Skip to main content
Log in

Arctic multiyear sea ice variability observed from satellites: a review

  • Review
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2021

This article has been updated

Abstract

In comparison with seasonal sea ice (first-year ice, FY ice), multiyear (MY) sea ice is thicker and has more opportunity to survive through the summer melting seasons. Therefore, the variability of wintertime MY ice plays a vital role in modulating the variations in the Arctic sea ice minimum extent during the following summer. As a response, the ice-ocean-atmosphere interactions may be significantly affected by the variations in the MY ice cover. Satellite observations are characterized by their capability to capture the spatiotemporal changes of Arctic sea ice. During the recent decades, many active and passive sensors onboard a variety of satellites (QuikSCAT, ASCAT, SSMIS, ICESat, CryoSat-2, etc.) have been used to monitor the dramatic loss of Arctic MY ice. The main objective of this study is to outline the advances and remaining challenges in monitoring the MY ice changes through the utilization of multiple satellite observations. We summarize the primary satellite data sources that are used to identify MY ice. The methodology to classify MY ice and derive MY ice concentration is reviewed. The interannual variability and trends in the MY ice time series in terms of coverage, thickness, volume, and age composition are evaluated. The potential causes associated with the observed Arctic MY ice loss are outlined, which are primarily related to the export and melting mechanisms. In addition, the causes to the MY ice depletion from the perspective of the oceanic water inflow from Pacific and Atlantic Oceans and the water vapor intrusion, as well as the roles of synoptic weather, are analyzed. The remaining challenges and possible upcoming research subjects in detecting the rapidly changing Arctic MY ice using the combined application of multisource remote sensing techniques are discussed. Moreover, some suggestions for the future application of satellite observations on the investigations of MY ice cover changes are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

All data generated and/or analyzed during this study are available in the National Snow and Ice Data Center (NSIDC) repository (https://nsidc.org/).

Change history

References

  • Abdalati W, Zwally H J, Bindschadler R, Csatho B, Farrell S L, Fricker H A, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C. 2010. The ICESat-2 laser altimetry mission. Proceedings of the IEEE, 98(5): 735–751.

    Google Scholar 

  • Ackley S, Hibler W, Kugzruk F, Kovacs A, Weeks W. 1974. Thickness and roughness variations of Arctic multi-year sea ice. In: Ocean’74-IEEE International Conference on Engineering in the Ocean Environment. IEEE, Halifax, Nova Scotia. p.109–117.

    Google Scholar 

  • Alexander C, Bynum N, Johnson E, King U, Mustonen T, Neofotis P, Oettlé N, Rosenzweig C, Sakakibara C, Shadrin V, Vicarelli M, Waterhouse J, Weeks B. 2011. Linking indigenous and scientific knowledge of climate change. BioScience, 61(6): 477–484.

    Google Scholar 

  • Allison I, Brandt R E, Warren S G. 1993. East Antarctic sea ice: albedo, thickness distribution, and snow cover. Journal of Geophysical Research: Oceans, 98(C7): 12 417–12 429.

    Google Scholar 

  • Bi H B, Fu M, Sun K, Liu Y L, Xu X L, Huang H J. 2016a. Arctic sea ice thickness changes in terms of sea ice age. Acta Oceanologica Sinica, 35(10): 1–10.

    Google Scholar 

  • Bi H B, Huang H J, Su Q, Yan L W, Liu Y X, Xu X L. 2014. An Arctic sea ice thickness variability revealed from satellite altimetric measurements. Acta Oceanologica Sinica, 33(11): 134–140.

    Google Scholar 

  • Bi H B, Sun K, Zhou X, Huang H J, Xu X L. 2016b. Arctic sea ice area export through the Fram Strait estimated from satellite-based data: 1988–2012. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7): 3 144–3 157.

    Google Scholar 

  • Bi H B, Yang Q H, Liang X, Zhang L, Wang Y H, Liang Y, Huang H J. 2019a. Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean. The Cryosphere, 13(5): 1 423–1 439.

    Google Scholar 

  • Bi H B, Zhang J L, Wang Y H, Zhang Z H, Zhang Y, Fu M, Huang H J, Xu X L. 2018. Arctic sea ice volume changes in terms of age as revealed from satellite observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(7): 2 223–2 237.

    Google Scholar 

  • Bi H B, Zhang Z H, Wang Y H, Xu X L, Liang Y, Huang J, Liu Y L, Fu M. 2019b. Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017. The Cryosphere, 13(3): 1 025–1 042.

    Google Scholar 

  • Brümmer B, Müller G, Affeld B, Gerdes R, Karcher M, Kauker F. 2001. Cyclones over Fram Strait: impact on sea ice and variability. Polar Research, 20(2): 147–152.

    Google Scholar 

  • Carmack E C, Melling H. 2011. Cryosphere: warmth from the deep? Nature Geoscience, 4(1): 7–8.

