Journal of Plant Growth Regulation (2022) 41:742-780
https://doi.org/10.1007/500344-021-10337-y

=

Check for
updates

Light-Quality Manipulation to Control Plant Growth
and Photomorphogenesis in Greenhouse Horticulture: The State
of the Art and the Opportunities of Modern LED Systems

Roberta Paradiso'® - Simona Proietti?

Received: 14 October 2020 / Accepted: 1 February 2021 / Published online: 23 March 2021
© The Author(s) 2021

Abstract

Light quantity (intensity and photoperiod) and quality (spectral composition) affect plant growth and physiology and interact
with other environmental parameters and cultivation factors in determining the plant behaviour. More than providing the
energy for photosynthesis, light also dictates specific signals which regulate plant development, shaping and metabolism, in
the complex phenomenon of photomorphogenesis, driven by light colours. These are perceived even at very low intensity by
five classes of specific photoreceptors, which have been characterized in their biochemical features and physiological roles.
Knowledge about plant photomorphogenesis increased dramatically during the last years, also thanks the diffusion of light-
emitting diodes (LEDs), which offer several advantages compared to the conventional light sources, such as the possibility to
tailor the light spectrum and to regulate the light intensity, depending on the specific requirements of the different crops and
development stages. This knowledge could be profitably applied in greenhouse horticulture to improve production schedules
and crop yield and quality. This article presents a brief overview on the effects of light spectrum of artificial lighting on plant
growth and photomorphogenesis in vegetable and ornamental crops, and on the state of the art of the research on LEDs in
greenhouse horticulture. Particularly, we analysed these effects by approaching, when possible, each single-light waveband,
as most of the review works available in the literature considers the influence of combined spectra.
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NP Net photosynthesis

NPQ Non-photochemical quenching

PAR Photosynthetically active radiation

PHOTs Phototropins

PHYs Phytochromes

PPFD Photosynthetic photon flux density

PPE Phytochrome photoequilibrium

Pfr Phytochrome far red

Pr Phytochrome red

PSI Photosystem I

PSII Photosystem 11

Ptot Total amount of phytochrome

R Red

SD Short day

S/R Shoot/root ratio

SLA Specific leaf area

UVRS UV resistance Locus 8

VLFR Very-low-fluence response

WL White light

WF White fluorescent

ZTL/FKF1/LKP2 Zeitlupe/Flavinbinding Kelch Repeat,
F-BOX1/LOV Kelch Protein2

Introduction

Light is one of the main environmental parameters regulat-
ing plant physiology throughout the entire plant life cycle,
as plants use light as both energy source for carbon fixa-
tion in photosynthesis (assimilative function), and signal to
activate and regulate many other key processes related to
plant growth and development (control function) (Devlin
et al. 2007).

As their life depends on the assimilative function of light,
plants evolved fine light-sensing mechanisms to maintain
and maximize photosynthetic performance and fitness dur-
ing their life span. Through these mechanisms, plants accli-
mate to a given light environment by means of adjustments
of photosynthetic biochemistry (e.g. Rubisco content and
change in PSII and PSI ratio), leaf anatomy (e.g. chloroplast
size and distribution) and morphology (e.g. leaf surface and
thickness), to maximize light harvesting and CO, capture
(Terashima et al. 2006; Athanasiou et al. 2010; Kono and
Terashima 2014; Vialet-Chabrand et al. 2017). On the other
hand, the control function of light acts as an environmental
signalling, perceived by a very sensitive detection system,
regulating the plant photomorphogenetic responses, includ-
ing the transition from a development stage to the next (Dev-
lin et al. 2007). For instance, light induces the breaking of
seed dormancy and drives the seedling development from a
dark- to a light-grown status, inducing the cotyledon expan-
sion and the development of chloroplasts (de-etiolation),
enabling the photosynthesis and the achievement of the

autotrophy (Folta and Childers 2008). During plant growth,
light affects stem elongation, branch emission and leaf
expansion, determining the plant architecture, and finally
it drives the transition to flowering, fruit setting and seeds
production (Paik and Huq 2019).

Modern agriculture has evolved towards the application
of advanced technologies for plant cultivation in controlled
environment, in order to guarantee high crop production
even in the presence of unfavourable outdoor conditions, or
in high density cultivation systems. In particular, in green-
house horticulture and in growth chambers (e.g. for nurs-
ery or vertical farming), light is a key parameter, and a fine
control of light quantity (intensity and duration) and quality
(wavelength composition) is a challenge to increase the yield
and value of products. In many countries (e.g. in Northern
Europe), artificial lighting is applied to integrate the natural
light when the solar radiation is insufficient, in terms of both
intensity or duration, or variable during the day (e.g. winter
season). For this purpose, it is mainly used in the view of
the assimilative function to increase the photosynthetic per-
formances, hence the annual productivity and the constancy
of products yield and quality. On the other hand, in other
agricultural areas (e.g. Mediterranean environment), light-
ing conditions remain largely uncontrolled and the seasonal
trend of solar radiation affects the production scheduling,
limiting the crops yield and quality.

Plant productivity is not only influenced by light quan-
tity, as intensity (fluence rate) and duration (photoperiod),
but it is also affected by light quality (wavelength composi-
tion) that influences plant growth and photomorphogenesis,
and tissue composition (reviewed in Ouzounis et al. 2015a).
For instance, red light affects the photosynthetic apparatus
development, and red and blue light are most efficiently uti-
lized for photosynthesis (Paradiso et al. 2011a). Blue light
influences stomatal opening, plant height and chlorophyll
biosynthesis, while far red light stimulates flowering in long-
day plants and red/far red ratio regulates stem elongation and
branching, leaf expansion, and reproduction (Zheng et al.
2019). Finally, green light can drive long-term development
and short-term acclimation to light conditions, acting from a
chloroplast scale to a whole-plant level. Indeed, green light
penetrates deeply in the leaf mesophyll layers and reaches
the lower and inner canopy levels, promoting photosynthesis
in the deepest chloroplasts and in the less irradiated leaves
and providing signals to respond to the environmental irradi-
ance, hence, improving crop productivity and yield (Smith
et al. 2017).

These evidences show the importance of the differ-
ent wavelengths of the light spectrum, alone or in com-
bination, in eliciting morphological and physiological
responses of plants (Devlin et al. 2007; Folta and Childers
2008). However, despite the current knowledge on the
spectral dependence of many plant processes, artificial
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lighting in horticulture is still applied mainly with assimi-
lative or photoperiodic function, and only recent experi-
ences pointed out the possibility to exploit the control
function of light. Particularly, in the last years innovative
lighting sources, based on light-emitting diodes (LEDs),
have been tested in plant cultivation, using different
wavelength combinations not only to enhance plant pho-
tosynthesis and productivity but also to control photo-
morphogenetic responses, including bioactive compounds
synthesis (Bantis et al. 2018).

Recently, the creation of blue LEDs allowed the exten-
sion of the spectrum range and also the realization of
white light LEDs. This revolutionary progress in the
lighting sector was endorsed by the Royal Academy of
Sciences of Sweden, which in 2014 conferred the Nobel
Prize in Physics for the “invention of blue light-emitting
diodes”. Consistently with this acknowledgement, the
General Assembly of the United Nations declared the
2015 as the “International Year of Light and Light-Based
Technologies”, with the aim to promote knowledge on the
potential of light science to contribute to a sustainable
development and to improve the life quality in the World.

Referring to the control function of light in plants,
recent review papers summarized the most relevant
knowledge on the modulatory effects of light spectrum in
horticultural crops, with reference to only recent advances
(Zheng et al. 2019), selected leafy vegetables (Thoma
et al. 2020) or microgreens (Alrifai et al. 2019), LED sys-
tems (Bantis et al. 2018), and utilization in plant factories
in urban horticulture (Kozai 2016). Besides, comprehen-
sive overview deepened the influence of LED lighting on
the biosynthesis of bioactive compounds and crop quality,
in both the visible spectrum (Hasan et al. 2017) and the
UV region (Rai and Agrawal 2017).

Our review summarizes data on plant responses to light
spectrum of artificial lighting in vegetable and ornamental
crops, in terms of growth and photomorphogenesis, and
the state of the art of the research on LEDs in greenhouse
horticulture. It is worthy to emphasize that, because of
the magnitude of data available and the intense research
activity in recent times on this topic, many papers even
including relevant findings probably eluded our literature
inspection. This particularly happened for articles pub-
lished in the last months, when our efforts were mainly
addressed to writing. Just as an example, we point out
the latest collection “Crop Physiology under LED Light-
ing”, published by the journal Frontiers in Plant Science
(https://www.frontiersin.org/research-topics/12923/crop-
physiology-under-led-lighting; Editors Marcelis L., Goto
E., Grodzinski B., Torre S., Wargent J., Bugbee B.).
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The Solar Radiation and the Plant Functions

The quantity and quality of the incident light affect both
the crop yield and the qualitative characteristics of the pro-
duces, by sustaining plant growth and influencing the plant
reproduction, and by driving the primary and secondary
metabolism. The radiation within the 400-700 nm wave-
band of photosynthetically active radiation (PAR) con-
trols the photochemical reactions, converting light energy
in chemical energy, through the synthesis of ATP and
NADPH used to assemble carbon atoms in organic mol-
ecules in the Calvin cycle, in the reduction of NO;~ and
in the synthesis of amino acids and lipids (Malkin and
Niyogi 2000). The useful spectrum for photosynthesis in
the range of PAR is perceived through photosynthetic pig-
ments, chlorophylls, carotenoids as f-carotene, zeaxanthin,
lutein and lycopene, which respond to precise wavelengths
included in this range. Indeed, the light harvesting com-
plex in the thylakoids of chloroplasts includes chlorophyll
a and chlorophyll b, showing the peaks of maximum
absorption at 430, 662 nm, and at 453, 642 nm, respec-
tively (Ouzounis et al. 2015a). Carotenoids are accessory
photosynthetic pigments, harvesting and transferring light
energy to chlorophylls, with absorption peaks in the range
of 400-500 nm, showing a key role in plant protection to
oxidative stress, by the dissipation of excess light energy
absorption by photosystems (Bantis et al. 2018).

