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Abstract
Rhododendron mucronulatum Turcz., distributed throughout the northern region of East Asia has been considered to be an 
alternative natural source of taxifolin (dihydroquercetin) and rutin. The present study was conducted based on a biotechno-
logical approach to develop an environment friendly and efficient system to produce taxifolin and rutin in R. mucronulatum 
microshoots, using different thidiazuron (TDZ) treatments (0.1; 0.5; 2.5 µM) in combination with various types of lighting 
including fluorescent (FL) and light-emitting diode (LED) (R/B− 80% red + 20% blue; 5LED-20% red + 20% blue + 20% 
green + 20% yellow + 20% white). The highest number of shoots per explant was obtained under 0.5 µM TDZ combined with 
5LED in comparison with FL lighting. Among shoot clusters obtained under different lighting types and TDZ concentrations, 
a considerable increase in fresh and dry weight was observed in ones cultivated on medium, supplemented with 2.5 µM TDZ 
under FL and 0.5 µM TDZ at R/B or 5LED. The content of total chlorophylls in R. mucronulatum microshoots increased on 
TDZ-free medium under FL lighting, whereas, the TDZ treatment decreased chlorophylls concentration at FL and 5LED. 
The use of 0.1 µM TDZ at 5LED decreased the ratio of chlorophylls a + b to carotenoids and led to the highest accumulation 
of taxifolin and rutin, quercetin, hyperoside, and avicularin. Thus, it has been demonstrated that the application of combined 
action of LED and TDZ has great potential in terms of propagation efficiency, biomass accumulation, and taxifolin and rutin 
production in R. mucronulatum microshoots.

Keywords Biomass accumulation · HPLC analysis · In vitro culture · Phenolic compounds · Photosynthetic pigments

Introduction

Taxifolin (dihydroquercetin) and rutin have a broad range of 
physiological activities (Pharmacopoeia of people’s republic 
of China 2005). Taxifolin has angioprotective, antioxidant, 
detoxification, hepatoprotective (antitoxic), radioprotective, 
anti-edema, antitumor effects, and stimulates the processes 
of regeneration of the gastric mucosa. Rutin is of strongly 
pronounced angioprotective effect, improves vascular micro-
circulation, prevents premature aging, and protects against 
allergic reactions (Gene et al. 1996; Hasan and Ahmad 1996; 
Reynolds and Martindale 1996; Zhong and Ben 1999). 

Moreover, recent studies have shown that taxifolin and rutin 
can be natural sources of potential anti-COVID-19 drug can-
didates (Di Pierro et al. 2021; Prasansuklab et al. 2021). 
Industrial production of taxifolin and rutin is based on the 
use of the plant raw materials. Taxifolin is obtained from 
Siberian larch (Larix sibirica Ledeb.) or Dahurian larch (L. 
dahurica Turcz.). The process of extracting a target sub-
stance from larch wood is very laborious and requires the 
use of a large amount of toxic organic extractants, such as 
ethyl acetate, acetone, hexane, or gasoline, which is incom-
patible with such a concept as eco-friendly production. In 
addition, the raw material base for obtaining taxifolin of 
plant origin is shrinking from year to year due to the massive 
harvesting of larch and forest fires. The choice of raw materi-
als for the production of rutin is especially important. The 
buds of Japanese Sophora currently used for this purpose are 
not promising because of scarcity, and moreover, the use of 
buckwheat green mass for the production of rutin requires 
extensive areas of fertile soils for sowing.
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R. mucronulatum Turcz. (Ericaceae), a winter-hardy 
species native to the Russian Far East, Northern China, 
Mongolia, Japan, and Korea, can be an alternative source 
of taxifolin and rutin of natural origin. This shrub is highly 
valued as an herb in folk and traditional medicine (Pharma-
copoeia of People’s Republic of China 2005; Mok and Lee 
2013). Essential oils, phenolic acids, and flavonoids have 
been isolated and identified in different part of R. mucronu-
latum among them taxifolin and rutin is found to be the 
main active constituents (Kim et al. 1996; Fu et al. 2012). 
Moreover, flavonoids identified in R. mucronulatum exhib-
ited high aldose reductase inhibitory activity and can be a 
useful natural source in the development of a novel agent 
against diabetic complications (Mok and Lee 2013). Anti-
oxidant and tyrosinase inhibitory effects of R. mucronulatum 
leave extracts were shown (An et al. 2005). The inhibitory 
activity of taxifolin glycoside from R. mucronulatum roots 
on dendritic cell responses and the effect on anti-atopic der-
matitis in mice ware reported (Kim et al. 2008; Ahn et al. 
2010). Moreover, flavonoids, including taxifolin, isolated 
from R. mucronulatum roots are considered as new anti-
oxidative and anti-inflammatory agents (Choi et al. 2011).