    Google Scholar 

  • Comiso J C, Cavalieri D J, Parkinson C L, Gloersen P. 1997. Passive microwave algorithms for sea ice concentration: a comparison of two techniques. Remote Sensing of Environment, 60(3): 357–384.

    Google Scholar 

  • Comiso J C. 2012. Large decadal decline of the Arctic multiyear ice cover. Journal of Climate, 25(4): 1 176–1 193.

    Google Scholar 

  • Cox G F N, Weeks W F. 1974. Salinity variations in sea ice. Journal of Glaciology, 13(67): 109–120.

    Google Scholar 

  • Curry J A, Schramm J L, Ebert E E. 1995. Sea ice-albedo climate feedback mechanism. Journal of Climate, 8(2): 240–247.

    Google Scholar 

  • Dabboor M, Montpetit B, Howell S. 2018. Assessment of the high resolution SAR mode of the RADARSAT constellation mission for first year ice and multiyear ice characterization. Remote Sensing, 10(4): 594.

    Google Scholar 

  • Deser C, Sun L T, Tomas R A, Screen J. 2016. Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophysical Research Letters, 43(5): 2 149–2 157.

    Google Scholar 

  • Deser C, Tomas R A, Sun L T. 2015. The role of ocean-atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. Journal of Climate, 28(6): 2 168–2 186.

    Google Scholar 

  • Ding Q H, Schweiger A, L’Heureux M, Battisti D S, Po-Chedley S, Johnson N C, Blanchard-Wrigglesworth E, Harnos K, Zhang Q, Eastman R, Steig E J. 2017. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nature Climate Change, 7(4): 289–295.

    Google Scholar 

  • Durner G M, Douglas D C, Albeke S E, Whiteman J P, Amstrup S C, Richardson E, Wilson R R, Ben-David M. 2017. Increased Arctic sea ice drift alters adult female polar bear movements and energetics. Global Change Biology, 23(9): 3 460–3 473.

    Google Scholar 

  • Francis J A, Vavrus S J. 2015. Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10(1): 014005.

    Google Scholar 

  • Francis J A. 2013. The where and when of wetter and drier: disappearing Arctic sea ice plays a role. Environmental Research Letters, 8(4): 041002.

    Google Scholar 

  • Francis J A. 2015. The Arctic matters: extreme weather responds to diminished Arctic sea ice. Environmental Research Letters, 10(9): 091002.

    Google Scholar 

  • Galley R J, Babb D, Ogi M, Else B G T, Geilfus N X, Crabeck O, Barber D G, Rysgaard S. 2016. Replacement of multiyear sea ice and changes in the open water season duration in the Beaufort Sea since 2004. Journal of Geophysical Research: Oceans, 121(3): 1 806–1 823.

    Google Scholar 

  • Gao Y Q, Sun J Q, Li F, He S P, Sandven S, Yan Q, Zhang Z S, Lohmann K, Keenlyside N, Furevik T, Sun L L. 2015. Arctic sea ice and Eurasian climate: a review. Advances in Atmospheric Sciences, 32(1): 92–114.

    Google Scholar 

  • Gong T T, Feldstein S, Lee S. 2017. The role of downward infrared radiation in the recent Arctic winter warming trend. Journal of Climate, 30(13): 4 937–4 949.

    Google Scholar 

  • Griffin C G, McClelland J W, Frey K E, Fiske G, Holmes R M. 2018. Quantifying CDOM and DOC in major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data. Remote Sensing of Environment, 209: 395–409.

    Google Scholar 

  • Haas C, Pfaffling A, Hendricks S, Rabenstein L, Etienne J L, Rigor I. 2008. Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat. Geophysical Research Letters, 35(17): L17501.

    Google Scholar 

  • Hallikainen M, Winebrenner D P. 1992. The physical basis for sea ice remote sensing. In: Carsey F D ed. Microwave Remote Sensing of Sea Ice. Washington DC: AGU.

    Google Scholar 

  • Hansen E, Gerland S, Granskog M A, Pavlova O, Renner A H H, Haapala J, Løyning T B, Tschudi M. 2013. Thinning of Arctic sea ice observed in Fram Strait: 1990–2011. Journal of Geophysical Research: Oceans, 118(10): 5 202–5 221.

    Google Scholar 

  • Ho J. 2010. The implications of Arctic sea ice decline on shipping. Marine Policy, 34(3): 713–715.

    Google Scholar 

  • Ionita M, Scholz P, Lohmann G, Dima M, Prange M. 2016. Linkages between atmospheric blocking, sea ice export through Fram Strait and the Atlantic Meridional Overturning Circulation. Scientific Reports, 6: 32881.

    Google Scholar 

  • Ivanova N, Johannessen O M, Pedersen L T, Tonboe R T. 2014. Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: a comparison of eleven sea ice concentration algorithms. IEEE Transactions on Geoscience and Remote Sensing, 52(11): 7 233–7 246.