The light quantity, as intensity and photoperiod, is per-
ceived by plants through a complex mechanism includ-
ing the light signals perception at the leaf level and their
transduction to target systems that activates molecular
reactions ensuring the fine control of metabolic processes
associated to the induced functions (Paik and Huq 2019).
For instance, minimal variations of photoperiod can trig-
ger a significant advance or delay in specific physiological
responses linked to plant development, such as flower-
ing, tuberization and bud development (Mawphlang and
Kharshiing 2017). Due to the relevance of these essential
functions, plants have developed an endogenous system
for a precise measurement of photoperiod, represented
by circadian rhythms, synchronized with the prevailing
environmental conditions (Battle and Jones 2020). Plant
response to photoperiod is a wide and complex phenom-
enon; comprehensive assays can be found for example in
Johansson and Koster (2019) and in Creux and Harmer
(2019).

Referring to the light quality, the influence of the light
spectrum on plant growth and development has been
highlighted since the last century. Just as a few examples,
already in 1948, Borthwich et al. used coloured glass
filters to provide plants with light of different colours,
highlighting differential responses in plant behaviour in
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relation with the spectral characteristics of light (Kasper-
bauer and Kaul 1996). In 1972, McCree demonstrated that,
at the same light intensity, the photosynthetic efficiency
changes with the wavelength composition and, in the
majority of the species, the most useful wavelengths for
photosynthesis are in the blue and red regions, according
to a trend strictly correlated to the spectrum of absorption
of photosynthetic pigments. Oyaert et al. (1999) tested
coloured polyethylene filters with different B:R and R:FR
ratios on Chrysanthemum morifolium plants, highlighting
the effects of this tool for growth regulation and quality
improvement in ornamental crops.

Nowadays, it is known that the different wavebands of
light spectrum transmit to plant photoreceptors specific sig-
nals inducing the expression of genes related with physi-
ological and metabolic functions (Fukuda 2013; Weller and
Kendrik 2015). The mechanisms underlying the perception
and response of plants to spectral composition of the inci-
dent light are the subject of topical studies, focused on the
role and functions of specific photoreceptors sensitive to dif-
ferent regions of light spectrum (Mawphlang and Kharshiing
2017; Paik and Huq 2019).

Different classes of photoreceptors perceive the wave-
lengths corresponding to blue (B, 445-500 nm), green
(G, 500-580 nm), red (R, 620-700 nm), and far red (FR,
700-775 nm), while specific photoreceptors perceive ultra-
violet (UV) radiation, in particular the UV-A (315-380 nm)
and UV-B (280-315 nm) types (Zheng et al. 2019). A very
important feature of these molecules is represented by the
magnitude of light intensity required to trigger a related
response, since they are usually activated by a lower inten-
sity than that required for photosynthetic processes (Costa
Galvao and Fankhauser 2015). From an operational point of
view, this implies the possibility to regulate photomorpho-
genetic processes through artificial lighting, with relatively
small investments in terms of operating costs.

Photomorphogenesis and Photoreceptors

Plants have evolved sophisticated mechanisms to detect and
respond to light quantity and quality, activating a network
of photosensory pathways which are the basis of photomor-
phogenesis processes. Photomorphogenesis defines plant
morphology and development, phototropic orientation to
light, photoperiodic responses, and it induces the synthesis
of numerous metabolites essential for plant life (Alrifai et al.
2019; Thoma et al. 2020).

The different spectra received from a natural or artificial
source of light strongly influence the plant behaviour, elicit-
ing different metabolic effects. Besides the photosynthetic
pigments, the light perception related to photomorphogen-
esis counts on other specific photoreceptors, independent

to photosynthetic metabolism (Weller and Kendrik 2015).
These are present in different parts of the plant, and the
site of light perception can correspond to the part of the
plant responding to the light stimulus (e.g. chloroplasts for
their own movement), or it can be distant, as light induces
a response by long-distance molecular signals (as in floral
transition) (Costa Galvao and Fankhauser 2015).

Five classes of photoreceptors proteins were characterized
to initiate plant responses to light (Fig. 1). The first class is
represented by the phytochrome family, absorbing R and FR
wavelengths; three different photoreceptor proteins, cryp-
tochromes, phototropins and the ZTL/FKF1/LKP2 complex,
absorb B and UV-A wavelengths; the UVRS is sensitive to
UV-B wavelengths (Wu et al. 2012). These photoreceptors,
except for UVRS, are represented by a family of molecules,
with each member encoded by a different gene and showing
a high degree of similarity with the others.

Higher plants contain multiple phytochromes (phy A to
phy E) (Hughes 2013), three cryptochromes (cryl, cry2 and
cry3), two phototropins (photl and phot2), and one UVRS
photoreceptor. Moreover, a more complex family of B light
absorbing proteins, referred as ZTL/FKF1/LKP2, is defined
by a combination of the activity of photoreceptors and F-box
proteins within the same molecule (Mawphlang and Khar-
shiing 2017).

Phytochromes

Phytochromes (PHYs) have been found and analysed in
plants since 1950 (Borthwick et al. 1952). PHY's are solu-
ble proteins, binding phytochromobilin as chromophores,
absorbing R and FR light, responsible for different plant
light responses (Hughes 2013). Light converts PHY's in two
photoreversible forms in vivo: Pr absorbing R light, with an
absorption peak at 650-670 nm, and Pfr absorbing FR, with
an absorption peak at 705—740 nm. Pr absorbs R light and is
converted to its active form Pfr; on the contrary, Pfr absorbs
FR light and is converted to its inactive form Pr.

The active forms of PHYs translocate from the cytoplasm
to the nucleus to regulate the expression of different genes
linked to the photomorphogenic responses. PHY's can medi-
ate a Very-Low-Fluence Response (VLFR), a Low Fluence
Response (LFR), and a High-Irradiance Response (HIR),
in relation to the intensity of incident light. The VLFR is
activated by extremely low light intensities and very low
levels of Pfr, while higher Pfr levels are needed to induce
a LFR response. Instead, the extended or continuous irra-
diation, with a long exposure to a high light intensity (over
1000 umol m~2), can stimulate HIR. In these processes,
phyA and phyB play major roles. PhyA is responsible for the
VLEFR, given its high sensitivity to R light, and can activate a
response also at very low radiative flux (0.1-100 nmol m~2),
and only a small portion of phyA is converted into its active
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Wavelengths

of light Photoreceptors Plant responses
. %gg’ S;lg—red Germination, De-etiolation, Shade avoidance,
(600-750 nm) Inhibition of stem and petiole elongation,
— PHYs Leaf expansion and flattening, Circadian rhythms,
Flowering, Branching.
; Green _ De-etiolation, Inhibition of stem and petiole elongation,
(530-570 nm) =3 CRYs Leaf expansion, Circadian rhythms, Flowering, Flavonoid
biosynthesis. Response to shade by B/G photoperception.
Blue ) . .
(390-500nm) PHOTSs Leaf flattening, - Phototropism,  Stomatal  opening,
Chloroplast relocation.
UV-A
(320-390nm) _J ZTL/FKF1/LKP2 Circadian rhythms, Flowering.
UV-B oy i .
(290-315 nm) } UVRS De-etiolation, Flavonoid biosynthesis.

Fig. 1 Spectral wavelength specificity of the main plant photoreceptors and related plant photomorphogenesis responses. Phytochromes (PHY?s),
cryptochromes (CRYSs), phototropins (PHOTS), Zeitlupe family proteins (ZTL/FKF1/LKP2), and UV resistance Locus 8 (UVR8)

form (Shinomura et al. 1996). PhyB principally triggers
LFR, responding to low-irradiation conditions (not exceed-
ing 1000 pmol m~2), induced by short exposures to R light.
HIR-type responses can involve both phyA and phyB in rela-
tion to the R or FR portions. In contrast to LFR, HIR and
VLFR do not show R:FR photo-reversibility (Casal et al.
1996). VLFR is implemented during light-induced seed
germination, as well as LFR-type response is characteristic
of seed germination and of responses to short light pulses.
HIRs include de-etiolation and anthocyanin accumulation in
plants. Some authors showed that the response to red wave-
lengths can be induced also by cryptochromes, indicating a
synergy of photoreceptors to control photomorphogenetic
processes (Ahmad et al. 1998; Mas et al. 2000).

The phytochromes photoequilibrium at plant level, calcu-
lated as PPE = Pfr/(Pr + Pfr), is strongly related to the R:FR
ratio of the incident light (Demotes-Mainard et al. 2016).
Spectral composition of the incident light changes during the
day and coherently the R:FR ratio varies from 1.15 to 0.70
(Craig and Runkle 2016; Wang et al. 2020). This value, and
consequently the Pfr:Pr ratio, decrease also along the plant
canopy from the top to the bottom, as a consequence of the
different light exposure and wavelengths penetration. Simi-
larly, a decrease of R:FR and Pfr:Pr ratio occurs in plants
surrounded by nearby vegetation. These shading conditions
induce a complex response defined shade avoidance, includ-
ing stem and petiole elongation, lower leaf mass, stomata
density and chlorophyll content per unit of leaf area, and
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early flowering (Casal 2013). The shade avoidance response
increases the plant survival under unfavourable light condi-
tions; however, it can compromise crop yield when modern
intensive cropping methods, based on high planting density,
are applied (Wang et al. 2020).

Finally, the R:FR ratio also affects the plant mineral nutri-
tion. Nitrogen assimilation is inhibited by a low R:FR ratio,
which affects the activity of key enzymes of nitrogen metab-
olism, such as nitrate and nitrite reductase, and glutamine
synthetase. In contrast, a reduced R:FR ratio increases the
allocation of nutrients to the plant shoot, resulting in a
faster development of the aerial part compared to the roots
(Demotes-Mainard et al. 2016).