A biotechnological method of taxifolin and rutin produc-
tion based on plant tissue culture can solve the problems 
associated with the renewability of raw materials and eco-
friendliness of production, and serve as an efficient substi-
tute system to obtain desired natural products. In addition, 
in vitro produced plants are independent of different external 
factors like geographical and seasonal variations; they pro-
vide a continuous and standardized supply of metabolites 
with homogenous quality and yield in comparison to the 
traditional production (Nadeem and Ahmad, 2019). Sus-
pension or hairy root culture is usually used for secondary 
metabolite production, but these methods have shown their 
ineffectiveness concerning secondary metabolites of rho-
dodendrons (Taura et al. 2018). The microshoot culture of 
rhododendrons can be an alternative system for the produc-
tion of secondary metabolites. For instance, the essential oil 
accumulation in R. tomentosum Harmaja bioreactor-grown 
microshoots have been established; however, the study on 
the elicitation of biosynthesis with biotic and abiotic elici-
tors tested revealed their inability to enhance the production 
of target substances (Jesionek et al. 2018).

Current research is focused on developing a system 
based on the application of thidiazuron (TDZ) and light-
emitting diodes (LED) as stimulators of phenolic produc-
tion. In previous work, the stationary microshoot cultures 
of R. mucronulatum based on TDZ treatment as a trigger 
of shoot morphogenesis have been established (Novikova 
et al. 2020). TDZ, phenyl urea, is the most suitable plant 
growth regulator (PGR) for rapid and effective in vitro 
propagation (Kundu and Gantait 2018; Novikova and Zay-
tseva 2018). Moreover, TDZ was shown to affect not only 

endogenous cytokinin and auxin production but the level 
of secondary metabolites and essential oils in many medic-
inally important plants (Liu et al. 2007; Wannakrairoj and 
Tefera 2012; Ali et al. 2018). In addition to the effects of 
plant growth regulators, changes in physical factors such 
as lighting conditions can modulate in vitro plant metabo-
lism. The application of LEDs allows obtaining different 
light spectra regulating the photosynthesis and metabolic 
activities, as well as optimal morphogenesis pathways for 
in vitro cultivation of each species (Gupta and Jatothu 
2013; Kim et al. 2004a, b, c). The present research aims 
to study the effect of TDZ and light sources of the different 
spectrum (fluorescent and LED) on plant growth param-
eters, biomass accumulation, contents of photosynthetic 
pigments, and secondary metabolites, including taxifolin 
and rutin in R. mucronulatum shoot culture.

Materials and Methods

Plant Material

Microclones of R. mucronulatum were maintained in a col-
lection of the Laboratory of Biotechnology (CSBG RAS, 
Novosibirsk, Russia) according to our previous study (Zay-
tseva and Novikova 2018) on Anderson’s medium (AM) 
(Anderson 1984) containing 0.6% Bacto® agar (PanReac®, 
Barcelona, Spain), 3% sucrose (Shostka Chemical Reagent 
Factory, Shostka, Ukraine) supplemented with 1.0 μM zeatin 
(plant cell culture tested, BioReagent, Sigma-Aldrich®, St. 
Louis, MO). The isolated explants consisting of shoot apex 
and two nodes with axillary buds were transferred to plant 
growth regulator-free AM (AM0) and cultured on fresh AM0 
during two passages of 4 weeks each, and these shoots were 
utilized for the experiments. The pH of the medium was 
adjusted to 5.0 before autoclaving (121 °C; 1.05 kg  cm−2). 
Plant growth regulators (PGRs) were added to the medium 
post-autoclaving. The cultures were maintained in culture 
jars (15 mL medium per vessel) at 23 ± 2 °C under cool 
white fluorescent light (Philips, Pila, Poland) at an intensity 
of 40 μmol  m−2  s−1 with a 16-h photoperiod.

TDZ Treatments

Single-node microcuttings isolated from R. mucronulatum 
microclones were used as explants for current experiments. 
The explants were cultured on AM0 (control) and AM 
supplemented with various TDZ (plant cell culture tested, 
BioReagent, Sigma-Aldrich®) concentrations (0.1, 0.5, 
2.5 μM) for 8 weeks according to the previous study without 
elongation stage (Novikova et al. 2020).
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Lighting Treatments

The explants cultured with use of different TDZ treatments 
were maintained at uniformly controlled 42 µmol  m−2  s−1 
photosynthetic photon flux density (PPFD) with a 16-h pho-
toperiod under cool-white fluorescent lamps (Philips, Pila, 
Poland) or LEDs of two variants (LED-SIB, Russia): 80% 
red (660 nm) + 20% blue (450 nm) (R/B) or 20% R + 20% 
B + 20% green (530 nm) + 20% yellow (590 nm) + 20% 
white (460, 560 nm) (5LED). Spectral distributions of LEDs 
were measured by a spectroradiometer (LI-250A, LI-COR®, 
USA). TDZ-free AM and cool-white fluorescent light (FL) 
served as the control.

