoxy-D-xylu-
lose-5-phosphate reducto-isomerase (DXR), geranylgeranyl 
diphosphate synthase (GGPPS), phytoene synthase (PSY), 
phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), 
carotene isomerase (CRTISO), and chromoplast-specific 
lycopene β-cyclase (CYCB) were upregulated by MEL 
(Xia et al. 2020, 2021). Similar results were shown in other 
plants and microalgae (Chen et al. 2018; Ding et al. 2018b; 
Zhao et al. 2021b, c). Also in tomato fruits, carotenogenesis 
was induced by MEL in an ethylene-mediated mechanism 
(Arnao and Hernández-Ruiz 2020; Sun et al. 2020).

Copper ions provoke oxidative stress and cellular damage 
in membranes as can be seen in Figs. 5 and 6. Malondial-
dehyde (MDA), a final product of lipid peroxidation, and 
electrolyte leakage (EL) values were significantly affected 
by F. Both parameters were increased, in roots and leaves, 
depending on the concentration of F. In contrast, MEL 
decreased the values of MDA and EL, showing a protec-
tive effect of oxidative damage caused by F. Oxidative stress 
caused by F could be determined through the antioxidant 
activity measurements in tissues. Thus, in both roots and 
leaves, MEL increased antioxidant activity values, more sig-
nificantly at higher concentrations of F and more strongly at 
higher concentrations of MEL (Fig. 7). Antioxidant activ-
ity data correlate quite well with endogenous MEL levels 
in 10-day-old leaves and roots. Endogenous MEL contents 
were increased in seed-primed seedlings with MEL (MEL20 
and MEL100) (Fig. 8). In leaves, and to a lesser extent in 
roots, the F showed a stimulating effect on MEL contents 
which is explained by the promoting effect of MEL biosyn-
thesis due to oxidative stress. In multiple stress conditions, 
MEL self-regulates its biosynthesis, increasing the levels of 
biosynthesis enzyme transcripts to cope with oxidative stress 
(Arnao and Hernández-Ruiz 2009b, 2013, 2014, 2019a). 
Also, MEL regulates the homeostasis of the redox network, 
regulating ROS and RNS levels and related key enzyme 
expressions such as nitric oxide synthase-like (NOS-like), 
nitrate reductase (NR), respiratory burst oxidase homo-
logues (RBOHs), ASC-GSH cycle, and antioxidant enzymes 
(superoxide dismutases, catalases, peroxidases, glutathione 
transferases, etc.) (Wang et al. 2012; Wei et al. 2015; Sid-
diqui et al. 2019; Arnao and Hernández-Ruiz 2019c; Yan 
et al. 2020; Altaf et al. 2021b).

Effect of Co‑Treatments on Plant Hormone Contents

In 10-day-old seedlings previously treated through primed 
seeds, new hormonal homeostasis was established. In gen-
eral, MEL-alone treatment (MEL100) induced leaf growth, 
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which could be a response to the increase in total CKs, and 
the number of secondary roots was also increased, possibly 
due to their own MEL action (Figs. 3C and 9B). Although 
the action of F was usually inhibitory in all aspects, it was 
especially in root growth, perhaps for the increase in the 
levels of IAA in the roots by F (Fig. 9F). This inhibitory 
effect was also proven in Arabidopsis thaliana where the 
accumulated auxin in roots by copper excess could explain 
the reduced primary root growth and the increased density 
of short lateral roots (Lequeux et al. 2010). MEL usually 
increases the levels of GAs in roots, but this stimulating 
effect was significantly inhibited by F (Fig. 9D).