Cryptochrome, Phototropins and ZTL/FKF1/LKP2

Cryptochrome family photoreceptors (CRYs) are flavopro-
teins activated by B and UV-A light absorption, identified
in bacteria, fungi, animals and higher plants (Meng et al.
2013). In Arabidopsis, CRYs have a key role in seed ger-
mination, leaf senescence, stress responses and regulation
of transcription; moreover, they can regulate seedlings de-
etiolation and growth in shaded environments, and control
plant height, flowering time and circadian rhythms (Devlin
et al. 2007; Pedmale et al. 2016).

CRYs, in synergic action with PHYs, have been identi-
fied also as receptors of G light, lacking a specific photo-
sensory system for this region of light spectrum. Battle and
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Jones (2020) suggested that CRYs and PHYs can absorb
portions of the G waveband, even though with a lower sen-
sitivity compared to that for B and R wavelengths. Smith
et al. (2017) proposed the G light perception, particularly
the B/G ratio, as an alternative and a fine tuner signalling for
plant reaction to shade, resulting as an additional response
of shade avoidance than the R/FR perception. The current
knowledge suggests that G until 530 nm is included in the
CRYs and phototropins B light response, whereas longer
wavelengths of G-Y (570 nm) promote the inactivation of
B-light-induced CRYs (Battle and Jones 2020), justifying
the antagonist mechanism of G and B on photoperception
by CRYs (Thoma et al. 2020).

Green light can be absorbed also by photosynthetic pig-
ments, underlying the importance of this wavelength for CO,
assimilation and biomass production, and for both long- and
short-term plant responses to environmental conditions
(Smith et al. 2017). The role of CRYs on regulating pro-
cesses linked to circadian rhythms, phototropic responses,
and metabolites accumulation, confers to plants adaptive
advantages and affects important traits associated to produc-
tivity and quality of crop (Giliberto et al. 2005; Mawphlang
and Kharshiing 2017).

Phototropins (PHOTS) are plasma membrane-associ-
ated Serine-Threonine kinases, showing a photoactivation
through phosphorylation induced by B light (Briggs and
Christie 2002; Christie et al. 2015). The function and struc-
ture of PHOTSs were identified in Arabidopsis thaliana, in
which two phototropins, photl and phot2, were character-
ized under a molecular point of view. PHOTSs can respond
to light environment through the control of plant photo-
synthetic process. Indeed, PHOTSs control the movement,
density and rearrangement of chloroplasts in plant leaves,
to enhance the photosynthetic light harvesting and to mini-
mize the photo-damage under low or high light conditions,
respectively. In Arabidopsis mutants, where phototropins
are lacking, a significant reduction of photosynthesis was
observed (Boccalandro et al. 2012), principally induced to
the deficient adjustment of chloroplasts that decreases the
use of photosynthetically active radiation (PAR) by plants.
PHOTs define also the stomatal opening, for the optimiza-
tion of CO, and water exchange (Boccalandro et al. 2012).
Although photl and phot2 show some functional differences
to light responses, they have overlapping functions in plants,
with the photl activation under a larger range of B light
intensity and phot2 activation under higher B intensity.

The family of LOV (Light Oxygen or Voltage) photore-
ceptors was described and defined in Arabidopsis as Zeit-
lupe/Flavinbinding Kelch Repeat, F-BOX1/LOV Kelch
Protein2 (ZTL/FKF1/LKP2), sensitive to B and UV-A wave-
lengths, (Nelson et al. 2000; Somers et al. 2000). Analysis
of genes encoding for these photoreceptors shows differ-
ences between two genetic groups in dicots and monocots

(Taylor et al. 2010), underlining different functions for these
genes. The high level of structural conservation of gene
homologs among monocots and dicots observed indicated
their functional conservation to regulate similar develop-
mental pathways across different species (Yon et al. 2016).
In Arabidopsis, KF1 and LKP2 control circadian rhythm
(Baudry et al. 2010), photoperiodic flowering (Song et al.
2016) and, as soybean GmZTL3 (homolog of Arabidopsis
ZTL) has been suggested to control the timing of flowering
(Xue et al. 2012).

UVR8 Photoreceptors

In addition to the above-mentioned specific photoreceptors
for UV-A radiation, plants can also intercept UV-B radia-
tion by means of the UV RESISTENCE LOCUSS8 (UVRS)
receptors (Wu et al. 2012). UVRS proteins are homodimers
in the cytoplasm, binding monomer of tryptophan with a
chromophore function. In response to UV-B radiation,
these photoreceptors are activated by molecular dissocia-
tion. UVR8 monomers are accumulated in the nucleus where
they perform its regulatory functions (Jenkins 2014). The
UV-B photoreceptors allow plants to counteract the harmful
effects of UV-B inducing changes in gene expression, lead-
ing to morphological adaptations and production of different
metabolites, mostly with antioxidant functions. In addition,
UVRS photoreceptors mediate essential processes such as
stomatal movements, opening and closure (Huché-Thélier
et al. 2015). Furthermore, UVRS defines the chlorophyll a
content in response to UV-B wavelengths, determining vari-
ation of chlorophyll a/b ratio (Jenkins 2009).

Despite the knowledge achieved during the last years on
molecular mechanisms of photomorphogenesis, different
topics remain unclear as the molecular nature and activity
of UVRS photoreceptors, the uncertainty about the pres-
ence in plants of a specific G receptor and the mechanism
of synergic action of different photoreceptors in eliciting
light responses. Since photoreceptors control plant—environ-
ment interactions, more information about their biochemi-
cal characteristics might suggest the lighting scheduling
more efficient to increase plant fitness, yield and quality in
agriculture.

Artificial Lighting in Horticulture: Historical
and Modern Light Sources

Electric lamps have been used for artificial lighting in plant
cultivation for nearly 150 years (Wheeler 2008; Morrow
2008). As might be imagined, plant lighting closely fol-
lowed the paths of lighting for civil use, based on three main
technologies: (1) incandescent lighting, which was refined
by Edison’s invention of the incandescent filament lamp in
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1879; (2) open arc lighting, which typically used carbon
rods and became popular for street lighting in some cities
in the late 1800s and (3) enclosed gaseous discharge lamps,
which were initially developed with mercury vapour in the
late 1800s (Wheeler 2008 and references therein).

Among the different lamp types, each fits with specific
applications, depending on the purpose of lighting. Refer-
ring to assimilation lighting, fluorescent lamps, particularly
those having enhanced blue and red spectra (i.e. cool fluo-
rescent white lamps), are widely used in growth chambers,
together with additional light sources to achieve a sustained
photosynthetic photon fluence. High-intensity discharge
(HID) lamps, such as metal halide (MH) and high-pressure
sodium lamps (HPS), are typically used in greenhouses and
plant growth chambers (Nelson and Bugbee 2014). MH
lamps can be used to totally replace sunlight or partially
supplementing it during periods of low solar radiation. The
inclusion of metal halides during manufacture optimizes
the spectrum of the emitted radiation. Besides, fluorescent
lamps, particularly the white ones, are widely used in phyto-
trons and for in vitro propagation (Darko et al. 2014).

HID lamps have high fluence and a good efficiency in
energy conversion (light emitted per unit of energy con-
sumed) to PAR (until 50%); however, they show some dis-
advantages, including the relevant energy requirement, the
bulky volume and the high operational temperature, which
prevent the placement close to the canopy (even though the
heat emission is used in temperature control in Northern
countries), and the risk inherent the presence of pressur-
ized gas in glass bulbs. In addition, the spectral distribution
shows a high proportion of green-yellow region, significant
ultraviolet radiation, scarce blue and FR, altered and instable
R:FR ratio, and does not allow modulation of light spectrum.
Hence, HIDs are neither spectrally nor energetically optimal.
Besides, they are considered not environmental friendly,
because of CO, emissions and light pollution, particularly
in Northern countries, where greenhouse lighting is widely
spread (Pinho et al. 2012; Battistelli 2013).

Fundamental advances in plant artificial lighting started
in the mid 1980s when tests with light-emitting diodes
(LEDs) begun. LEDs are solid-state semi-conductors and
generate light through electroluminescence and, thus, are
fundamentally different from other lamps used to date in
plants and are the first light source suitable to control light
spectral composition and to regulate intensity. Indeed,
depending on the semi-conductor used, they produce light
at specific wavelengths (colours) of the visible spectrum and
beyond, from 250 nm (ultraviolet C) to 1000 nm (infrared),
in relatively narrow wavebands, offering the possibility of
a targeted compilation of the spectrum. They show higher
energy efficiency compared to the traditional light sources
(Cocetta et al. 2017) and, thanks to the solid state, they are
safer and more robust than lamps with filament, pressurized

@ Springer

gas, or mercury in glass and are suitable to be used at low
temperature (till — 40 °C) and high humidity (Nelson and
Bugbee 2014). The lower heat radiation does not interfere
with controlled climate and, also thanks to the smaller
volume, allows to place the lamps close to the canopy, in
modern multi-layer and interlighting systems. In addition,
they are suitable to be powered by low voltage, with conse-
quent advantages in engineering, and the insensitivity to the
switching frequency determines lower cost for maintenance
and longer duration. Finally, LEDs equipped with driver
chips provide the additional benefits of operational flex-
ibility, suitability for digital control and light protocols (i.e.
daily light integral), while the dimmability makes possible
the simulation of sunrise and sunset.

LEDs duration is determined differently compared to tra-
ditional lamps. Indeed, since this type of light source does
not burn out but only tends to attenuation of intensity over
time, duration is better expressed as time of operation until
70% of the original intensity. Individual high-brightness
LEDs have a predicted lifetime up to 50,000 h (correspond-
ing to about 16.7 years when used an average of 8 h per
day), when operated at favourable temperatures, which is
2-3 times higher than fluorescent and HID lamps (for details
about technical parameters see Nelson and Bugbee 2014).