Determination of Growth Parameters

After 8 weeks of TDZ treatments under different light qual-
ity, conglomerates of R. mucronulatum microshoot were col-
lected and the number of shoots and leaves per explant, shoot 
length, as well as fresh weight (FW), dry weight (DW), and 
their ratio was evaluated. FW was estimated by weighing the 
plant material immediately after harvesting. DW was deter-
mined by standard drying method (Thamkaew et al. 2021).

Estimation of Chlorophyll and Carotenoid Pigments

Chlorophyll (Chl) a, Chl b, and carotenoids were analyzed 
and calculated, as described by Lichtenthaler and Welburn 
(1983). A batch of 100 mg of de novo conglomerates cul-
tivated for 8 weeks was ground to a fine powder and trans-
ferred to 2-mL Eppendorf tube with 1 mL of 100% acetone, 
and then homogenized for 10 min at 4 °C. The absorbance 
was measured by a spectrophotometer (SF-56, OKB-Spectr, 
Russia) at 440, 644, and 662 nm.

Identification of Phenolic Compounds 
by High‑Performance Liquid Chromatography 
(HPLC)

To study the content phenolic compounds, microshoot con-
glomerates obtained under TDZ and light treatments were 
analyzed by HPLC. The collected samples were air-dried 
in a shadow. For extraction, 100 mg triturated sample was 
placed in a closed glass vial with 15 ml 50% water–etha-
nol solution (Chimmed, Russia) and put on a water bath. 
The extracts were filtered through a 0.45 μm cellulose fil-
ter (Interlab®, New Zealand) and were diluted up to the 
required concentration for further analysis.

Phenolic compounds were determined by comparing the 
retention times and absorption spectra (250–370 nm) of 
unknown peaks with the reference standards using Agilent 
1200 Series HPLC with a diode detector and equipped with 
Zorbax SB-C18 column (5 μm, 150 × 4,6 mm) (all from 

Agilent Technologies, Palo Alto, CA, USA). Mobile phase 
A was orthophosphoric acid in water (0.1%) and mobile 
phase B was methanol (Chimmed, Russia). The injection 
volume was 10 μL and flow rate 1.0 mL/min with gradient 
program (0–56 min 0–100% B). Stop time of the analysis 
was 59 min. The investigated samples were analyzed in trip-
licate. As analytical standards, taxifolin (Austrowaren; Aus-
tria), chlorogenic acid, quercetin (Sigma-Aldrich, Germany), 
rutin, avicularin, quercitrin, and hyperoside (Fluka Chemie 
AG, Switzerland) were used. The quantitative determination 
of individual components in the samples was carried out 
using an external standard according to van Beek (2002).

Data Collection and Statistical Analysis

For experiments with TDZ and types of lighting, tree 
replications per treatment were taken into account for all 
experiments. Each replication consisted of 15 explants. To 
determine the growth parameters, a minimum of 30 meas-
urements of each parameter was taken. For estimating pig-
ments and phenolic compound, all measurements were 
repeated three times. Collected data were analyzed using 
two-way analysis of variance (ANOVA) in STATISTICA 
8 software StatSoft Inc., Tulsa, OK). Data were presented 
as means and standard errors (M ± SE). The significance 
between means was tested by Duncan’s means separation 
test (P = 0.05).

Results and Discussion

Effects TDZ and LED on Axillary Shoot Proliferation

Currently, the influence of either the lighting type or plant 
growth regulators on the morphogenesis and growth param-
eters of a wide range of plants is being actively studied (Alri-
fai et al, 2019). In the present study, the combined action of 
TDZ treatments and types of lighting (FL, R/B, and 5LED) 
on axillary shoot development of one-node R. mucronulatum 
explants has been examined. The shoot length and the leaf 
number significantly depended on the type of illumination 
when explants were cultivated on TDZ-free media. LEDs 
negatively influenced the shoot length and the leaf number 
in R. mucronulatum. Thus, under R/B and 5LED lighting, 
the length of newly formed shoots decreased by 2 and 2.5 
fold, respectively, compared with the same conditions under 
FL lighting. This effect could be associated with R and B 
ratio in tested LEDs, since R and B LEDs have been found 
to modulate morphogenesis and the grow in different plant 
taxa at that R LEDs promote elongation but B LEDs inhibit 
it (Gupta and Jatothu 2013). Moreover, the effect of light 
quality is likely to depend on plant species, developmental 
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stage of the plant, and environmental conditions, such as 
photosynthetic photon flux (Kurilcik et al. 2008).

