Skip to main content
Log in

Molecular characterization and expression of the SiUCP2 gene in sea urchin Strongylocentrotus intermedius

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Uncoupling protein 2 (UCP2) is a proton transporter located in the inner mitochondrial membrane, and inhibits the formation of adenosine triphosphate and reactive oxygen species by uncoupling oxidative phosphorylation. To provide a theoretical basis for the role of SiUCP2 in lipid metabolism, a 2 341-bp full-length cDNA of SiUCP2 from sea urchin Strongylocentrotus intermedius, which encodes 323 amino acids (predicted MW 36.11 kDa) was obtained, and the structure and function of the SiUCP2 gene and its expression at the mRNA and protein level were studied. SiUCP2 had high homology with UCP2 of other species. Expression of SiUCP2 was detected in the order of tube feet > gonads > coelomocytes > intestines. The expression level was the highest in prismatic larvae and lowest in the two-cell stage. Moreover, using in-situ hybridization, we found that SiUCP2 protein was expressed in the gonads and intestine. This study provided a theoretical basis for subsequent studies on the role of SiUCP2 and its regulatory mechanism in lipid metabolism, and for the improvement of gonad quality to obtain a higher economic value from sea urchins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Andrews Z B, Liu Z W, Walllingford N, Erion D M, Borok E, Friedman J M, Tschöp M H, Shanabrough M, Cline G, Shulman G I, Coppola A, Gao X B, Horvath T L, Diano S. 2008. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature, 454(7206): 846–851, https://doi.org/10.1038/nature07181.

    Article  Google Scholar 

  • Brookes P S, Parker N, Buckingham J A, Vidal-Puig A, Halestrap A P, Gunter T E, Nicholls D G, Bernardi P, Lemasters J J, Brand M D. 2008. UCPs-unlikely calcium porters. Nature Cell Biology, 10(11): 1 235–1 237, https://doi.org/10.1038/ncb1108-1235.

    Article  Google Scholar 

  • Campbell N A, Reece J B. 2005. Biology. 7th edn. New York: Pearson

    Google Scholar 

  • Chang Y Q, Ding J, Song J, Yang W. 2004. Sea Cucumber, Sea Urchin Biology Research and Breeding. Beijing: Ocean Press (in Chinese)

    Google Scholar 

  • Coppola A, Liu Z W, Andrews Z B, Paradis E, Roy M C, Friedman J M, Ricquier D, Richard D, Horvath T L, Gao X B, Diano S. 2007. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metabolism, 5(1): 21–33, https://doi.org/10.1016/j.cmet.2006.12.002.

    Article  Google Scholar 

  • Coulibaly I, Gahr S A, Palti Y, Yao J B, Rexroad III C E. 2006. Genomic structure and expression of uncoupling protein 2 genes in rainbow trout (oncorhynchus mykiss). BMC Genomics, 7: 203, https://doi.org/10.1186/1471-2164-7-203.

    Article  Google Scholar 

  • Douaire M, Le Fur N, El Khadir-Mounier C, Langlois P, Flamant F, Mallard J. 1992. Identifying genes involved in the variability of genetic fatness in the growing chicken. Poultry Science, 71(11): 1 911–1 920, https://doi.org/10.3382/ps.0711911.

    Article  Google Scholar 

  • Echtay K S, Roussel D, St-Pierre J, Jekabsons M B, Cadenas S, Stuart J A, Harper J A, Roebuck S J, Morrison A, Pickering S, Clapham J C, Brand M D. 2002. Superoxide activates mitochondrial uncoupling proteins. Nature, 415(6867): 96–99, https://doi.org/10.1038/415096a.

    Article  Google Scholar 

  • Emre Y, Nübel T. 2010. Uncoupling protein UCP2: when mitochondrial activity meets immunity. FEBS Letters, 584(8): 1 437–1 442, https://doi.org/10.1016/j.febslet.2010.03.014.