Despite the numerous advantages, LEDs still present sev-
eral constraints, such as the higher cost compared the tradi-
tional light sources, the difficulty to obtain diffused light and
the risks of eye damage for operators in case of prolonged
exposure (e.g. for UV emission of blue and white LEDs).

Monochromatic Light
and Photomorphogenesis in Vegetable
and Flower Crops

Much of the early work on plant production under LEDs was
conducted by researchers affiliated with NASA (National
Aeronautics and Space Administration of United States)
and aimed to design lighting systems for plant cultivation in
Space, to develop plant-based regenerative life-support sys-
tems for future Moon and Mars colonies (Bula et al. 1991).
Later on, LED lighting systems have been studied to totally
replace traditional light sources in space greenhouses, as
reviewed by Zabel et al. (2016) and Berkovich et al. (2017),
to optimize crop production and quality in Space through
specific light recipes to be used in plant chambers aboard of
space outposts such as the International Space Station (ISS)
(Mickens et al. 2018).

LED:s of different colours can be combined to obtain a tai-
lored light spectrum at the desired intensity to modulate the
different plant functions, providing a useful tool to control
plant growth and photomorphogenesis (Darko et al. 2014).
Accordingly, they can be used for several purposes, such as
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the control of size in potted ornamentals, the scheduling of
flowering in cut flower crops, the strengthening of mecha-
nisms of stress tolerance and the improvement of chemi-
cal composition of plant food (Huché-Thélier et al. 2015;
Singh et al. 2015). In this respect, it is worth noting that,
even though a distinction is often done between assimila-
tion light and control light, the latter also influences the
biomass accumulation. For instance, blue light, which has
an important role in controlling plant height, can improve
photosynthetic capacity per leaf area unit by increasing both
the stomatal opening and the quantum yield. On the other
hand, leaf area itself influences photosynthesis and plant
growth, by determining light interception through the leaf
surface, morphology and orientation. This is particularly
important in noncontinuous canopies (e.g. young plants),
where the incident light is only partially intercepted and
photomorphogenetic responses have a relevant impact on
plant growth and productivity (Hogewoning et al. 2010).
Accordingly, He et al. (2019) highlighted that the impact
of LED light quality on productivity can be linked to the
induced modification of leaf traits more than the change in
photosynthetic performance on a leaf area basis. However,
it has to be taken into account that also the arrangement of
light sources affects the light use efficiency (Paradiso and
Marcelis 2012; Paradiso et al. 2020).

In the early studies, plant response to monochromatic
light was investigated mainly in instantaneous measure-
ments and after short exposure, while data collection on
long-term acclimation of the whole crops started later and
were focused at the beginning on plant adaptability and
growth and yield. Yet, the last generation experiments have
been concentrating on plant metabolism. Particularly, more
than primary metabolism, consisting in essential synthesis
mechanisms directly involved in plants growth, development
and reproduction, current research frequently deals with the
secondary metabolism, responsible for production of minor
compounds, such as carotenoids, phenolics (particularly
anthocyanins and flavonols), ascorbate and glutathione that,
despite the occurrence in low concentrations, contribute to
plant adaptability and acclimation to changeable environ-
ment and tolerance to biotic and abiotic stresses (Thoma
et al. 2020). Typical functions of secondary metabolites are
cell pigmentation, to attract pollinators and seed dispers-
ers, and antioxidant activity, useful in protection against UV
radiation or other stresses. In addition, they are crucial for
nutritional quality of plant food for humans as they display
various beneficial healthy effects, most related to the anti-
oxidant activity.

Many recent researches focused on the identification of
the best combination of light intensity and light quality for
vegetable crops, to promote the most suitable composition
of plant tissue for human nutrition; however, the plethora
of additional environmental (temperature and relative

humidity) or cultivation variables (e.g. fertilization) com-
plicate defining specific light recipes.

The following paragraphs summarises the most relevant
evidences observed in plant growth and photomorphogen-
esis as response to changes in light environment by means of
LEDs, in both vegetable and flower crops, and information
useful to design LED-based lighting systems, depending on
the crop and the desired response. Some details of the most
relevant cited works are given in Tables 1, 2, and 3, for leaf
vegetables, fruit vegetables and flower crops, respectively.
Data on the effects of light spectrum treatments on photo-
synthesis are reported when given; however, they do not
fall within the main topics of this review. Unless it is not
differently specified, all data refer to plants during cultiva-
tion and, for vegetables, chemical composition concerns
the edible part of the plant (e.g. leaves and fruits). In a few
cases, data on in vitro plantlets or on seedlings are reported
for those crops in which LED application focuses on plant
propagation.

Red and Blue Light
Vegetable Crops

Early tests of Space research mainly concerned LED R light
and demonstrated the need for B radiation to obtain a bal-
anced plant growth. Bula et al. (1991) reported that plant
growth of lettuce under R LEDs (660 nm) combined with
B fluorescent lamps (BF, used as source of B before the
invention of blue LEDs) was equivalent to those obtained
under cool-white fluorescent light (CWF) combined with
incandescent lamps (INC, Table 1). Red light determined
better growth compared to B light in lettuce (Yanagi et al.
1996; Table 1). However, in this crop, R alone determined
hypocotyl etiolation, but this effect was prevented by B addi-
tion (10% of total PPFD) (Hoenecke et al. 1992; Table 1).
Accordingly, experiments on wheat confirmed the need for
B radiation to prevent etiolation and demonstrated that seed-
lings grown under R light only did not synthesized chlo-
rophyll, while the addition of B (6% of 500 pmol m~2 s™!
PPFD) reactivated Chl synthesis (Tripathy and Brown 1995).
Besides, it was demonstrated that B added to R improved
plant photosynthetic performance and growth: in pepper
lighted with only R, R+BF and R + FR LEDs compared to
MH lamps, plants showed a better growth under the wider
spectrum of MH, and decreasing growth under R + BF, only
R and R +FR, in the absence of B wavelengths (Brown et al.
1995; Table 2).

Comparing the effects of R LEDs, R+ 1% BF, and
R+ 10% BF to CWF on wheat (24 h photoperiod,
350 pmol m~2 5! PPED), Goins et al. (1997) demonstrated
that plants could complete a seed-to-seed cycle under

@ Springer
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Effects on plant growth, photosynthesis, secondary
metabolites

pmol m~2s~'; DLI;

day length) growth environment, lighting treatments

Lighting conditions: (PPFD

Table 1 (continued)
Leafy vegetables

@ Springer

Decrease

Increase

Cultivar

Species

Kamal et al. (2020)

R:G:B 70:10:20: hypoco-

R:B 80:20, 20:80 vs

PPFD =150
24 h

21 varieties

Microgreens

tyl length, FW, DW, LA

R:B (80:20): min-

R:G:B 70:10:20,
20:10:70

Brassica oleacea, rapa,

Growth chamber

Jjuncea, napus, narinosa

eral, phylloquinone,

a-tocopherol, ascorbic
acid and p-carotene

continuous R light; however, growth and seeds produc-
tion improved when B light was added. Specifically, 1%
BF determined a plant leaf area similar to that under white
light, and 10% B gave the same number of sprouts, while
improving photosynthetic rate and dry matter accumulation.

Yorio et al. (2001) reviewed several previous works and
summarized that in lettuce, spinach and radish under R
LEDs only, dry matter accumulation was lower than under
radiation including 10%BF, at the same total light intensity
(Table 1); however, in NASA studies, the B requirement for
some traits (e.g. stem length) was found to be genotype spe-
cific in some crops (e.g. potato). Accordingly, studying the
effects of 6 levels of B (from 0.1 to 26%) from HPS and MH
filtered light at two intensities (200 and 500 pmol m~2s™")
on lettuce, soybean and wheat, Dougher and Bugbee (2001)
highlighted species-dependent responses and a different sen-
sitivity to the absolute intensity and the proportion of B in
the total PPFD in several traits (Table 1). For instance, stem
length was more influenced by B intensity in lettuce and by
B proportion in soybean. Later, Hogewoning et al. (2010)
found a dose-dependent response to B radiation in plant leaf
area and dry matter accumulation in cucumber (Table 2).

Thanks to the invention of blue LEDs, further researches
confirmed promoting effects of B light on stomatal conduct-
ance (g), as previously shown for photosynthesis, highlight-
ing the role of B radiation in stomatal control in spinach
(Ohashi-Kaneko et al. 2007) and lettuce (Li and Kubota
2009) (Table 1), as well as in other vegetable and flower
crops (same Authors; Tables 2 and 3). Later, van Ieperen
et al. (2012) demonstrated that prolonged plants exposure to
different LED spectra (R or B and their combinations) influ-
enced gas exchange not only through the stomatal opening
but also the stomatal density, underlying the importance of
light composition (and particularly of the B amount) also in
transpiration control and plant water relation.

In fruit production, Samuoliené et al. (2010) reported that
in strawberry, additional R-B light at 7:1 ratio resulted in
bigger fruits with higher sugar content compared to R alone,
which also induced stem elongation and inhibited flowering
(Yoshida et al. 2012; Table 2). In radish, soybean and wheat,
the comparison of 3 types of white LEDs, warm (WaL),
neutral (NL) and cold (CL) light, with 11, 19 and 28% of B,
respectively (PPFD 200 and 500 pmol m~2s~!, same R:FR),
revealed that the lowest B level of Wal. LEDs promoted stem
elongation and leaf expansion, while the highest in CL LEDs
resulted in more compact plants, and stronger differences
among the light sources were found under the lower light
intensity (Cope and Bugbee 2013; Table 2). When grown in
a greenhouse, tomato fresh and dry weights were positively
affected by supplementation of natural light with W or R
LEDs. W light also enhanced the fruit growth rate compared
to monochromatic R or B addition or no supplemented light
(Lu et al. 2012; Table 2). A study with two tomato cultivars
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revealed longer harvest period, and higher number of nodes
and fruits and total fresh weight when 95% R+ 5% B LEDs
were used for intracanopy lighting, compared to natural light
(Gomez et al. 2013; Table 2). Similarly, natural light sup-
plemented with LED white light enhanced a number of leaf
characteristics in strawberry, including leaf photosynthetic
rates, leaf dry mass, area and specific weight; moreover,
average fruit weight and number and soluble solids con-
tent were also favoured by supplemental light (Hidaka et al.
2013; Table 2).