The number of shoots per explant on the TDZ-free 
medium did not conversely depend on the type of lighting. 
However, the addition of TDZ in the nutrition medium and 
5LED lighting with LEDs of the yellow and green spectrum 
along with the R and B has significantly increased the prolif-
erative effect of TDZ, contrary to R/B LED. The maximum 
number of shoots per explant (24.05 ± 4.14) was obtained 
under 0.5 µM TDZ and lighting by 5LED with different 
spectra (Table 1). Thus, TDZ and 5LED had a synergistic 
influence on axillary shoot proliferation.

It is generally known that the use of R and B LEDs are 
the most efficient lighting conditions in micropropagation 
systems for plants; however, their ratio varies among differ-
ent plant species. The R/B LED ratio of 80:20 is considered 
to be one of the optimal for plantlet growth (Nhut and Nam 
2010; Gupta and Jatothu 2013). To our best knowledge, such 
a LED ratio has not been found for rhododendrons. How-
ever, the proliferation of blueberry (Vaccinium corymbosum 
L.) axillary buds, also a representative of Ericaceae, was 
stimulated by LED lighting with a ratio of R and B as 80:20. 
(Hung et al. 2016). On the contrary, in this study, the same 
ratio of R/B LEDs has significantly decreased the prolifera-
tive effect of TDZ leading to suppression of R. mucronula-
tum microshoot proliferation.

In the previous research, the efficient micropropagation 
system of R. mucronulatum with the use of TDZ has been 
developed (Novikova et al. 2020), but the current study 
showed that the additional application of 5LED made it 

more productive in terms of scale propagation. The green 
light plays a special role in plant growth and can penetrate 
more easily into plant tissues than blue or red light (Klein 
1992). Gnasekaran et al. (2021) found the irradiation of 
monochromic green LED to show the same effect on the 
propagation rate of Zingiber officinale Rosc. as irradiation 
by FL. It has been reported that the addition of green LED 
to red and blue promoted the growth of potato seedlings (Ma 
et al. 2015). Moreover, the use of the green spectrum was 
also efficient for in vitro propagation of Gerbera jamesonii 
Bolus ex. Hooker F. and Lamprocapnos spectabilis L., and 
it provided a high number of shoots per explant (Miler et al. 
2019). In the present study, the addition of white, green, and 
yellow LEDs to R and B significantly increased the number 
of shoots per explant of R. mucronulatum, but did not elimi-
nate the shortening caused by TDZ. Thus, the treatment with 
0.5 µM TDZ and cultivation under 5LED resulted in the 
maximum realization of the morphogenic potential of one-
node explants of R. mucronulatum and a fivefold increase in 
the number of shoots per explant compared with the same 
treatment under FL lighting.

Trends in Biomass Accumulation

On TDZ-free medium, the types of lighting influenced bio-
mass accumulation. The maximum FW and DW on AM0 
medium was noted under FL lighting. In contrast to FL, 
LEDs reduced the biomass accumulation and FW/DW ratio 
(Table 2). The presence of TDZ in the culture medium has 
significantly increased the biomass accumulation and FW/

Table 1  Effect of lighting type and TDZ on axillary shoot proliferation of R. mucronulatum 

x Significant at p < 0.05
y Not significant

Lighting type TDZ, µM Shoot number per explant Shoot length, mm Leaves number

FL 0 1.36 ± 0.23 d 16.63 ± 1.55 a 9.63 ± 0.49 a
0.1 9.30 ± 2.16 c 9.09 ± 1.797 b 8.25 ± 0.74 ab
0.5 5.80 ± 2.41 cd 6.66 ± 1.67 bcd 7.30 ± 1.11 bc
2.5 19.10 ± 2.03 b 5.54 ± 0.87 bcd 5.69 ± 0.14 cde

R/B 0 1.84 ± 0.25 d 8.00 ± 0.47 bc 8.32 ± 0.35 ab
0.1 3.45 ± 0.37 d 5.19 ± 0.49 cd 5.94 ± 0.45 cde
0.5 3.73 ± 0.32 d 6.87 ± 0.581 bcd 6.10 ± 0.38 b cd
2.5 0.00 – –

5LED 0 1.60 ± 0.21 d 6.52 ± 0.46 bcd 8.40 ± 0.32 ab
0.1 18.65 ± 3.95 b 4.15 ± 0.55 d 4.30 ± 0.39 e
0.5 24.05 ± 4.14 a 6.85 ± 0.99 bcd 5.35 ± 0.66 de
2.5 6.72 ± 1.03 cd 3.17 ± 0.34 d 4.22 ± 0.45 e

Significance of two-way ANOVA
‘lighting type’  +  + x  +  +  +  + 
‘TDZ’  +  +  +  +  +  + 
‘TDZ’ ´ ‘lighting type’  +  +  +  + ns y
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DW ratio under all types of lighting. The highest FW, DW, 
and FW/DW were obtained under FL lighting and adding 
2.5 µM TDZ in the nutrient medium. At the same time, a 
high level of FW and DW were observed when explants 
were cultivated under R/B and 5LED and in the presence 
of 0.5 µM TDZ, but the FW/DW ratio was 2.5-fold lower 
than at FL.