    Article  Google Scholar 

  • Farhoudi A, Kenari A M A, Nazari R M, Makhdoomi C H. 2011. Study of body composition, lipid and fatty acid profile during larval development in Caspian Sea Carp (Cyprinus carpio). Journal of Fisheries and Aquatic Science, 6(4): 417–428, https://doi.org/10.3923/jfas.2011.417.428.

    Article  Google Scholar 

  • Fleury C, Sanchis D. 1999. The mitochondrial uncoupling protein-2: current status. The International Journal of Biochemistry & Cell Biology, 31(11): 1 261–1 278, https://doi.org/10.1016/s1357-2725(99)00049-7.

    Article  Google Scholar 

  • Garlid K D, Jabrek M, Jezek P, Varecha M. 2000. How do uncoupling proteins uncouple? BBA — Bioenergetics, 1459(2–3): 383–389, https://doi.org/10.1016/S0005-2728(00)00175-4.

    Article  Google Scholar 

  • Geri G, Poli B M, Zappa A, Campodoni G, Franci O. 1990. Relationships between adipose tissue characteristics of newborn pigs and subsequent performance: III. Histological and chemical characteristics of backfat. Journal of Animal Science, 68(7): 1 936–1 943, https://doi.org/10.2527/1990.6871936x.

    Article  Google Scholar 

  • Han L S, Ding J, Wang H, Zuo R T, Quan Z J, Fan Z H, Liu Q D, Chang Y Q. 2019. Molecular characterization and expression of SiFad1 in the sea urchin (Strongylocentrotus intermedius). Gene, 705: 133–141, https://doi.org/10.1016/j.gene.2019.04.043.

    Article  Google Scholar 

  • Huang Z G, Xie Z. 2004. Advances in research on genes related to fat traits in livestock and poultry. Animal Husbandry & Veterinary Medicine, 36(4): 41–43. (in Chinese)

    Google Scholar 

  • Ito T, Matsutani T, Mori K, Nomura T. 1992. Phagocytosis and hydrogen peroxide production by phagocytes of the sea urchin Strongylocentrotus nudus. Developmental & Comparative Immunology, 16(4): 287–294, https://doi.org/10.1016/0145-305x(92)90003-u.

    Article  Google Scholar 

  • Jiang Z H, Michal J J, Tobey D J, Daniels T F, Rule D C, MacNeil M D. 2008. Significant associations of stearoyl-CoA desaturase (SCD1) gene with fat deposition and composition in skeletal muscle. International Journal of Biological Sciences, 4(6): 345–351, https://doi.org/10.7150/ijbs.4.345.

    Article  Google Scholar 

  • Jiang Z Q, Jia Z M, Han Y B. 2002. The compensatory growth and its mechanismin of red drum, Sciaenops ocellatus, after food deprivation. Journal of Fisheries of China, 26(1): 67–72. (in Chinese with English abstract)

    Google Scholar 

  • Kang D J, Zhou G X, Zhou S W, Zeng J, Wang X L, Jiang Y, Yang Y X, Chen Y L. 2017. Comparative transcriptome analysis reveals potentially novel roles of homeobox genes in adipose deposition in fat-tailed sheep. Scientific Reports, 7(1): 14 491, https://doi.org/10.1038/s41598-017-14967-9.

    Article  Google Scholar 

  • Kelly M S, Hunter A J, Scholfield C L, McKenzie J D. 2000. Morphology and survivorship of larval Psammechinus miliaris (Gmelin) (Echinodermata: Echinoidea) in response to varying food quantity and quality. Aquaculture, 183(3–4): 223–240, https://doi.org/10.1016/s0044-8486(99)00296-3.

    Article  Google Scholar 

  • Klingenberg M, Echtay K S. 2001. Uncoupling proteins: the issues from a biochemist point of view. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1504(1): 128–143, https://doi.org/10.1016/S0005-2728(00)00242-5.