Contrary to previous reports (Potters et al. 2009), but 
according to (Lequeux et al. 2010), higher ACC content 
in roots (precursor of ethylene) was not observed in mung-
bean seedlings in the presence of F, which provoked a high 
reduction in ACC contents (Fig. 9H); but in leaves, an ACC 
increased by F and MEL co-treatment was induced (Fig. 9G) 
which could be responsible for the high inhibition in stem 
growth and leaf area (Fig. 3A and B). ABA contents were 
increased by MEL, and curiously decreased by F in leaves 
(Fig. 9I), and in minor extension in roots (Fig. 9J), possibly 
due to the homeostasis accommodation of tissues. Regard-
ing SA and JA, plant hormones are usually involved in biotic 
stress, but they can also have prominence in abiotic stress, 
several changes in their contents can be pointed out. JA con-
tents in leaves were also increased (Fig. 9K) but decreased in 
roots by F (Fig. 9L). SA contents were increased importantly 
in roots by F and co-treatments, and only in co-treatments in 
leaves (Fig. 9M and N). All these data on the plant hormone 
contents help us to explain some physiological responses 
but suffer from the lack of a temporal dynamic study since 
surely this still photo of 10-day-old seedlings shows us just 
a status quo of hormonal homeostasis due to previous treat-
ments on the seeds.

The interpretation of the results of the hormonal analysis 
is not easy, but we have some previous data regarding phy-
tohormones and MEL relationship (Arnao and Hernández-
Ruiz 2018). MEL co-participates in the actions of auxin; it is 
not clear whether it alters endogenous levels of IAA (Arnao 
and Hernández-Ruiz 2021a). MEL activates or inhibits 
growth in primary roots depending on their concentration, 
and promotes rooting, both lateral and adventitious roots, 
which is in accordance with the data of the present work. 
MEL not only acts through changes in auxin-signaling ele-
ments (ARFs and SAUR) and IAA transport genes (AUX1 
and PINs), but also modulates root development transcrip-
tion factors such as WUSCHEL-related homeobox11 
(WOX11) and, in some cases, YUC flavin monooxygenase 
(YUCCA) genes (Mao et al. 2020). The promoting effect 
of MEL in rooting has been extensively studied and widely 
applied (Arnao and Hernández-Ruiz 2017).

MEL upregulated GA biosynthesis genes in cucumber 
germinated seeds under saline stress (Zhang et al. 2014), 
in cotton-germinated seeds (Xiao et al. 2019), and in other 
species, increasing GA levels through the upregulation of 
gibberellins (GA20ox, GA3ox and GA2ox) genes; also, GID 
GA-receptor genes were upregulated, which promoted root 
growth, as can also be seen in our data (Figs. 1 and 9D).

Concerning CKs, exogenous MEL treatments increased 
CK levels in leaves, and roots of F + MEL co-treatments in 
roots (Fig. 9A and B). MEL up-regulates CK signaling genes 
such as ARR- (type A and B) transcription factors, and, 
reciprocally, CK seems to upregulate some MEL biosynthe-
sis genes, improving physiological responses against stress-
ors (Arnao and Hernández-Ruiz 2021a). The MEL–ABA 
relationship is controversial. While in studies in cucumber, 
apple, and cabbage, MEL induced a decrease in ABA level 
through the upregulation of ABA catabolism genes and the 
down-regulation of 9-cis-epoxycarotenoid dioxygenase 
(NCED) gen; in barley, radish, and Elymus mutants, an ABA 
increased by MEL has been described (Arnao and Hernán-
dez-Ruiz 2021a). Our data in mungbean showed an increase 
in ABA level by MEL in leaves, which was diminished by F, 
and a negligible response in roots (Fig. 9I and J).

In the case of the relationship between MEL and ethyl-
ene, there are many studies but almost all of them are about 
ripening and post-harvest fruits. During ripening, MEL 
activated ethylene biosynthesis and several ripening factors, 
improving shelf life and quality parameters of fruits (Arnao 
and Hernández-Ruiz 2020). In many fruits, the ACC oxidase 
(ACO), ACC synthase (ACS) genes, and several ethylene 
signaling elements (EILs and ERFs) were upregulated by 
MEL (Arnao and Hernández-Ruiz 2021a). In our study on 
mungbean seedlings, ACC content increased in leaves and 
roots, with a presumed promotion of ethylene, which in roots 
was diminished by the F (Fig. 9G and H).