An increase in FW and DW under high TDZ concen-
tration has also been shown in TDZ-induced shoot cul-
tures of Scutellaria alpine L. (Grzegorczyk-Karolak et al. 
2015). This trend of the TDZ effect is associated with the 
well-known property of this PGR at high concentrations to 
result in hyperhydricity of regenerants (Dewir et al., 2018; 
Novikova and Zaytseva 2018). In the present study, LEDs 
were found to decrease FW/DW ratio and that is possibly 
correlated with in vitro hyperhydricity of R. mucronulatum 
shoots. This effect has been also observed by Muneer et al. 
(2018) when R and B LEDs have been shown to play a sig-
nificant role in alleviating damage, caused by hyperhydricity 
formed under FL in carnation genotypes. At the same time, 
the influence of the lighting type on FW, but not on DW of 
R. mucronulatum was detected in the recent study. Miler 
et al. (2019) have also shown that lighting conditions did 
not affect the dry matter of Chrysanthemum grandiflorum, 
Heuchera hybrida, Ficus benjamina L., and Lamprocap-
nos spectabilis L. Moreover, it was found that a significant 
increase in FW and DW of in vitro-grown Vaccinium corym-
bosum L. cultured under 80R/20B LEDs was achieved only 
when cytokinin (zeatin) was added to the medium (Hung 
et al. 2016). The same synergistic effect of optimal TDZ con-
centration and LED lighting was noted in R. mucronulatum 

biomass accumulation. Since LEDs and TDZ modulate the 
endogenous cytokinin biosynthesis, as well as plant metabo-
lism generally (Mok et al. 1987; Ruzic and Vujovic 2008), 
these changes can result in biomass accumulation. Thus, to 
achieve maximum R. mucronulatum biomass harvest, the use 
of 0.5 µM TDZ and R/B or 5LED lighting is recommended.

Changes in Photosynthetic Pigment Content

The PGRs and light quality directly affect the endogenic 
plant metabolism promoting the synthesis of numerous 
important primary and secondary metabolites with the 
participation of photosynthetic pigments. In the present 
study, the type of lighting and the addition of TDZ in vari-
ous concentrations had a significant effect on the content of 
the photosynthetic pigments. The highest content of chlo-
rophylls was observed in R. mucronulatum microshoots 
cultured on AM0 under FL lighting in contrast to R/B and 
5 LED (Table 3). The spectrum of the lighting used had a 
great influence on the content of photosynthetic pigments. 
It was reported that white LED lighting promoted higher 
chlorophyll content than R/B LEDs in the shoot culture 
of Moluccella laevis L. grown on the medium with PGRs 
(Zielińska et al. 2020). In Zingiber officinale var. rubrum, 
total chlorophyll and carotenoid were higher under white, 
blue, green, and purple (400–660 nm) LEDs than the red 
only (Gnasekaran et al. 2021).

In spite of the fact that TDZ has been reported to 
increase the chlorophyll content through in vitro culture of 
Dianthus caryophyllus L. (Genkov et al, 1997) and Bryum 
argenteum Hedw. (Sabovljevic et al. 2010), in current 

Table 2  Effect of lighting 
type and TDZ on biomass 
accumulation in R. 
mucronulatum shoot culture

x Significant at p < 0.05
y Not significant

Lighting type TDZ, µM FW, mg DW, mg FW/DW

FL 0 0.062 ± 0.008 bcd 0.015 ± 0.004 abc 4.33 ± 0.19 cd
0.1 0.026 ± 0.009 d 0.004 ± 0.001 cd 6.5 ± 0.27 bc
0.5 0.091 ± 0.027 bcd 0.013 ± 0.004 abc 7.0 ± 0.32 bc
2.5 0.344 ± 0.106 a 0.026 ± 0.008 a 13.2 ± 0.47 a

R/B 0 0.010 ± 0.002 d 0.003 ± 0.001 d 3.3 ± 0.16 d
0.1 0.098 ± 0.014 bcd 0.023 ± 0.005 ab 4.3 ± 0.22 cd
0.5 0.149 ± 0.025 b 0.026 ± 0.003 a 5.7 ± 0.26 bcd
2.5 0.033 ± 0.012 d 0.004 ± 0.001 cd 8.25 ± 0.43 b