    Article  Google Scholar 

  • Lares M T, Pomory C M. 1998. Use of body components during starvation in Lytechinus variegatus, (Lamarck) (Echinodermata: Echinoidea). Journal of Experimental Marine Biology and Ecology, 225(1): 99–106, https://doi.org/10.1016/S0022-0981(97)00216-5.

    Article  Google Scholar 

  • Larrouy D, Laharrague P, Carrera G, Viguerie-Bascands N, Levi-Meyrueis C, Fleury C, Pecqueur C, Nibbelink M, André M, Casteilla L, Ricquier D. 1997. Kupffer cells are a dominant site of uncoupling protein 2 expression in rat liver. Biochemical and Biophysical Research Communications, 235(3): 760–764, https://doi.org/10.1006/bbrc.1997.6852.

    Article  Google Scholar 

  • Li H, Wu G, Zhang J, Yang N. 2010. Identification of the heart-type fatty acid-binding protein as a major gene for chicken fatty acid metabolism by Bayesian network analysis. Poultry Science, 89(9): 1 825–1 833, https://doi.org/10.3382/ps.2010-00699.

    Article  Google Scholar 

  • Li X, Qin Y J, Li Y Y. 2004. Metabolism of sea urchin Strontgylocentrotus intermedius during starvation. Journal of Fishery Sciences of China, 11(4): 302–306. (in Chinese with English abstract)

    Google Scholar 

  • Liang X F, Ogata H Y, Oku H, Chen J W, Hwang F. 2003. Abundant and constant expression of uncoupling protein 2 in the liver of red sea bream Pagrus major. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 136(3): 655–661, https://doi.org/10.1016/S1095-6433(03)00218-6.

    Article  Google Scholar 

  • Liao W Q, Liang X F, Wang L, Ma X, Fang L, Li G S. 2006. cDNA sequence cloning and tissue expression of uncoupling protein 2 of silver carp (Hypophthalmichthys molitrix). Zoological Research, 27(4): 375–381. (in Chinese with English abstract)

    Google Scholar 

  • Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{-\Delta\Delta{C}_{\rm{T}}}\) method. Methods, 25(4): 402–408, https://doi.org/10.1006/meth.2001.1262.

    Article  Google Scholar 

  • Luévano-Martínez L A. 2012. Uncoupling proteins (UCP) in unicellular eukaryotes: true UCPs or UCP1-like acting proteins?. FEBS Letters, 586(7): 1 073–1 078, https://doi.org/10.1016/j.febslet.2012.03.009.

    Article  Google Scholar 

  • Malavazos A E, Corsi M F, Ermetici F, Coman C, Sardanelli F, Rossi A, Morricone L, Ambrosi B. 2007. Proinflammatory cytokines and cardiac abnormalities in uncomplicated obesity: relationship with abdominal fat deposition. Nutrition, Metabolism and Cardiovascular Diseases, 17(4): 294–302, https://doi.org/10.1016/j.numecd.2006.01.001.

    Article  Google Scholar 

  • Matsuda J, Hosoda K, Itoh H, Son C, Doi K, Tanaka T, Fukunaga Y, Inoue G, Nishimura H, Yoshimasa Y, Yamori Y, Nakao K. 1997. Cloning of rat uncoupling protein-3 and uncoupling protein-2 cDNAs: their gene expression in rats fed high-fat diet. FEBS Letters, 418(1–2): 200–204, https://doi.org/10.1016/S0014-5793(97)01381-1.

    Article  Google Scholar 

  • McCGraham N. 1967. The metabolic rate of fasting sheep in relation to total and lean body weight, and the estimation of maintenance requirements. Australian Journal of Agricultural Research, 18(1): 127–136, https://doi.org/10.1071/AR9670127.

    Article  Google Scholar 

  • Medvedev A V, Robidoux J, Bai X, Cao W H, Floering L M, Daniel K W, Collins S. 2002. Regulation of the uncoupling protein-2 gene in INS-1 beta-cells by oleic acid. The Journal of Biological Chemistry, 277(45): 42 639–42 644, https://doi.org/10.1074/jbc.M208645200.