    Google Scholar 

  • Jackson J M, Williams W J, Carmack E C. 2012. Winter seaice melt in the Canada Basin, Arctic Ocean. Geophysical Research Letters, 39(3): L03603.

    Google Scholar 

  • Ji Q, Li F, Pang X P, Luo C. 2018. Statistical Analysis of SSMIS sea ice concentration threshold at the arctic sea ice edge during summer based on MODIS and ship-based observational data. Sensors, 18(4): 1 109.

    Google Scholar 

  • Johansson E, Devasthale A, Tjernström M, Ekman A M L, L’Ecuyer T. 2017. Response of the lower troposphere to moisture intrusions into the Arctic. Geophysical Research Letters, 44(5): 2 527–2 536.

    Google Scholar 

  • Johnson M, Proshutinsky A, Aksenov Y, Nguyen A T, Lindsay R, Haas C, Zhang J L, Diansky N, Kwok R, Maslowski W, Häkkinen S, Ashik I, de Cuevas B. 2012. Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models. Journal of Geophysical Research: Oceans, 117(C00D13): C00D13, https://doi.org/10.1029/2011JC007257.

    Google Scholar 

  • Jones B M, Arp C D, Jorgenson M T, Hinkel K M, Schmutz J A, Flint P L. 2009. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters, 36(3): L03503.

    Google Scholar 

  • Kapsch M L, Graversen R G, Tjernström M. 2013. Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Climate Change, 3(8): 744–748.

    Google Scholar 

  • Kay J E, Gettelman A. 2009. Cloud influence on and response to seasonal Arctic sea ice loss. Journal of Geophysical Research: Atmospheres, 114(D18): D18204.

    Google Scholar 

  • Khon V C, Mokhov I I, Latif M, Semenov V A, Park W. 2010. Perspectives of Northern Sea Route and Northwest Passage in the twenty-first century. Climatic Change, 100(3–4): 757–768.

    Google Scholar 

  • Kovacs A, Morey R M. 1986. Electromagnetic measurements of multi-year sea ice using impulse radar. Cold Regions Science and Technology, 12(1): 67–93.

    Google Scholar 

  • Krumpen T, Gerdes R, Haas C, Hendricks S, Herber A, Selyuzhenok V, Smedsrud L, Spreen G. 2016. Recent summer sea ice thickness surveys in Fram Strait and associated ice volume fluxes. The Cryosphere, 10(2): 523–534.

    Google Scholar 

  • Kwok R, Comiso J C, Cunningham G F. 1996. Seasonal characteristics of the perennial ice cover of the Beaufort Sea. Journal of Geophysical Research: Oceans, 101(C12): 28 417–28 439.

    Google Scholar 

  • Kwok R, Cunningham G F, Pang S S. 2004. Fram Strait sea ice outflow. Journal of Geophysical Research: Oceans, 109(C1): C01009.

    Google Scholar 

  • Kwok R, Cunningham G F, Zwally H J, Yi D. 2007. Ice, Cloud, and land Elevation Satellite (ICESat) over Arctic sea ice: retrieval of freeboard. Journal of Geophysical Research: Oceans, 112(C12): C12013.

    Google Scholar 

  • Kwok R, Cunningham G F. 2010. Contribution of melt in the Beaufort Sea to the decline in Arctic multiyear sea ice coverage: 1993–2009. Geophysical Research Letters, 37(20): L20501.

    Google Scholar 

  • Kwok R, Cunningham G F. 2015. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2045): 20140157.

    Google Scholar 

  • Kwok R, Cunningham G F. 2016. Contributions of growth and deformation to monthly variability in sea ice thickness north of the coasts of Greenland and the Canadian Arctic Archipelago. Geophysical Research Letters, 43(15): 8 097–8 105.

    Google Scholar 

  • Kwok R, Markus T, Kurtz N T, Petty A A, Neumann T A, Farrell S L, Cunningham G F, Hancock D W, Ivanoff A, Wimert J T. 2019. Surface height and sea ice freeboard of the Arctic Ocean from ICESat-2: characteristics and early results. Journal of Geophysical Research: Oceans, 124(10): 6 942–6 959.

    Google Scholar 

  • Kwok R, Maslowski W, Laxon S W. 2005. On large outflows of Arctic sea ice into the Barents Sea. Geophysical Research Letters, 32(22): L22503.

    Google Scholar 

  • Kwok R, Pedersen L T, Gudmandsen P, Pang S S. 2010. Large sea ice outflow into the Nares Strait in 2007. Geophysical Research Letters, 37(3): L03502.

    Google Scholar 

  • Kwok R, Rothrock D A. 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36(15): L15501.