Many results demonstrated that light quantity and qual-
ity interact in determining plant photomorphogenesis. In
cucumber grown in greenhouse with or without light inte-
gration with LEDs, at variable R:B ratios and two daily light
integrals, growth parameters always improved under LED
additional light (Hernandez and Kubota 2014; Table 2). In
particular, no differences were found in plant response to
the R:B ratios at high light intensity, while increasing values
of leaf Chl content and reduction of leaf dry matter accu-
mulation occurred at increasing doses of B at low intensity
(Table 2), suggesting that light recipe in terms of spectral
composition has to be determined considering the intensity
applied. In mini-cucumber, combinations of FR, R and B
by top and bottom vertical LEDs resulted in more than 10%
increase in fruit yield; moreover, plasma light supplemented
with vertical B light from the top of the canopy reduced
plant growth and fruit yield in the first month, while FR
from the top of the canopy increased fruit yield compared
to that from the bottom (Guo et al. 2016; Table 2). In addi-
tion to intracanopy lighting, Song et al. (2016) tested the
impact of different light qualities when applied underneath
the plant canopy and found that lighting from both direc-
tions positively affected the photosynthetic process, espe-
cially under WRB and WB (compared to RB and WRFR)
(Table 2). The authors also reported different mechanisms
of photosynthesis improvement, with intracanopy lighting
increasing stomatal conductance, CO, supply and electron
transport activity, while underneath lighting increasing CO,
assimilation efficiency and excess energy dissipation leading
to higher photosynthetic rate.

Cucumber cultivated under LEDs (14% B, 16% G, 53% R,
17% FR) top lighting or intracanopy lighting showed greater
light use efficiency, leaf expansion and stem growth, but
decreased number of fruits, with higher fruit abortion rate,
and lower flower initiation rate and yield compared to HPS-
HPS and HPS-LEDs top lighting—intracanopy lighting
combinations (Sarkkd et al. 2017; Table 2).

Several studies report inter- and intra-specific differences
with respect to the response to the R:B ratio. The absolute B
light intensity rather than the percentage of B was reported
to control hypocotyl length and stem extension in tomato
(Nanya et al. 2012). Son and Oh (2013) found a decrease
in growth rate in lettuce cultivars with the increase in B
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and UV-A light, while Wang et al. (2016) reported that leaf
photosynthetic capacity and photosynthetic rate increased
with decreasing R:B ratio, along with promoted shoot dry
weight (Table 1). In sweet basil and strawberry, the R:B ratio
of 0.7 was found to be optimal based on a range of analyses
(morphological, physiological and biochemical elements),
among 5 LEDs ratios (0.7, 1.2, 1.5, 5.5) and compared to
white fluorescent light as a control (Piovene et al. 2015;
Tables 1 and 2), whereas previously Folta and Childers
(2008) had observed the greatest growth rate of strawberry
plants under 34% B-66% R, among 4 different B:R ratios
(100-0, 66-34, 34—66, 0-100%). In greenhouse production,
Kaiser et al. (2019) supplied tomato with different R:B ratios
(0, 6, 12 and 24%) in integration to sunlight, which resulted
in an increase in total biomass and fruit number until the
optimum of 12% (Table 2). Naznin et al. (2019) investigated
the effect of R:B ratio in lettuce, spinach, kale, basil and
pepper, and concluded that additional B is essential to pro-
mote growth, pigmentation and antioxidant content of these
vegetables, although the optimal ratio is species dependent
(Tables 1 and 2).

It has been hypothesized that B requirement can vary with
plant age, in accordance with the hypothesis that it responds
to the plant need to balance leaf expansion, to maximise
light interception (which is higher in young plants), while
preventing excessive stem elongation (Cope and Bugbee
2013). This hypothesis agrees with the evidence that leaf
optical properties (absorbance, transmittance and reflec-
tance) depend on leaf ontogenesis (age and position in the
canopy), that influences anatomical and functional param-
eters involved in light absorption, such as pigment composi-
tion (Paradiso et al. 2011a, b; Izzo et al. 2019).

In terms of nutritional quality, application of B light pro-
moted antocyanin and carotenoid accumulation in lettuce
(Stutte et al. 2009; Li and Kubota 2009) and of ascorbic acid
in lettuce and Japanese green mustard (komatsuna), while
these effects did not occur in spinach (Ohashi-Kaneko et al.
2007; Table 1). Irradiation with B increased the concentra-
tion of glucosinolates (beneficial active compounds in Bras-
sicaceae) in cauliflower and of chlorogenic acid (antioxidant
polyphenol) in basil and tomato, while reducing dangerous
metabolites, such as oxalates and nitrates (Ohashi-Kaneko
et al. 2007; Taulavuori et al. 2013) (Tables 1 and 2). Also,
light intensity influenced the biosynthesis of secondary
metabolites, with increasing light intensity resulting in
decrease of amounts of nitrate and oxalate, and increase of
ascorbate (Proietti et al. 2004), as well as an increase in
polyphenols production in herbs (Manukyan 2013).

Fan et al. (2013) reported various responses of non-
heading Chinese cabbage under the influence of mono-
chromatic and dichromatic LEDs (Table 1). Particularly, R
light increased plant height but induced negative effects on
chlorophyll and carotenoid concentration, Y light reduced
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dry mass production, as well as soluble sugar and protein
concentration, G light decreased chl a/b ratio, while B and
RB light decreased plant height but promoted the concen-
tration of soluble proteins, chlorophylls and carotenoids.

Blue and UV wavelengths are known to be effective in
promoting bioactive compounds accumulation in plant tis-
sues by upregulating the expression of synthesis pathways
genes (Hasan et al. 2017). Bian et al. (2015) highlighted
the promoting effects of B, UV-A and UV-B on the syn-
thesis of phenolic compounds in general and anthocya-
nins in particular, and of B, R and UV-B on carotenoids,
in several vegetables. This is in accordance with focused
experience demonstrating that improved accumulation of
phenolics can be achieved through discontinuous applica-
tion of UV-B radiation, without affecting the efficiency
of photosynthetic apparatus (Mosadegh et al. 2018). Blue
light, via the cryptochromes and phototropins, was proved
to drive the synthesis of chlorophylls and anthocyanins in
strawberry (Kadomura-Ishikawa et al. 2013) and of total
phenolics and flavonoids in lettuce (Zhang et al. 2018).

In two basil cultivars grown under LED continuous
spectra, Bantis et al. (2016) reported that the most B and
UV (1%) containing light decreased the shoot/root ratio
and increased total phenolic content, while low R:FR ratio
(highest in R and FR, and high in B, R) had a positive
effect on plant height and enhanced the total biomass pro-
duction compared to FL (Table 1).

In nine tomato genotypes, B supplemented to R light
had positive effect on plant biomass, attenuated upward or
downward leaf curling due to R only and led to increased
soluble protein, chlorophyll and carotenoid concentration
(Ouzounis et al. 2016; Table 2).

No significant effect in carotenoid concentration of let-
tuce was found under B and R LEDs or under HPS lamps
supplementing compared to sunlight (Martineau et al.
2012). However, Ouzounis et al. (2015a, b) reported higher
pigment (chlorophylls and carotenoids) and phenolic (phe-
nolic acids and flavonoids) content in green and red leaf
lettuce under natural light supplemented with B LEDs
compared to natural light with HPS; further, they recorded
increased stomatal conductance and non-photochemical
quenching (NPQ) in green lettuce, while quantum yield
of PSII decreased in red lettuce under supplemented B
light (Table 1).

In potato grown in phytotron under controlled environ-
ment, Paradiso et al. (2019) compared two cultivars and two
light sources, white fluorescent tubes (WF) and R and B
LEDs at 8:1 ratio (RB) (Table 2). Tuber yield was higher
under RB in both the cultivars. Light quality did not influ-
ence the tuber content of starch and total glycoalkaloids,
while it affected differently in the cultivars the protein con-
tent and the profile of glycoalkaloids (anti-nutritional factors
in potato).

Blue component has been recognized at the basis of mor-
phological alteration in several species. In bean, intumes-
cence and oedema in elder leaves were observed at B doses
lower than 10% of total radiation, while in pepper oedema
on leaves and flower buds in plants grown under R +B LEDs
were not reduced by increasing B intensity (Massa et al.
2008). On the contrary, tomato plants under similar R—B
combinations showed a normal leaf development, indicating
that, within the same botanical family, plant sensitivity to
spectral-dependent disorders vary among the species (Massa
et al. 2008). High B proportion combined with small dose
of end-of-day (EOD) FR can suppress intumescence injury
in tomato (Eguchi et al. 2016). In tomato grown in a cli-
matic chamber at PPFD of 200 pmol m~2 s~!, R:B (2:1 ratio)
induced a significant increase of leaf net photosynthesis and
a significant decrease of leaf lamina thickness compared to
WF light (Arena et al. 2016). Trouwborst et al. (2010) work-
ing with cucumber found extremely curled leaves, as well
as higher leaf mass per area and dry mass allocation, but
lower leaf appearance rate and plant height under LED (20%
B:80% R) intracanopy lighting compared with HPS, both
applied to supplement the natural light.