    Article  Google Scholar 

  • Mehner T, Wieser W. 1994. Energetics and metabolic correlates of starvation in juvenile perch (Perca fluviatilis). Journal of Fish Biology, 45(2): 325–333, https://doi.org/10.1111/j.1095-8649.1994.tb01311.x.

    Article  Google Scholar 

  • Palacios E, Racotta I S, Arjona O, Marty Y, Le Coz J R, Moal J, Samain J F. 2007. Lipid composition of the pacific lion-paw scallop, Nodipecten subnodosus, in relation to gametogenesis: 2. lipid classes and sterols. Aquaculture, 266(1–4): 266–273, https://doi.org/10.1016/j.aquaculture.2007.02.030.

    Article  Google Scholar 

  • Pecqueur C, Alves-Guerra M C, Gelly C, Levi-Meyrueis C, Couplan E, Collins S, Ricquier D, Miroux B. 2001. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. The Journal of Biological Chemistry. 276(12): 8 705–8 712, https://doi.org/10.1074/jbc.M006938200.

    Article  Google Scholar 

  • Pecqueur C, Cassard-Doulcier A M, Raimbault S, Miroux B, Fleury C, Gelly C, Bouillaud F, Ricquier D. 1999. Functional organization of the human uncoupling protein-2 gene, and juxtaposition to the uncoupling protein-3 gene. Biochemical and Biophysical Research Communications, 255(1): 40–46, https://doi.org/10.1006/bbrc.1998.0146.

    Article  Google Scholar 

  • Santos R, da Costa G, Franco C, Gomes-Alves P, Flammang P, Coelho A V. 2009. First insights into the biochemistry of tube foot adhesive from the sea urchin Paracentrotus lividus (Echinoidea, Echinodermata). Marine Biotechnology, 11(6): 686–698, https://doi.org/10.1007/s10126-009-9182-5.

    Article  Google Scholar 

  • Solanes G, Pedraza N, Iglesias R, Giralt M, Villarroya F. 2003. Functional relationship between MyoD and peroxisome proliferator-activated receptor-dependent regulatory pathways in the control of the human uncoupling protein-3 gene transcription. Molecular Endocrinology, 17(10): 1 944–1 958, https://doi.org/10.1210/me.2002-0395.

    Article  Google Scholar 

  • Song Y. 2002. The Effects of Lipopolysaccharide and Indomethacin to the Body Temperature and the UCP2mRNA Expression in the Livers of Mice. China Medical University, Shenyang. (in Chinese with English abstract)

    Google Scholar 

  • Stuart J A, Harper J A, Brindle K M, Brand M D. 1999. Uncoupling protein 2 from carp and zebrafish, ectothermic vertebrates. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1413(1): 50–54, https://doi.org/10.1016/S0005-2728(99)00081-X.

    Article  Google Scholar 

  • Tagen M, Elorza A, Kempuraj D, Boucher W, Kepley C L, Shirihai O S, Theoharides T C. 2009. Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content. The Journal of Immunology, 183(10): 6 313–6 319, https://doi.org/10.4049/jimmunol.0803422.

    Article  Google Scholar 

  • Tang Z G, Sun C Y, Yan A F, Wu S G, Qin C B, Zhang Y H, Li W S. 2013. Genes involved in fatty acid metabolism: molecular characterization and hypothalamic mRNA response to energy status and neuropeptide Y treatment in the orange-spotted grouper Epinephelus coioides. Molecular and Cellular Endocrinology, 376(1–2): 114–124, https://doi.org/10.1016/j.mce.2013.06.020.

    Article  Google Scholar 

  • Taouis M, Chen J W, Daviaud C, Dupont J, Derouet M, Simon J. 1998. Cloning the chicken leptin gene. Gene, 208(2): 239–242, https://doi.org/10.1016/s0378-1119(97)00670-7.