    Google Scholar 

  • Kwok R, Spreen G, Pang S. 2013. Arctic sea ice circulation and drift speed: decadal trends and ocean currents. Journal of Geophysical Research: Oceans, 118(5): 2 408–2 425.

    Google Scholar 

  • Kwok R. 2004. Annual cycles of multiyear sea ice coverage of the Arctic Ocean: 1999–2003. Journal of Geophysical Research: Oceans, 109(C11): C11004.

    Google Scholar 

  • Kwok R. 2006. Exchange of sea ice between the Arctic Ocean and the Canadian Arctic Archipelago. Geophysical Research Letters, 33(16): L16501.

    Google Scholar 

  • Kwok R. 2007a. Baffin Bay ice drift and export: 2002–2007. Geophysical Research Letters, 34(19): L19501.

    Google Scholar 

  • Kwok R. 2007b. Near zero replenishment of the Arctic multiyear sea ice cover at the end of 2005 summer. Geophysical Research Letters, 34(5): L05501.

    Google Scholar 

  • Kwok R. 2008. Summer sea ice motion from the 18 GHz channel of AMSR-E and the exchange of sea ice between the Pacific and Atlantic sectors. Geophysical Research Letters, 35(3): L03504.

    Google Scholar 

  • Kwok R. 2009. Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007. Journal of Climate, 22(9): 2 438–2 457.

    Google Scholar 

  • Kwok R. 2015. Sea ice convergence along the Arctic coasts of Greenland and the Canadian Arctic Archipelago: variability and extremes (1992–2014). Geophysical Research Letters, 42(18): 7 598–7 605.

    Google Scholar 

  • Kwok R. 2018. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environmental Research Letters, 13(10): 105005.

    Google Scholar 

  • Laxon S W, Giles K A, Ridout A L, Wingham D J, Willatt R, Cullen R, Kwok R, Schweiger A, Zhang J L, Haas C, Hendricks S, Krishfield R, Kurtz N, Farrell S, Davidson M. 2013. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophysical Research Letters, 40(4): 732–737.

    Google Scholar 

  • Laxon S, Peacock N, Smith D. 2003. High interannual variability of sea ice thickness in the Arctic region. Nature, 425(6961): 947–950.

    Google Scholar 

  • Ledley T S. 1985. Sea ice: multiyear cycles and white ice. Journal of Geophysical Research: Atmospheres, 90(D3): 5 676–5 686.

    Google Scholar 

  • Lee S M, Sohn B J, Kim S J. 2017b. Differentiating between first-year and multiyear sea ice in the Arctic using microwave-retrieved ice emissivities. Journal of Geophysical Research: Atmospheres, 122(10): 5 097–5 112.

    Google Scholar 

  • Lee S, Gong T T, Feldstein S B, Screen J A, Simmonds I. 2017a. Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: downward infrared radiation dominates the surface fluxes. Geophysical Research Letters, 44(20): 10 654–10 661.

    Google Scholar 

  • Lei R B, Gui D W, Heil P, Hutchings J K, Ding M H. 2020. Comparisons of sea ice motion and deformation, and their responses to ice conditions and cyclonic activity in the western Arctic Ocean between two summers. Cold Regions Science and Technology, 170: 102925.

    Google Scholar 

  • Lei R B, Xie H J, Wang J, Lepparanta M, Jonsdottir I, Zhang Z H. 2015. Changes in sea ice conditions along the Arctic Northeast Passage from 1979 to 2012. Cold Regions Science and Technology, 119: 132–144.

    Google Scholar 

  • Liang Y, Bi H B, Wang Y H, Zhang Z H, Zhang Y, Liu Y X, Huang H J. 2020. A review of synoptic weather effects on sea ice outflow through Fram Strait: cyclone vs. anticyclone. Advances in Polar Sciences, 31(1): 43–54.

    Google Scholar 

  • Lindell D B, Long D G. 2016a. Multiyear Arctic ice classification using ASCAT and SSMIS. Remote Sensing, 8(4): 294.

    Google Scholar 

  • Lindell D B, Long D G. 2016b. Multiyear Arctic sea ice classification using OSCAT and QuikSCAT. IEEE Transactions on Geoscience and Remote Sensing, 54(1): 167–175.

    Google Scholar 

  • Lindsay C, Zhu J, Miller A E, Kirchner P, Wilson T L. 2015. Deriving snow cover metrics for Alaska from MODIS. Remote Sensing, 7(10): 12 961–12 985.

    Google Scholar 

  • Lindsay R, Schweiger A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9(1): 269–283.

    Google Scholar 

  • Liu J P, Curry J A, Wang H J, Song M R, Horton R M. 2012a. Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109(11): 4 074–4 079.

    Google Scholar 

  • Liu Y H, Key J R, Liu Z Y, Wang X J, Vavrus S J. 2012b. A cloudier Arctic expected with diminishing sea ice. Geophysical Research Letters, 39(5): L05705.