The influence of R or B LED light was investigated
also as a short-term treatment before harvest, in different
vegetables (as example: Wanlai et al. 2013; Kwack et al.
2015; Samuoliené et al. 2017; Kitazaki et al. 2018), as well
as in aromatic herbs (as example: Amaki et al. 2011) and
microgreens (reviewed by Alrifai et al. 2019). In these latter,
recent researches on variation in productivity, nutritive and
functional quality (mineral—carotenoid—polyphenolic pro-
files and antioxidant capacity) in novel microgreens (ama-
ranth, cress, mizuna, purslane) in response to select spectral
bandwidths (red, blue, blue-red) highlighted that optimized
genetic background combined with effective light manage-
ment might facilitate the production of superior functional
microgreens (Kyriacou et al. 2019).

Flower and Ornamental Crops

In ornamental species, plant shape represents a relevant
aspect of ornamental quality hence of commercial value,
and plant size is one of the most important features. Blue
light is known to inhibit stem elongation in many species,
however this response is species dependent, as plant mor-
phological responses to B light, as well as to R:FR ratio, are
associated with differences in the relative contributions of
blue-sensitive photoreceptors (cryptochromes and phototro-
pins) and phytochromes.

Several experiments were carried out in the first years of
testing in the in vitro propagation of orchid species (Table 3).
In Cymbidium lighted with B and R LEDs in growth cham-
ber, B light reduced the leaf growth while increased the chlo-
rophyll content, compared with WF lamps, while the reverse
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effect was observed under R light (Tanaka et al. 1998). In
Oncidium, B, R and FR LEDs in growth chamber increased
leaf number and expansion, chlorophyll content and fresh
and dry weight compared with WF lamps (Chung et al.
2010). In the same species, increasing B (10-30%) over R
LED light in growth chambers increased the dry weight and
protein accumulation compared with WF lamps (Mengxi
et al. 2011). In Paphiopedilum, B LED light in growth cham-
ber determined more compact plants, and lower leaf length
and width compared with CWF light (Lee et al. 2011).

In marigold and salvia seedlings, Heo et al. (2002) inves-
tigated the effects of monochromatic B or R LEDs or mixed
radiation from a WF light with B, R and FR LEDs compared
with WF only (Table 3). Dry weight in marigold increased
under R, WF + R or WF and decreased under B, whereas in
salvia it was greater under WF+ B, WF+R and WF+FR.
Stem length was three times greater in B than in FLR or FL
in marigold and increased in WF 4+ FR while decreased in
R in salvia. The number of flowers in marigold was much
higher in WF+R and WF control (five times greater than in
B or R), while in salvia it varied slightly in the treatments.
Light quality also influenced the duration of the blooming
period in both the species. No flower buds were formed
under monochromic B or R in salvia and WF 4+ FR inhibited
flower formation in marigold.

In roses, B (20%) and R (80%) LED lighting in growth
chamber increased the dry weight proportion allocated to
the leaves, but decreased plant leaf area, plant height and
shoot biomass, without affecting flowering compared to HPS
lamps (Terfa et al. 2012a, b; Table 3).

In poinsettia, 80%B + 20%R LED light reduced the
plant height and the area of leaves and bracts and the leaf
chlorophyll content compared to HPS (5% B), even though
with no influence on flowering time and postproduction
duration, in both growth chamber and greenhouse (Islam
et al. 2012; Table 3). Similarly, in seed annual species
crops (Antirrhinum, Catharanthus, Celosia, Impatiens,
Pelargonium, Petunia, Tagetes, Salvia and Viola) grown
under solar light supplemented with HPS light, increasing
doses of B from LEDs (from 0 to 30% of 100 pmol m~2 s
total PPF) reduced the plant height compared to R in sev-
eral species, and in most of them R + B determined simi-
lar or better global quality than HPS (Randall and Lopez
2014; Table 3). Increasing proportion of B (from 20 to
100%, with R varying from 80 to 0%) reduced plant height
also in rose and chrysanthemum, while it did not affect it
in campanula, compared to R and W light; accordingly,
different responses among the species were found in plant
biomass accumulation (Ouzounis et al. 2014; Table 3).
Beside the morphological effects, higher B radiation
increased the stomatal conductance, without affecting the
rate of photosynthesis, indicating an excessive stomatal
opening compared to the leaf photosynthetic capacity; on
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the other hand, high B doses promoted flavonoids and phe-
nolic acids biosynthesis, confirming the contribution of B
in improving plant response to stress conditions (Ouzounis
et al. 2014).

The influence of B radiation was also studied in photoper-
iodic control of flowering in chrysanthemum, by comparing
4 LED treatments, with increasing duration of light period:
RB(11hR+B),RB+B(11hRB+4hB),LRB+B (15h
RB+4 hB)and RB+LB (11 h RB e 13 h B), in growth
chamber (Jeong et al. 2014; Table 3). Stem length increased
through RB, RB + B, LRB + B and RB + LB treatments, and
flowering occurred only under short light duration with RB e
RB + B, in accordance with the short day (SD) requirement
of the species. As a consequence, in chrysanthemum B light
can be used to promote stem elongation with no inhibition
of flowering even when it is applied in a 15 h photoperiod.

Fukuda et al. (2016) investigated the influence of light
spectrum on growth and flowering and hormones implied
in flowering in petunia (a quantitative long-day plant, LD),
comparing R, B and white (W) LEDs at low (L) and high
(H) intensity (Table 3). Conversely to what expected, R light
drastically inhibited shoot elongation, with a parallel reduc-
tion of giberellin content, while B-promoted stem growth
and giberellin synthesis. Compared to W and B (H and L),
R-H light anticipated flowering, which was prevented in R-L,
where it was restored by night interruption with B but not
by GA application. The Authors concluded that in petunia B
and R light represent signals for stem lengthening promotion
or inhibition respectively, by means of modulation of GA
biosynthesis, and while B is a strong signal for flower initia-
tion, the effect of R depends on the light irradiance, suggest-
ing the existence of a photosynthesis-dependent pathway of
flowering in this species.

Several studies demonstrated that the response to mono-
chromatic B light strictly depends on plant genotype. Indeed,
whereas certain reports founded that monochromatic B
induced the greatest biomass accumulation compared to
wider spectra in some species (like balloon flower, Platyco-
don grandiflorum; Liu et al. 2014), some described inhib-
ited photosynthesis and biomass accumulation under R—B
or broader spectra in others (like lettuce; Wang et al. 2016;
Table 1).

Also in ornamental species, some experiments studied the
effects of light-quality treatments on secondary metabolism,
together with the morphological response. In Dieffenbachia
and Ficus grown in greenhouse, supplemental B plus R
LEDs increased the plant height, but no apparent effect on
sugar, chlorophyll and carotenoid content was observed (Heo
et al. 2010). In chrysanthemum, Jeong et al. (2012) charac-
terized 9 polyphenols and highlighted a promoting effects
of R and G light on polyphenol biosynthesis (Table 3). In
Kalanchoe, supplemental LED B light decreased leaf fresh
weight and increased flavonoid content and antioxidant
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activity compared with WF lamps (Nascimento et al. 2013;
Table 3).

In some pot foliage plants (e.g. Guzmania lingulata), in
which the leaf colour and variegation are the main quality
parameters, additional R and B LED light can be applied
for a limited period at the end of the growing cycle to pro-
mote the synthesis of anthocyanins and carotenoids, while
improving the leaf pigmentation and plant attractiveness,
particularly in northern areas where light intensity might be
a limiting factor (De Keyser et al. 2019).

As in vegetables, in some ornamentals monochromatic
light has been reported to cause leaf curling in many works
(Oda et al. 2012; Hughes 2013; De Keyser et al. 2019). For
instance, in rose the exposure to only R light determines leaf
downwards curling, while B light addition restores the nor-
mal morphology (Ouzounis et al. 2014; Table 3). Light spec-
trum- induced modifications of leaf anatomy, such as those
in leaf thickness, have been proved to depend on changes
in leaf anatomy, and particularly in palisade parenchyma
(Zheng and Van Labeke 2017; Table 3).

Far Red Light and Red:Far Red Ratio
Vegetable Crops

In greenhouse vegetables, essential components of market-
able value are biomass accumulation and product quality,
in terms of both aesthetical aspect and nutritional value. In
early experiments, pepper lighted with R, R+BF and R +FR
LEDs compared to MH lamps, FR addition (corresponding
to a decrease of R:FR ratio) resulted in taller plants with
greater stem mass than R alone, prefiguring the importance
of FR and FR proportion in photomorphogenetic responses
(Brown et al. 1995) (Table 1). Schuerger et al. (1997) exam-
ined structural changes in pepper leaves under R LEDs com-
bined with FR LEDs (FR, 735 nm) or BF lamps (1%B),
compared to MH (20%B) (PPFD 330 pmol m~2 s~!, pho-
toperiod 12 h). Results showed that leaf anatomy depended
more by B level than by R:FR ratio, and the increase of B
increased the cross section and the number of chloroplasts,
with a consequent increase of photosynthetic activity and
biomass accumulation.

Positive effects on plant productivity of photomorphoge-
netic response promoting biomass accumulation were found
in lettuce grown in growth chamber under WF with or with-
out LED light addition: the addition of R did not influence
the dry matter accumulation compared to WF, conversely a
significant increase was observed under FR, which increased
the plant leaf area (Li and Kubota 2009; Table 1).