5LED 0 0.006 ± 0.001 d 0.002 ± 0.000 d 3.0 ± 0.14 d
0.1 0.054 ± 0.016 cd 0.008 ± 0.002 cd 6.75 ± 0.35 bc
0.5 0.125 ± 0.034 bc 0.024 ± 0.007 ab 5.2 ± 0.24 bcd
2.5 0.015 ± 0.004 d 0.002 ± 0.001 d 7.5 ± 0.39 b

Significance of two-way ANOVA
‘lighting type’  +  + x ns y Ns
‘TDZ’  +  +  +  +  +  + 
‘TDZ’ ´ ‘ lighting type’  +  +  +  +  +  + 
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study, TDZ-induced increase of chlorophyll content in R. 
mucronulatum shoot culture was noted under R/B LED 
lighting only. Moreover, the presence of TDZ in the nutri-
ent medium reduced the chlorophyll content both at FL 
and at 5LED lighting. (Table 3). On the other hand, under 
R/B LED lighting, TDZ increased the total chlorophyll 
content, mainly due to an increase in the chlorophyll b 
content. The maximum content of carotenoids was noted 
in the presence of 0.1 µM TDZ under R/B LED lighting 
(Table 3). The same effect of LED-induced growth and 
carotenoids production has been noted in Digitalis purpu-
rea L. leaf tissue (Kumar Verma et al. 2018).

The value of the ratio of the chlorophyll sum to carot-
enoids is one of the indicators of plants stress, which acti-
vates the defense response of the plant triggering the gene 
expression modulating the biosynthesis and accumulation 
of the secondary metabolites. In R. mucronulatum, this 
parameter did not significantly change during cultivation 
on AM0 at FL and R/B lighting but decreased under 5LED 
lighting (Table 3). For the most part, the presence of TDZ 
decreased the (a + b)/carotenoids ratio, shifting it towards 
an increase in the carotenoid content. The minimum 
(a + b)/carotenoids ratio was noted during cultivation on 
AM supplemented with 0.1 µM TDZ under R/B and 5LED 
lighting. Thus, this type of treatment is assumed to cause 
the most pronounced stress in R. mucronulatum micro-
shoots and can enhance secondary metabolite production.

Response of Phenolic Compounds to TDZ and LEDs

The production of a wide range of flavonoids is possible by 
controlling the type and concentration of exogenic PGRs, as 
well as lighting conditions (Ibrahim and Jaafar 2012). The 
content of the main phenolic compounds including chloro-
genic acid, dihydroquercetin, quercetin, hyperoside, rutin, 
avicularin, and quercitrin was analyzed by HPLC in extracts 
of R. mucronulatum microshoots.

The highest levels of the phenolic compounds tested 
were noted in microshoots cultivated under 5LED lighting, 
except chlorogenic acid. At the same time the maximum 
levels of taxifolin, rutin, quercetin, hyperoside, and avicu-
larin were detected in the extracts of microshoots treated 
by 0.1 µM TDZ, and maximum quercitrin content was 
observed in the extracts of microshoots from TDZ-free 
medium. However, the trend of TDZ action was found to 
be different in FL and LEDs lighting conditions. The phe-
nolic compounds content in extracts of microshoots treated 
by FL only was at a low level, except for chlorogenic acid 
(Table 4). Under FL lighting, the presence of 0.5 µM TDZ 
more than doubled the flavonoid content, and taxifolin, 
quercetin, and rutin—threefold compared with the con-
trol variant. In contrast, the content of chlorogenic acid 
decreased in the presence of TDZ or under FL and both 
LED types. Under R/B LED lighting, the content of phe-
nolics in microshoot extracts cultivated on AM0 increased, 

Table 3  Effect of lighting type and TDZ on photosynthetic pigment content in FW of R. mucronulatum in vitro shoot culture

x Significant at p < 0.05
y Not significant

Lighting type TDZ, µM Chlorophyll, mg  g−1 Carotenoids, mg  g−1 (a + b)/carotation

a b a + b

Fl 0 0.71 ± 0.03 a 1.07 ± 0.05 a 1.78 ± 0.08 a 0.19 ± 0.01 b 9.36
0.1 0.20 ± 0.01 d 0.31 ± 0.02 e 0.51 ± 0.03 de 0.11 ± 0.01 d 4.63
0.5 0.32 ± 0.02 bc 0.44 ± 0.01 d 0.75 ± 0.03 c 0.10 ± 0.01 d 7.50
2.5 0.09 ± 0.01 e 0.14 ± 0.00 g 0.23 ± 0.01 g 0.02 ± 0.00 f 11.50