    Google Scholar 

  • Luo B H, Wu L X, Luo D H, Dai A G, Simmonds I. 2019. The winter midlatitude-Arctic interaction: effects of North Atlantic SST and high-latitude blocking on Arctic sea ice and Eurasian cooling. Climate Dynamics, 52(5): 2 981–3 004.

    Google Scholar 

  • Luo D H, Xiao Y Q, Yao Y, Dai A G, Simmonds I, Franzke C L E. 2016. Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part I: Blocking-induced amplification. Journal of Climate, 29(11): 3 925–3 947.

    Google Scholar 

  • Maslanik J A, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W. 2007. A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34(24): L24501.

    Google Scholar 

  • Maslanik J, Stroeve J, Fowler C, Emery W. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 38(13): L13502.

    Google Scholar 

  • Massom R, Comiso J C. 1994. The classification of Arctic sea ice types and the determination of surface temperature using advanced very high resolution radiometer data. Journal of Geophysical Research: Oceans, 99(C3): 5 201–5 218.

    Google Scholar 

  • Meier W N, Hovelsrud G K, Van Oort B E H, Key J R, Kovacs K M, Michel C, Haas C, Granskog M A, Gerland S, Perovich D K, Makshtas A, Reist J D. 2014. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Reviews of Geophysics, 52(3): 185–217.

    Google Scholar 

  • Nghiem S V, Chao Y, Neumann G, Li P, Perovich D K, Street T, Clemente-Colon P 2006. Depletion of perennial sea ice in the East Arctic Ocean. Geophysical Research Letters, 33(17): L17501.

    Google Scholar 

  • Ogi M, Rigor I G, McPhee M G, Wallace J M. 2008. Summer retreat of Arctic sea ice: role of summer winds. Geophysical Research Letters, 35(24): L24701.

    Google Scholar 

  • Olason E, Notz D. 2014. Drivers of variability in A rctic seaice drift speed. Journal of Geophysical Research: Oceans, 119(9): 5 755–5 775.

    Google Scholar 

  • Onstott R G. 1992. SAR and scatterometer signatures of sea ice. In: Carsey F D ed. Microwave Remote Sensing of Sea Ice. Washington: AGU, 73–104.

    Google Scholar 

  • Orsolini Y J, Senan R, Benestad R E, Melsom A. 2012. Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean-atmosphere hindcasts. Climate Dynamics, 38(11–12): 2 437–2 448.

    Google Scholar 

  • Overeem I, Anderson R S, Wobus C W, Clow G D, Urban F E, Matell N. 2011. Sea ice loss enhances wave action at the Arctic coast. Geophysical Research Letters, 38(17): L17503.

    Google Scholar 

  • Overland J E, Dethloff K, Francis J A, Hall R J, Hanna E, Kim S J, Screen J A, Shepherd T G, Vihma T. 2016. Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change, 6(11): 992–999.

    Google Scholar 

  • Overland J E, Wang M Y, Walsh J E, Stroeve J C. 2014. Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future, 2(2): 68–74.

    Google Scholar 

  • Overland J E, Wang M Y. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A, 62(1): 1–9.

    Google Scholar 

  • Overland J, Dunlea E, Box J E, Corell R, Forsius M, Kattsov V, Olsen M S, Pawlak J, Reiersen L O, Wang M Y. 2019. The urgency of Arctic change. Polar Science, 21: 6–13.

    Google Scholar 

  • Parkinson C L, Comiso J C. 2013. On the 2012 record low Arctic sea ice cover: combined impact of preconditioning and an August storm. Geophysical Research Letters, 40(7): 1 356–1 361.

    Google Scholar 

  • Peings Y, Magnusdottir G. 2014. Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. Journal of Climate, 27(1): 244–264.

    Google Scholar 

  • Perovich D K, Grenfell T C, Light B, Hobbs P V. 2002. Seasonal evolution of the albedo of multiyear Arctic sea ice. Journal of Geophysical Research: Oceans, 107(C10): SHE 20-21–SHE 20-13.

    Google Scholar 

  • Perovich D K, Richter-Menge J A, Jones K F, Light B. 2008. Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007. Geophysical Research Letters, 35(11): L11501.

    Google Scholar 

  • Perovich D K. 2018. Sunlight, clouds, sea ice, albedo, and the radiative budget: the umbrella versus the blanket. The Cryosphere, 12(6): 2 159–2 165.

    Google Scholar 

  • Pizzolato L, Howell S E L, Dawson J, Laliberte F, Copland L. 2016. The influence of declining sea ice on shipping activity in the Canadian Arctic. Geophysical Research Letters, 43(23): 12 146–112 154.