In tomato and cucumber grown in greenhouse, the
comparison among three lighting treatments in addition
to natural light, HPS, B:R LEDs and B:R:FR LED at

different percentage, showed that B:R determined more
compact plants, with no difference in biomass accumu-
lation compared to HPS, while in B:R:FR the reduction
in plant size was related to an increase in fruit weight
(+ 15% and +21%, respectively) (Hogewoning et al. 2012;
Table 2). These results depended on the effect of FR on
leaf orientation, which improved light interception even
without difference in leaf area and photosynthetic rate. In
accordance, it has been demonstrated in tomato that the
FR amount (also given in brief treatments at the end of
day) influenced the stem architecture (i.e. length of inter-
nodes and leaf insertion angle) with consequent reduc-
tion of leaves self-shading, which has a relevant impact on
light penetration and light use efficiency (Sarlikioti et al.
2011). Later, other experiments on cucumber highlighted
that the addition of LED R light as interlighting to assimi-
lation HPS light and natural light, in order to raise the
R:FR ratio, did not increase fruit yield while promoted
Chl synthesis, with consequent increase in fruit colour
and improvement of visual appearance (Hao et al. 2016;
Table 2).

The above described results highlighted that it can hap-
pen that the addition of R light does not influence directly
the biomass accumulation, while it is efficient in exerting
photomorphogenetic responses when applied in combina-
tion with FR doses able to modify the R:FR ratio. R light
alone, however, can be efficient in improving the nutri-
tional value of several vegetable products, by promoting
the antioxidant production (Olle and Virsile 2013), such
as phenols in lettuce (till+6%; Li and Kubota 2009).
Conversely, the addition of FR to R can reduce the anti-
oxidant synthesis in some species: for instance, in lettuce
an increase in plant biomass was associated to a lower
anthocyanin content (Li and Kubota 2009; Table 1). Con-
versely, in tomato increasing FR LED light, added to natu-
ral light supplemented with HPS, positively affected the
stem length and fruit yield in the first month of the trial,
as well as carotenoid content during the whole experiment
(Hao et al. 2016).

In ornamental plants, one of the most striking effect of
light composition on plant architecture is the shade avoid-
ance syndrome, occurring in high density canopies in low
R:FR conditions, implying increased internode and petiole
elongation, inhibited axillary bud outgrowth and leaves
hyponasty. In pot and garden chrysanthemum, R LED light
increased bud outgrowth while B + FR decreased it and
reduced plant height, even though the effect was genotype
dependent (Dierck et al. 2017). Treatment with B + FR
in 25 decapitated cuttings determined a strong elongation
of the top-most axillary bud and inhibition of underlying
buds in pot and cut flower genotypes. This effect also per-
sisted in greenhouse conditions.
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Flower and Ornamental Crops

Commercial quality in flowering potted plants strictly
depends on flowering characteristics in terms of earliness,
duration and intensity (number of flower buds) and on foli-
age density. These features are usually controlled through
genotypes selection, irrigation strategies (e.g. moderate
drought stress), temperature control (day—night differential
temperature) and growth regulators.

Under natural light conditions, the reduction of R:FR
ratio, determined by the increase of canopy density during
plant growth, causes some undesired responses (excessive
stem elongation, inhibition of buds development), which
are usually prevented by the reduction of plant density, the
application of chemicals and, more recently, the use of FR
filtering films in greenhouse. However, in some crops these
strategies could be integrated or replaced by using LEDs,
while limiting or avoiding chemicals, if plant response to
monochromatic light addition would be known.

In a growth chamber lighted with fluorescent tubes,
the plant height was not influenced by the addition of R
light (FL +R) and it was increased by the addition of B or
FR light (FL +B and FL + FR) in Tagetes erecta, while it
increased under all the lighting treatments in Salvia splend-
ens, compared to FL, with a parallel reduction in the number
of flowers in presence of B and FR only in Tagetes (Heo
et al. 2002; Table 3).

The importance of the phytochrome photoequilibria
(PPE) value induced at plant level by R and FR light in the
regulation of the flowering process of long-day (LD) plants
has been recently investigated, thanks to the diffusion of
LEDs. Photoperiodic light quality affects flowering of LD
plants, by influencing the PPE at plant level, however the
most effective light spectrum to promote flowering is still
unknown for most the flower crops. In photoperiodic spe-
cies, the addition of FR to R to extend the duration of day
or to interrupt the night was proved to be useful to control
flowering in LD plants. In fact, it is known that incandescent
lamps (Inc) determine an intermediate PPE (0.68), resulting
sometimes more efficient of light source with higher R:FR
ratio (e.g. fluorescent lamps) which create at plant level
a higher PPE. In this respect, the use of combined LEDs
(R:FR > 0.66, PPE > 0.63) was useful to replace Inc lamps
(R:FR=0.59), widely used in the past with photoperiodic
purpose and now forbidden by law in many countries, with
significant advance in flowering of petunia, snapdragon and
fuchsia, even though with effects on stem elongation variable
among the plant species (Craig and Runkle 2012; Table 3).

Also in chrysanthemum (short day, SD species), in which
flowering is inhibited with night break (NB) with R or B
light, the reversibility of this effect by successive exposure
to FR flashes indicated the involvement of phytochrome and,
more specifically, of two different phytochrome-mediated
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mechanisms, and that the quality of the light provided dur-
ing the day influences the quality of the light required for
an efficient NB (Higuchi et al. 2012). In particular, flower-
ing occurred only under SD conditions, with white or R
or B light monochromatic light (W-SD, R-SD and B-SD),
however in W-SD, NB with R was more efficient in inhibit-
ing flowering compared to B and FR, on the contrary in
B-SD the stronger inhibition was by NB-B and FR. Finally,
when B-SD was supplemented by monochromatic R light
(B+R-SD), NB-B and NB-FR were not efficient.

In two chrysanthemum cultivars grown under short day
photoperiod, treated with night break, shoot elongation was
enhanced under treatments that emitted FR compared to
short day treatment and R containing LED light with no FR
(Liao et al. 2014).

Meng and Runkle (2014) compared INC, HPS and CFL
lamps with R+ FR + W LEDs for night interruption (NI) to
extend day length on seven long-day ornamentals, in a com-
mercial greenhouse, and found that in most species LED,
INC and HPS lamps were equally effective in controlling
flowering. The same authors investigated whether low inten-
sity B (~ 1.5 pmol m™2 s7!), added to R and/or FR light
in NI, influences flowering in five SDPs (chrysanthemum,
cosmos, two cultivars of dahlia and marigold) and two LDPs
(dianthus and rudbeckia), grown in greenhouse under SD
(Meng and Runkle 2015; Table 3). Blue light alone was not
perceived as a LD by all the SDPs and LDPs tested. For
all SDPs, W LEDs inhibited flowering most effectively and
B +R was as effective as W for all species except chrysan-
themum. B +FR inhibited flowering of marigold and one
dahlia cultivar, but not chrysanthemum and the other dahlia,
while was less effective than treatments with R light in mar-
igold. B+R+FR and R +FR similarly delayed flowering
of all SDPs, except one dahlia. NI treatments containing R
promoted flowering of LD rudbeckia. The authors concluded
that in these crops a low intensity B during the night does
not influence flowering, and that W LEDs that emit little
FR light are effective at creating LD for SDPs and in some
LDPs. R light alone can inhibit flowering of SDPs, whereas
combinations of R and FR promote flowering of some LDPs.

Whole-plant net assimilation was increased in geranium,
snapdragon and impatiens with additional FR radiation,
while FR promoted flowering of the LD snapdragon (Park
and Runkle 2017).

In Phalaenopsis, the possibility to replace the reduc-
tion of temperature (8 weeks at 19 °C) respect to vegeta-
tive phase (22 °C) to promote flower induction by means of
light stimuli was evaluated by applying lighting treatments
with a high R:FR (estimated PPE 0.85) or a low R:FR (PPE
0.71) (Dueck et al. 2016). Results showed that, even though
thermal control determined the highest percentage of mul-
tiple inflorescences (regardless of light spectrum), similar
results were obtained by the exposure for 8 weeks to R and
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by cooling for 4 weeks followed by high PPE light (regard-
less of temperature). These results suggested that hormones
responsible for flowering in Phalaenopsis are stimulated by
a high PPE during the induction period, and temperature
and/or light spectrum in the second part of the treatment are
more important to obtain multiple inflorescences, probably
through the apical dominance suppression. This prefigures
the possibility to integrate with LED lighting the inductive
thermal treatment, which is energetically more expensive in
the summer.

Photoperiodic lighting with R and FR proportion creating
an intermediate PPE (0.63-0.80) has been proved to be more
effective to promote flowering in some LD species (Antir-
rhinum majus, Fuchsia X hybrida, Petunia X hybrida, Rud-
beckia hirta) compared to a R and FR lighting creating an
high PPE (above 0.80) (Craig and Runkle 2016) (Table 3).
However, light requirement in terms of intensity and quality
vary among the species and are not known for many crops.
Recent experiments on photoperiodic lighting in LD plants
showed hybrid-specific responses to both day length and
light quality, highlighting that genotype sensitivity to light
duration and spectrum should be taken into account to opti-
mize lighting protocols in commercial farms. For instance
in Ranunculus asiaticus L., Modarelli et al. (2020) tested
three light sources, with different PPEs induced at plant
level, compared to natural light. Results showed differences
between the hybrids in plant growth and flowering and also
in sensitivity to photoperiodic lighting: this improved plant
growth and reduced the flowering time in only one hybrid,
with a stronger effect under R:FR 3:1 light (estimated PPE
0.84). In both the hybrids, the increase of FR increased the
plant leaf area and elongated the flower stems.

Green Light
Vegetable Crops

Green light is a significant portion of solar radiation. It
is known that plant leaves appear in green because they
reflect the wavelengths producing this colour, hence G has
always been considered little useful for plants, in accord-
ance with the limited absorption capacity of leaf pig-
ments. However, as mentioned, many of the early works
with LEDs pointed out that plant growth was better under
W light or when G was added to B and R, suggesting a
contribution of this minor wavelength. Moreover, some-
times plants under only R and B light showed abnormal
colouring, which also made difficult the diagnosis of pos-
sible disorders, and recent data indicate that it modulates
light-induced plant responses. Indeed, G interacts with FR
light in determining some phytochrome responses (Tanada
1997), in a complex way that has not been fully clarified to

date (Folta and Maruhnich 2007; Wang and Folta 2013).
The coaction of G and other wavebands provides a strat-
egy for plants to precisely tune its morphology to adapt to
changing light environment: for instance, G light affects
plant biomass and reverses UV-B and B- light-mediated
stomatal opening (Wang and Folta 2013). Nowadays, it
is known that G light penetrates deeper into the plant
canopy because of its high transmittance and reflectance,
and may potentially increase light interception and whole-
canopy photosynthesis, being R and FR absorbed primar-
ily by upper leaves. Moreover, it induces shade avoidance
responses and regulates secondary metabolism in plants.