R/B 0 0.37 ± 0.02 b 0.30 ± 0.01 e 0.59 ± 0.03 d 0.06 ± 0.00 e 9.83
0.1 0.41 ± 0.02 b 0.59 ± 0.03 bc 1.01 ± 0.05 b 0.26 ± 0.01 a 3.88
0.5 0.27 ± 0.01 c 0.31 ± 0.02 e 0.58 ± 0.03 d 0.10 ± 0.01 d 5.50
2.5 0.38 ± 0.02 b 0.52 ± 0.03 c 0.90 ± 0.05 b 0.15 ± 0.01 b 6.00

5LED 0 0.45 ± 0.02 b 0.65 ± 0.03 b 1.10 ± 0.05 b 0.17 ± 0.01 b 6.47
0.1 0.14 ± 0.01 e 0.17 ± 0.01 g 0.31 ± 0.02 f 0.08 ± 0.00 d 3.88
0.5 0.28 ± 0.01 bc 0.47 ± 0.02 cd 0.75 ± 0.03 c 0.09 ± 0.00 d 8.33
2.5 0.16 ± 0.01 e 0.26 ± 0.01 f 0.43 ± 0.02 e 0.10 ± 0.00 d 4.30

Significance of two-way ANOVA
‘lighting type’  +  + x  +  +  +  +  +  + 
‘TDZ’  +  +  +  +  +  +  +  + 
‘TDZ’´ ‘lighting type’  +  +  +  +  +  + ns y
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Table 4  Effect of lighting types and TDZ on content of phenolic compounds in extracts of R. mucronulatum in vitro shoot culture

Chlor acid chlorogenic acid, Ta taxifolin, Q quercetin, Hy hyperoside, Avi avicularin, Qtr quercitrin
x Significant at p < 0.05
y Not significant

Lighting type TDZ, µM Chlor acid, 
mg  g−1 of 
DW

Ta, mg  g−1 of 
DW

Q, mg  g−1 of 
DW

Hy, mg  g−1 of 
DW

Rutin, mg  g−1 
of DW

Avi, mg  g−1 of 
DW

Qtr, mg  g−1 of 
DW

FL 0 4.91 ± 0.01 a 6.41 ± 0.02 j 0.83 ± 0.02 l 4.51 ± 0.02 j 4.87 ± 0.01 j 11.90 ± 0.01 h 5.26 ± 0.04 g
0.1 1.91 ± 0.02 g 8.46 ± 0.02 f 1.15 ± 0.02 k 4.72 ± 0.02 i 4.97 ± 0.03 i 11.64 ± 0.03 i 7.54 ± 0.06 f
0.5 4.87 ± 0.02 a 19.16 ± 0.03 b 3.38 ± 0.02 f 11.77 ± 0.05 g 11.21 ± 0.02 e 11.85 ± 0.04 hi 6.96 ± 0.03 f
2.5 1.47 ± 0.02 h 9.16 ± 0.02 d 2.70 ± 0.01 g 4.34 ± 0.03 k 3.93 ± 0.03 k 11.73 ± 0.03 ij 4.51 ± 0.07 h

R/B 0 4.49 ± 0.01 b 8.84 ± 0.03 e 5.87 ± 0.09 c 14.95 ± 0.05d 14.01 ± 0.05 d 31.11 ± 0.05 b 23.76 ± 0.07 c
0.1 2.46 ± 0.01 e 7.63 ± 0.05 g 3.92 ± 0.01 e 12.29 ± 0.03f 8.02 ± 0.04 g 26.15 ± 0.04 e 10.61 ± 0.03 e
0.5 2.42 ± 0.01 e 6.89 ± 0.02 i 2.24 ± 0.03 h 8.43 ± 0.02 h 6.17 ± 0.03 h 14.59 ± 0.09 g 5.33 ± 0.04 g
2.5 2.75 ± 0.02 d 3.49 ± 0.03 l 2.06 ± 0.03 i 14.68 ± 0.03 e 14.26 ± 0.04 c 17.28 ± 0.04 f 3.69 ± 0.05 i

5LED 0 2.24 ± 0.01 f 5.81 ± 0.02 k 7.64 ± 0.04 b 15.19 ± 0.02 c 16.61 ± 0.01 b 28.88 ± 0.03 c 37.31 ± 0.70 a
0.1 3.02 ± 0.03 c 23.40 ± 0.02 a 8.11 ± 0.01 a 28.66 ± 0.05 a 23.58 ± 0.04 a 49.45 ± 0.07 a 24.47 ± 0.03 b
0.5 2.26 ± 0.02 f 11.51 ± 0.02 c 5.25 ± 0.02 d 16.44 ± 0.03 b 10.9 ± 0.03 f 27.24 ± 0.04 d 22.74 ± 0.03 d
2.5 1.07 ± 0.03 i 1.04 ± 0.02 m 1.33 ± 0.01 j 4.64 ± 0.03 i 2.76 ± 0.04 l 3.71 ± 0.06 k 1.08 ± 0.4 j