    Google Scholar 

  • Polyakov I V, Alexeev V A, Ashik I M, Bacon S, Beszczynska-Moller A, Carmack E C, Dmitrenko I A, Fortier L, Gascard J C, Hansen E, Holemann J, Ivanov V V, Kikuchi T, Kirillov S, Lenn Y D, McLaughlin F A, Piechura J, Repina I, Timokhov L A, Walczowski W, Woodgate R. 2011. Fate of Early 2000s Arctic warm water pulse. Bulletin of the American Meteorological Society, 92(5): 561–566.

    Google Scholar 

  • Polyakov I V, Beszczynska A, Carmack E C, Dmitrenko I A, Fahrbach E, Frolov I E, Gerdes R, Hansen E, Holfort J, Ivanov V V, Johnson M A, Karcher M, Kauker F, Morison J, Orvik K A, Schauer U, Simmons H L, Skagseth O, Sokolov V T, Steele M, Timokhov L A, Walsh D, Walsh J E. 2005. One more step toward a warmer Arctic. Geophysical Research Letters, 32(17): L17605.

    Google Scholar 

  • Polyakov I V, Walsh J E, Kwok R. 2012. Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bulletin of the American Meteorological Society, 93(2): 145–151.

    Google Scholar 

  • Ressel R, Singha S. 2016. Comparing near coincident space borne C and X band fully polarimetric sar data for arctic sea ice classification. Remote Sensing, 8(3): 198.

    Google Scholar 

  • Ricker R, Girard-Ardhuin F, Krumpen T, Lique C. 2018. Satellite-derived sea ice export and its impact on Arctic ice mass balance. The Cryosphere, 12(9): 3 017–3 032.

    Google Scholar 

  • Rigor I G, Wallace J M, Colony R L. 2002. Response of sea ice to the Arctic Oscillation. Journal of Climate, 15(18): 2 648–2 663.

    Google Scholar 

  • Rigor I G, Wallace J M. 2004. Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophysical Research Letters, 31(9): L09401.

    Google Scholar 

  • Robock A. 1980. The seasonal cycle of snow cover, sea ice and surface albedo. Monthly Weather Review, 108(3): 267–285.

    Google Scholar 

  • Rodriguez-Alvarez N, Holt B, Jaruwatanadilok S, Podest E, Cavanaugh K C. 2019. An Arctic sea ice multi-step classification based on GNSS-R data from the TDS-1 mission. Remote Sensing of Environment, 230: 111202.

    Google Scholar 

  • Rothrock D A, Yu Y, Maykut G A. 1999. Thinning of the Arctic sea-ice cover. Geophysical Research Letters, 26(23): 3 469–3 472.

    Google Scholar 

  • Rudels B, Friedrich H J, Hainbucher D, Lohmann G. 1999. On the parameterisation of oceanic sensible heat loss to the atmosphere and to ice in an ice-covered mixed layer in winter. Deep Sea Research Part II: Topical Studies in Oceanography, 46(6–7): 1 385–1 425.

    Google Scholar 

  • Rudels B, Korhonen M, Schauer U, Pisarev S, Rabe B, Wisotzki A. 2015. Circulation and transformation of Atlantic water in the Eurasian Basin and the Contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget. Progress in Oceanography, 132: 128–152.

    Google Scholar 

  • Schofield O, Ducklow H W, Martinson D G, Meredith M P, Moline M A, Fraser W R. 2010. How do polar marine ecosystems respond to rapid climate change? Science, 328(5985): 1 520–1 523.

    Google Scholar 

  • Screen J A, Deser C, Simmonds I, Tomas R. 2014. Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Climate Dynamics, 43(1–2): 333–344.

    Google Scholar 

  • Screen J A, Francis J A. 2016. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nature Climate Change, 6(9): 856–860.

    Google Scholar 

  • Screen J A, Simmonds I, Deser C, Tomas R. 2013. The atmospheric response to three decades of observed Arctic sea ice loss. Journal of Climate, 26(4): 1 230–1 248.

    Google Scholar 

  • Screen J A, Simmonds I, Keay K. 2011. Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. Journal of Geophysical Research: Atmospheres, 116(D15): D15105.

    Google Scholar 

  • Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293): 1 334–1 337.

    Google Scholar 

  • Screen J A. 2017. Simulated atmospheric response to regional and pan-Arctic sea ice loss. Journal of Climate, 30(11): 3 945–3 962.

    Google Scholar 

  • Serreze M C, Barrett A P, Stroeve J C, Kindig D N, Holland M M. 2009. The emergence of surface-based Arctic amplification. The Cryosphere, 3(1): 11–19.

    Google Scholar 

  • Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change, 77(1–2): 85–96.

    Google Scholar 

  • Serreze M C, Stroeve J. 2015. Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2045): 20140159.

    Google Scholar 

  • Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E, McLaughlin F, Zimmermann S, Proshutinsky A. 2006. Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophysical Research Letters, 33(8): L08605.