Among the earliest experiments, to evaluate the influ-
ence of G light, Kim et al. (2005) cultivated lettuce
under R and B LEDs (RB), with or without the addi-
tion of G (6 pmol m~2 s7!), at equal values of PPFD
(136 pmol m~2 s7!). Results did not showed differences
in plant growth, however the exposure to higher G lev-
els (RGB, 24% G), CWF (51% G) and green fluorescent
light (GF, 86% G) compared to RB determined the high-
est dry matter accumulation in RGB, despite the lower
stomatal conductance compared to CWF and the lowest
growth under GF. The authors concluded that the addi-
tion of G improved the plant growth until 24% of the total
light amount (also in other species), while it reduced it
over 50%.

The first studies did not provide clear information about
how much the influence of G on plant growth depended on
a contribution to plant assimilation or on photomorphoge-
netic responses. Only later, G light was recognized as able
to influence plant morphology by means of effects on leaf
expansion, stomatal conductance and stem elongation,
through a dual mechanism cryptochrome dependent and
cryptochrome independent: nowadays, it is known that the
mechanism of G perception fine tunes small adjustments in
plant growth and development in concert with that induced
by R and B light (Folta and Maruhnich 2007).

Terashima et al. (2009) demonstrated that the addition
of high-intensity G to white light improved photosynthesis
in sunflower and hypothesized that the contribution of G
had been underestimated until then because of the too low
levels applied in the experiments. The authors reported that,
while R and B are mainly absorbed at the adaxial leaf side,
G penetrates in the mesophyll and is absorbed in deeper
leaf layers. In this respect, considering that G is able to
penetrate deeper and in greater amount in the canopy, the
transmitted G light assumed a relevant role in photosynthe-
sis in lower and inner leaves, even though less efficient in
terms of quantum yield than R and B. In these parts of the
canopy, exposed to an altered light microclimate compared
to the upper and outer layers (lower light intensity, depleted
in R and B and enriched in G and FR), green wavelengths
play a key role in plant assimilation. This also occurs in
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etiolated plants, with scarce chlorophyll content, during the
first phases of emergence.

In lettuce, Johkan et al. (2012) confirmed that G light
determined a substantial contribution at high light intensity
to assimilation, to primary and secondary metabolism and
to photomorphogenesis. Specifically, the authors determined
in growth chamber the precise effect of 3 wavelengths peaks
(510, 520 and 530 nm) applied at 3 radiation intensities (100,
200 and 300 pmol m~2 s~1), compared to white fluorescent
light (FL) (Table 1). Plants grown under PPF 300 G light,
particularly at 510 nm, showed size and morphology similar
to those under FL, confirming the efficiency of G on plant
growth and morphogenesis when applied at sufficient doses.

Son and Oh (2013) determined the effect of R, G and
B LED ratios on growth, photosynthetic and antioxidant
parameters in two lettuce cultivars, with red (‘Sunmang’)
or green (‘Grand Rapid TBR’) leaves in growth chamber,
comparing six ratios: R:B 9:1, 8:2, 7:3; R:G:B 9:1:0, 8:1:1,
7:1:2, by LEDs (Table 1). Red light improved fresh and dry
weight of shoots and roots, and leaf area in combination with
B. The substitution of B with G in the presence of a fixed
proportion of R enhanced the growth of lettuce. Meanwhile,
growth under B led to the accumulation of antioxidants in
‘Sunmang’. The supplemental irradiation of G to a combina-
tion of R and B can improve lettuce growth.

In lettuce grown hydroponically in growth chamber under
white (W) LED light and supplemental B, G, Y, R or FR,
plants were compact and vigorous under WR, while they
looked sparse and twisted with WY and WFR, and dwarfed
with large leaves under WB (Chen et al. 2016; Table 1).
Compared to W control, fresh weight increased with sup-
plemental R and B, while it decreased with supplemental
FR. Chlorophyll and carotenoid contents were significantly
higher with supplemental R and B. Supplemental B and G
resulted in decrease of nitrate content, and G significantly
promoted soluble sugar accumulation. Supplemental FR
increased S/R ratio and ascorbic acid accumulation but
resulted in lower pigment contents.

Green light positively affected leaf area index (LAI) in
cucumber, stem length of tomato, petiole length of radish
and specific leaf area of pepper compared to cool-white light
(Snowden et al. 2016). In general, G light alone reduced
chlorophyll concentration in cucumber, while B light alone
reduced dry mass, LAI, stem and petiole length in tomato,
cucumber, pepper and radish. However, plant response to
light spectrum depended on light intensity and varied among
the species.

Zheng et al. (2019) showed the effects of B and G dur-
ing the dark period in tea plants (Camellia sinensis L.) to
understanding the spectral effects on secondary metabolism
and light signalling interactions. Results indicated the pos-
sibility of a targeted use of B and G to regulate the amount of
functional metabolites, such as anthocyanins, catechins and
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L-ascorbate, to enhance tea quality and taste and to poten-
tially trigger defense mechanisms in tea plants.

Dou et al. (2019) investigated the effects of substitut-
ing partial R and/or B with G light on plant growth in a
green and a purple cultivar of basil (Table 1). The net pho-
tosynthesis (Pn) did not change in green plants whereas it
increased in purple plants in presence of G light compared
with RB only. The addition of G induced stem elongation
in both the cultivars while did not influence leaf character-
istics and yield in green plants and decreased leaf thickness
and yield in purple plants,. Concentrations of phenolics
and flavonoids, and antioxidant capacity decreased under
R:B:G=74:16:10 and R:B:G=42:13:45 in green leaves and
under R:B:G=44:24:32 and R:B:G=42:13:45 in purple
leaves. Combining yield and nutritional values, a W light
with low G proportion (10%) is recommended for basil pro-
duction in controlled environment.

Flower and Ornamental Crops

In snapdragon grown as bedding plant, under natural light
supplemented with HPS or 4 BGR LEDs proportions with or
without FR, BGR +FR light led to faster flowering by 7 days
on average and also increased the leaf area and plant height
in snapdragon compared to HPS light (Poel and Runkle
2017; Table 3). The authors concluded that radiation quality
of supplemental light had a relatively little effect on seedling
growth and flowering although in some crops, flowering may
be earlier when it includes FR radiation.

Owen and Lopez (2017; Table 3) reported that the foli-
age colour of geranium and purple fountain grass was
enhanced under a low greenhouse daily light integral
(9 mol m~2 day™!), after 14 days of end-of-production sup-
plemental lighting (100 pmol m~2 s™1) of 50:50 or 0:100
R:B LED light. Higher B percentage led to greater stomatal
conductance, and phenolic acid and flavonoid production in
roses, chrysanthemums and campanulas.

Conclusion

Artificial lighting in horticulture has been used for a long
time with both assimilation and photoperiodic functions.
More recently, the increasing knowledge in plant photomor-
phogenesis and metabolism paved the way to the application
of innovative lighting systems, as well as of other strategies
(e.g. photo-selective greenhouse covers), to control plant
development and metabolism by means of light spectrum
manipulation. In this respect, the considerable advance in
LED technology pushed greatly the research on modern
systems, based on monochromatic or multispectral light, as
only or additional light source and for both assimilative and
control functions.
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Based on the current knowledge on plant response in
the main horticultural crops, LED lighting could improve
the product yield and quality, and the sustainability of
the greenhouse industry. In particular, many experiments
showed as R light alone can promote the synthesis of pig-
ments and active metabolites in different species, improv-
ing the product nutritional quality. Responses to R:FR
ratio are well defined, in term of processes such as germi-
nation, plant shaping, flowering, photosynthesis and bio-
mass accumulation. Red light interacts with B to regulate
plant responses and the optimal R:B ratio enhances pho-
tosynthetic capacity and improves growth and yield, when
the proper light intensity is applied. Blue wavelengths are
known to promote the photosynthetic process by induc-
ing stomatal opening and chloroplast relocation and to
increase the accumulation of antioxidant compounds and
pigments in vegetables and fruits. Finally, G significantly
contributes to photosynthesis and biomass accumulation,
particularly in inner and lower leaf layers of the canopy,
and can influence secondary metabolism. Besides, G wave-
lengths can tighter control plant growth and morphology
by acclimation to light environment, in concert with R-
and B-promoted effects, so it is increasingly considered,
although much studies are still needed to better unravel
their role.

In conclusion, LEDs could revolutionise the facility
greenhouse through the realization of smart lighting sys-
tems. However, because of the peculiarity of the emitted
light (single colour, narrow band), the precise knowledge of
plant responses for the different crops, for any single process
and developmental stage, is strictly required for their profit-
able application. In this respect, even though research on
LED lighting of plants has been making fast progresses in
the last years, several research gaps still need to be solved.
For instance, the optimal light spectrum and intensity
required by the different species in each phenological stage
to optimize yield and product quality are still not known for
many crops. Besides, interactions between light intensity
and light spectrum and both these light features with other
environmental parameters should be better characterized.
These progresses are also desirable in the view of the numer-
ous LED possible applications, including the greenhouse
cultivation and the nursery production of many vegetables
and ornamentals, the realization of plant food enriched in
health-promoting bioactive compounds, the vertical farming
in urban environment and in the farer scenario of cultivation
on higher plants in bioregenerative life-support systems for
human exploration of Space.
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