Significance of two-way 
ANOVA

‘lighting type’  +  + x  +  +  +  +  +  +  +  +  +  +  +  + 
‘TDZ concentration’  +  +  +  +  +  +  +  +  +  +  +  +  +  + 
‘TDZ concentration * 

‘lighting type’
ns y  +  +  +  +  +  +  +  +  +  +  +  + 

Fig. 1  Chromatogram of a water–ethanol extract of R. mucronula-
tum microshoots cultivated on TDZ-free AM and FL lighting (a) 
and 0.1  µM TDZ and 5LED (b). X-axis—retention time, min; on 

Y-axis—detector signal, in units of optical density. The peak number: 
(1) Chlorogenic acid; (2) Taxifolin; (3) Hyperoside; (4) Rutin; (5) 
Avicularin; (6) Quercitrin; (7) Quercetin. Bar—10 mm
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compared with FL lighting, except for chlorogenic acid. 
However, the addition of TDZ in the tested concentrations 
reduced the content of all investigated flavonoids in the 
extracts (Table 4). Under 5LED lighting, the content of 
quercetin, hyperoside, rutin, and quercitrin increased at 
0.1 µM TDZ and decreased under higher TDZ concentra-
tions (Fig. 1).

It is known that light quality significantly affects the 
production of secondary metabolites, especially, those 
with strong antioxidant activities, such as phenolics 
(Alrifai et al. 2019). The modulating effect of LEDs has 
been studied both in vivo and in vitro. For example, when 
growing broccoli (Brassica oleracea L.), it was demon-
strated that the exposure by R LED enhanced quercetin 
production, compared with supplementary B or white LED 
(Steindal et al. 2016). In contrast, Cyclocarya paliurus 
Batal. grown in vivo under B (456 nm) LED accumulated 
higher total phenolic compounds, specifically kaempferol, 
isoquercitrin, and quercetin, compared with white LED 
light. It was shown that B (456 nm) LED induced a signifi-
cant increase in the accumulation of phenolic metabolites 
in vitro (Kawka et al. 2017). The same trend was noticed in 
Schisandra chinensis Turcz., Aronia melanocarpa Michx, 
and Verbena officinalis L. tissue culture (Szopa and Ekiert 
2016; Kubica et al. 2017; Szopa et al. 2017, 2018). The 
lighting R. mucronulatum shoot culture 5LED significantly 
increased taxifolin, quercetin, and rutin, as well as querci-
trin, hyperoside, and avicularin, production in microshoot 
extracts.

The flavonoid biosynthesis in in vitro cultures has been 
found to be modulated significantly by exogenous auxins and 
cytokinins (Abbas et al. 2021). It was reported that auxins 
decrease quercetin production in the cell culture of Astra-
galus missouriensis Nutt., by contrast, cytokinins positively 
affect quercetin production (Ionkova 2009). Moreover, opti-
mal combination of PGRs enhances accumulation of querce-
tin in Citrullus colocynthis (L.) Schrad. culture (Tanveer 
et al. 2012). TDZ is known to induce notable changes in the 
metabolism of endogenous cytokinins and auxins; therefore, 
it could affect phenolic content. However, currently, there 
are only a few reports on TDZ-induced accumulation of phe-
nolic compounds. TDZ-induced maximum phenolic and fla-
vonoid content was detected in shoot cultures of Ajuga brac-
teosa Wall. ex Benth. and Linum usitatissimum L. (Ali et al. 
2018; Khan et al. 2020). In the present study, the treatment 
by low TDZ concentrations enhanced the flavonoid produc-
tion in R. mucronulatum. Moreover, the synergistic effect of 
TDZ and LED on flavonoid production was demonstrated. 
These results are consistent with the reported significant 
increase in total phenolic content after culturing callus of 
Cynara cardunculus L. subsp. scolymus (L.) Hegi Fiori. on a 
medium containing the lowest of tested TDZ concentrations 
(Abbas et al. 2021).

Conclusions

The present study has revealed the regulating potential of 
the light quality (FL, R/B, and 5LED) in combination with 
TDZ during the process of R. mucronulatum in vitro shoot 
culture to enhance the synthesis of secondary metabolites, 
including taxifolin and rutin. It was found that light quality 
and TDZ possessed a synergetic effect on key parameters, 
such as plant growth, biomass accumulation, contents of 
photosynthetic pigments, and flavonoids. The combina-
tion of 0.1 µM TDZ and 5LED was found to be optimal to 
promoting maximum taxifolin and rutin accumulation, as 
well as quercetin, hyperoside, and avicularin content. This 
approach makes it possible to achieve 2.34% of the taxifolin 
yield from the dry mass. To our best knowledge, this is the 
first report on taxifolin and rutin production based on TDZ-
derived R. mucronulatum microshoot culture.
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