    Google Scholar 

  • Shokr M, Agnew T A. 2013a. Validation and potential applications of Environment Canada Ice Concentration Extractor (ECICE) algorithm to Arctic ice by combining AMSR-E and QuikSCAT observations. Remote Sensing of Environment, 128: 315–332.

    Google Scholar 

  • Shokr M, Agnew T A. 2013b. Validation and potential applications of Environment Canada Ice Concentration Extractor (ECICE) algorithm to Arctic ice by combining AMSR-E and QuikSCAT observations. Remote Sensing of Environment, 128: 315–332.

    Google Scholar 

  • Smedsrud L H, Halvorsen M H, Stroeve J C, Zhang R, Kloster K. 2017. Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. The Cryosphere, 11(1): 65–79.

    Google Scholar 

  • Smedsrud L H, Sirevaag A, Kloster K, Sorteberg A, Sandven S. 2011. Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline. The Cryosphere, 5(4): 821–829.

    Google Scholar 

  • Smetacek V, Nicol S. 2005. Polar ocean ecosystems in a changing world. Nature, 437(7057): 362–368.

    Google Scholar 

  • Smith D M, Dunstone N J, Scaife A A, Fiedler E K, Copsey D, Hardiman S C. 2017. Atmospheric response to Arctic and Antarctic sea ice: the importance of ocean-atmosphere coupling and the background state. Journal of Climate, 30(12): 4 547–4 565.

    Google Scholar 

  • Spreen G, Kern S, Stammer D, Hansen E. 2009. Fram Strait sea ice volume export estimated between 2003 and 2008 from satellite data. Geophysical Research Letters, 36(19): L19502.

    Google Scholar 

  • Spreen G, Kwok R, Menemenlis D. 2011. Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophysical Research Letters, 38(19): L19501.

    Google Scholar 

  • Stroeve J C, Markus T, Boisvert L, Miller J, Barrett A. 2014. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters, 41(4): 1 216–1 225.

    Google Scholar 

  • Stroeve J C, Serreze M C, Holland M M, Kay J E, Malanik J, Barrett A P. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110 (3–4): 1 005–1 027.

    Google Scholar 

  • Swan A M, Long D G. 2012. Multiyear Arctic sea ice classification using QuikSCAT. IEEE Transactions on Geoscience and Remote Sensing, 50(9): 3 317–3 326.

    Google Scholar 

  • Tang Q H, Zhang X J, Yang X H, Francis J A. 2013. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8(1): 014036.

    Google Scholar 

  • Thackeray C W, Hall A. 2019. An emergent constraint on future Arctic sea-ice albedo feedback. Nature Climate Change, 9(12): 972–978.

    Google Scholar 

  • Thomas D N, Dieckmann G S. 2002. Antarctic sea ice—a habitat for extremophiles. Science, 295(5555): 641–644.

    Google Scholar 

  • Thomas D R. 1993. Arctic sea ice signatures for passive microwave algorithms. Journal of Geophysical Research: Oceans, 98(C6): 10 037–10 052.

    Google Scholar 

  • Tilling R L, Ridout A, Shepherd A, Wingham D J. 2015. Increased Arctic sea ice volume after anomalously low melting in 2013. Nature Geoscience, 8(8): 643–646.

    Google Scholar 

  • Toole J M, Timmermans M L, Perovich D K, Krishfield R A, Proshutinsky A, Richter-Menge J A. 2010. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. Journal of Geophysical Research: Oceans, 115(C10): C10018.

    Google Scholar 

  • Trepte Q, Minnis P, Arduini R F. 2003. Daytime and nighttime polar cloud and snow identification using MODIS data. In: Proceedings Volume 4891, Optical Remote Sensing of the Atmosphere and Clouds III. Hangzhou, China: SPIE.

    Google Scholar 

  • Tschudi M A, Stroeve J C, Stewart J S. 2016. Relating the age of Arctic sea ice to its thickness, as measured during NASA’s ICESat and IceBridge campaigns. Remote Sensing, 8(6): 457.

    Google Scholar 

  • Tucker III W B, Perovich D K, Gow A J, Weeks W F, Drinkwater M R. 1992. Physical properties of sea ice relevant to remote sensing. In: Carsey F D ed. Microwave Remote Sensing of Sea Ice. Washington, AGU, 9–28.

    Google Scholar 

  • Vincent W F. 2010. Microbial ecosystem responses to rapid climate change in the Arctic. The ISME Journal, 4(9): 1 087–1 090.

    Google Scholar 

  • Wang J, Zhang J L, Watanabe E, Ikeda M, Mizobata K, Walsh J E, Bai X Z, Wu B Y. 2009. Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent? Geophysical Research Letters, 36(5): L05706.

    Google Scholar 

  • Wang M Y, Overland J E. 2012. A sea ice free summer Arctic within 30 years: an update from CMIP5 models. Geophysical Research Letters, 39(18): L18501.