    Article  Google Scholar 

  • Thompson M P, Kim D. 2004. Links between fatty acids and expression of UCP2 and UCP3 mRNAs. FEBS Letters, 568(1), https://doi.org/10.1016/j.febslet.2004.05.011.

  • Walker C W, Lesser M P, Unuma T. 2013. Sea urchin gametogenesis-structural, functional and molecular/genomic. Developments in Aquaculture and Fisheries Science, 38: 25–43, https://doi.org/10.1016/B978-0-12-396491-5.00003-4.

    Article  Google Scholar 

  • Wang Y, Nishi M, Doi A, Shono T, Furukawa Y, Shimada T, Furuta H, Sasaki H, Nanjo K. 2010. Ghrelin inhibits insulin secretion through the AMPK-UCP2 pathway in beta cells. FEBS letters, 584(8), https://doi.org/10.1016/j.febslet.2010.02.069.

  • Wen X B, Chen L Q, Ai C X, Zhou Z L. 2002. Starvation metabolism in parent Chinese mitten-handed crab (Eriocheir sinensis). Chinese Journal of Applied Ecology, 13(11): 1 441–1 444. (in Chinese with English abstract)

    Google Scholar 

  • Werner P, Neuenschwander S, Stranzinger G. 1999. Characterization of the porcine uncoupling proteins 2 and 3 (UCP2 & UCP3) and their localization to chromosome 9 p by somatic cell hybrids. Animal Genetics, 30(3): 221–224, https://doi.org/10.1046/j.1365-2052.1999.00462.x.

    Article  Google Scholar 

  • Yao J J, Zhao Y L, Li C, He D J, Hu C Y. 2009. Changes in fatty acid composition during early embryonic development of yellow catfish Pelteobagrus fiulvidraco. Fisheries Science, 28(11): 644–647, https://doi.org/10.3969/j.issn.1003-1111.2009.11.007. (in Chinese with English abstract)

    Google Scholar 

  • Yao J J, Zhao Y L. 2006. Changes of lipid content and fatty acid composition during embryonic development of Macrobrachium rosenbergii. Journal of East China Normal University (Natural Science), (4): 103–109. (in Chinese with English abstract)

  • Zhang B, Sun Y, Tang Q S. 2000. The effects of starvation on growth and biochemical composition in Pagrosomus major. Journal of Fisheries of China, 24(3): 206–210. (in Chinese with English abstract)

    Google Scholar 

  • Zhou W, Sun J, Wang J J, Du J Y. 2008. Current status and challenges of sea urchin culture in China. Fisheries Science, 27(3): 151–153. (in Chinese)

    Google Scholar 

  • Zuo R T, Hou S Q, Chang Y Q, Ding J, Song J, Zhao C, Zhang W J. 2016. Research advance of nutritional physiology in sea urchins: a review. Journal of Dalian Ocean University, 31(4): 463–468, https://doi.org/10.16535/j.cnki.dlhyxb.2016.04.019. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jun DING, Bing HAN, and Lingshu HAN contributed to the conception of the study. Lingshu HAN and Zijiao QUAN performed the experiments. Lingshu HAN, Zijiao QUAN, Xiaofang HUANG, and Beichen DING performed the data analyses. Lingshu HAN drafted the manuscript. Lingshu HAN, Jun DING, Bing HAN, and Heng WANG revised the manuscript. Jun DING and Yaqing CHANG approved the final version.

Corresponding author

Correspondence to Jun Ding.

Additional information

Supported by the National Key Research and Development Program of China (No. 2018YFD0901601) and Chinese Outstanding Talents in Agricultural Sciences (for Yaqing CHANG).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Quan, Z., Han, B. et al. Molecular characterization and expression of the SiUCP2 gene in sea urchin Strongylocentrotus intermedius. J. Ocean. Limnol. 39, 1523–1537 (2021). https://doi.org/10.1007/s00343-020-0181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-0181-8

Keyword

Navigation