Regarding JA and SA, MEL treatments alter its content 
in plant tissues. In Arabidopsis roots, MEL at high concen-
tration inhibited root growth, downregulating JA, CK, and 
brassinosteroid biosynthesis genes, while GAs, ethylene, 
and strigolactone biosynthesis genes were upregulated, 
similarly to our mungbean model (Fig. 9). SA is a plant 
hormone generally involved in biotic pathogen responses. 
In Arabidopsis, Pseudomonas syringae DC3000 infection 
provoked an increase in MEL and SA contents (Lee et al. 
2015). In a study in Nicotiana glutinosa and Solanum lyco-
persicum, MEL increased plant resistance to tobacco mosaic 
virus increasing antiviral response by increasing SA and NO 
(nitrogen monoxide) levels (Zhao et al. 2019). Furthermore, 
a synergistic response between SA and MEL was recently 
suggested (Haydari et al. 2019; Abd El-Naby et al. 2020). 
In our study, although MEL alone did not cause a higher SA 
content, the co-treatment with F marked a clear increase in 
SA, in leaves and roots (Fig. 9M and N).
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Melatonin as a Natural Safener

Based on the above data, MEL improves growth both in 
isolation and in co-treatments with F, slowing down the 
inhibitory processes caused by F, with less inhibition being 
observed at higher concentration of MEL in the different 
treatments with F. In contrast, MEL reduced membrane dam-
age and increased antioxidant activity in leaves and roots, 
after 10 days of growth in primed mungbean seeds. For all 
these reasons, we propose a protective (safener) action for 
MEL such as that produced with synthetic protectors and 
herbicides (Giraldo-Acosta et al. 2022).

MEL was also studied as a safener of fungicides in plants. 
Thus, the application of MEL in co-treatments with the fun-
gicide induced less damage to the plant, and a synergistic 
effect that increased the effectiveness in pathogen protection, 
being able to use lower doses of the fungicide ensuring the 
plant protection (Giraldo-Acosta et al. 2022). The present 
study describes for the first time the safener effect of MEL 
from a copper-based fungicide and copper oxychloride. The 
data show the beneficial effect of MEL on morphological 
and biochemical parameters in mungbean seedlings, thanks 
to its biostimulant effect on growth in response to oxida-
tive stress generated by F. As previously proposed, in the 
co-treatments of MEL and pesticides, the activation of the 
redox network and the specific response of MEL against 
toxic substances results in greater tolerance to the stressor, 
rearranging the homeostasis of the plant, through its hor-
monal and osmoregulatory response. Figure 10 shows an 
outline of the possible synergistic action of MEL and F, 
and their safener function on plants, activating the redox 
network, antioxidative detoxification pathway, and pathogen 

response (Moustafa-Farag et al. 2020a), which translates into 
less damage to the plants (Giraldo-Acosta et al. 2022).

Conclusion

MEL is a natural compound with wide possibilities in agron-
omy and post-harvest. Its action as a biostimulating agent 
and as a regulator of plant hormonal and redox networks 
has suggested interesting possibilities as a protection and 
improvement tool in crops. In this work, we have demon-
strated, in mungbean seedlings, the safener effect of MEL 
against F (copper oxychloride), a widely used fungicide. 
MEL improved growth and hormonal responses to F excess, 
increasing plant tolerance. Its application in crops as a natu-
ral safener together with pesticides (herbicides, fungicides, 
insecticides, etc.) opens up a range of possible uses focused 
on obtaining better resistance and tolerance responses in 
plants. So far, studies of MEL as a protector are very scarce. 
It has been tested in co-treatments with 2–3 herbicides and 
2–3 fungicides, with very interesting results. The data from 
our study and other previous data indicate that MEL exerts 
a biostimulating, detoxifying, and synergistic effect when 
used together with fungicides and others and can be used in 
eco-friendly applications that could reduce pesticide doses.
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Red boxes show the elements involved in the damage produced by 
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gicide which is capable to protect the plant against pathogen disease, 
but also, if it is not correctly detoxified, to produce plant damage  
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