    Google Scholar 

  • Wang Y H, Bi H B, Huang H J, Liu Y X, Liu Y L, Liang X, Fu M, Zhang Z H. 2019a. Satellite-observed trends in the Arctic sea ice concentration for the period 1979–2016. Journal of Oceanology and Limnology, 37(1): 18–37.

    Google Scholar 

  • Wang Y H, Yuan X J, Bi H B, Liang Y, Huang H J, Zhang Z H, Liu Y X. 2019b. The contributions of winter cloud anomalies in 2011 to the summer sea-ice rebound in 2012 in the Antarctic. Journal of Geophysical Research: Atmospheres, 124(6): 3 435–3 447.

    Google Scholar 

  • Warren S G, Rigor I G, Untersteiner N, Radionov V F, Bryazgin N N, Aleksandrov Y I, Colony R. 1999. Snow depth on Arctic Sea Ice. Journal of Climate, 12(6): 1 814–1 829.

    Google Scholar 

  • Watanabe E, Wang J, Sumi A, Hasumi H. 2006. Arctic dipole anomaly and its contribution to sea ice export from the Arctic Ocean in the 20th century. Geophysical Research Letters, 33(23): L23703.

    Google Scholar 

  • Wei J F, Zhang X D, Wang Z M. 2019. Impacts of extratropical storm tracks on Arctic sea ice export through Fram Strait. Climate Dynamics, 52(3–4): 2 235–2 246.

    Google Scholar 

  • Wernli H, Papritz L. 2018. Role of polar anticyclones and midlatitude cyclones for Arctic summertime sea-ice melting. Nature Geoscience, 11(2): 108–113.

    Google Scholar 

  • Wu B Y, Wang J, Walsh J E. 2006. Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. Journal of Climate, 19(2): 210–225.

    Google Scholar 

  • Ye Y F, Shokr M, Heygster G, Spreen G. 2016. Improving multiyear sea ice concentration estimates with sea ice drift. Remote Sensing, 8(5): 397.

    Google Scholar 

  • Yu P, Clausi D A, Howell S E. 2009. Fusing AMSR-E and QuikSCAT imagery for improved sea ice recognition. IEEE Transactions on Geoscience and Remote Sensing, 47(7): 1 980–1 989.

    Google Scholar 

  • Zamani B, Krumpen T, Smedsrud L H, Gerdes R. 2019. Fram Strait sea ice export affected by thinning: comparing highresolution simulations and observations. Climate Dynamics, 53(5): 3 257–3 270.

    Google Scholar 

  • Zhang J L, Ashjian C, Campbell R, Hill V, Spitz Y H, Steele M. 2013. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves. Journal of Geophysical Research: Oceans, 119(1): 297–312.

    Google Scholar 

  • Zhang J L, Lindsay R, Schweiger A, Rigor I. 2012. Recent changes in the dynamic properties of declining Arctic sea ice: a model study. Geophysical Research Letters, 39(20): L20503.

    Google Scholar 

  • Zhang J L, Lindsay R, Steele M, Schweiger A. 2008a. What drove the dramatic retreat of arctic sea ice during summer 2007? Geophysical Research Letters, 35(11): L11505.

    Google Scholar 

  • Zhang J L, Steele M, Woodgate R. 2008b. The role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007. Chinese Journal of Polar Science, 19(2): 93–107.

    Google Scholar 

  • Zhang Y, Chen C S, Beardsley R C, Gao G P, Qi J H, Lin H C. 2016. Seasonal and interannual variability of the Arctic sea ice: a comparison between AO-FVCOM and observations. Journal of Geophysical Research: Oceans, 121(11): 8 320–8 350.

    Google Scholar 

  • Zhang Z L, Yu Y N, Li X Q, Hui F M, Cheng X, Chen Z Q. 2019. Arctic Sea Ice classification using microwave scatterometer and radiometer data during 2002–2017. IEEE Transactions on Geoscience and Remote Sensing, 57(8): 5 319–5 328.

    Google Scholar 

  • Zhong L H, Hua L J, Luo D H. 2018. Local and external moisture sources for the Arctic warming over the Barents-Kara Seas. Journal of Climate, 31(5): 1 963–1 982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibo Bi or Yunhe Wang.

Additional information

Supported by the National Key Research and Development Program of China (No. 2017YFC1404000), the National Natural Science Foundation of China (No. 41406215), the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1606401), the Qingdao National Laboratory for Marine Science and Technology, the Postdoctoral Science Foundation of China (No. 014M561971), and the Open Funds for the Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences (No. MGE2020KG04)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, H., Liang, Y., Wang, Y. et al. Arctic multiyear sea ice variability observed from satellites: a review. J. Ocean. Limnol. 38, 962–984 (2020). https://doi.org/10.1007/s00343-020-0093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-0093-7

Keyword

Navigation