Skip to main content

Advertisement

Log in

Succession and seasonal variation in epilithic biofilms on artificial reefs in culture waters of the sea cucumber Apostichopus japonicus

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

An Erratum to this article was published on 07 March 2017

Abstract

Periphytic biofilms in aquaculture waters are thought to improve water quality, provide an additional food source, and improve the survival and growth of some reared animals. In the Asia- Pacific region, particularly in China, artificial reefs are commonly used in the commercial farming of sea cucumbers. However, few studies have examined the epilithic biofilms on the artificial reefs. To gain a better understanding of the succession of epilithic biofilms and their ecological processes in sea cucumber culture waters, two experiments were conducted in culture waters of the sea cucumber Apostichopus japonicus in Rongcheng, China, using artificial test panels. On the test panels of succession experiment, more than 67 species were identified in the biofilms. On the test panels of seasonal variation experiment, more than 46 species were recorded in the biofilms. In both experiments, communities of epilithic biofilms were dominated by diatoms, green algae and the annelid Spirorbis sp. In the initial colonization, the dominant diatoms were Cocconeis sp., Amphora spp. and Nitzschia closterium in June, which were succeeded by species of Navicula, Cocconeis and Nitzschia (July to September), and then by Licmophora abbreviata, Nitzschia closterium and Synedra spp. in the following months. A diatom bloom in the autumn and filamentous green algae burst in the summer were also observed. Ecological indices well annotated the succession and seasonal changes in epilithic communities. Multidimensional scaling (MDS) analysis found significant differences in diatom community composition among months and seasons. Fast growth of biofilms was observed in the summer and autumn, whereas the biomass of summer biofilms was largely made up of filamentous green algae. Present results show that the components of epilithic biofilms are mostly optimal foods of A. japonicus, suggesting that biofilms on artificial reefs may contribute important nutritional sources for sea cucumbers during their growth seasons. Future works should include quantitative determination of the contribution of epilithic biofilms to the diet of A. japonicus, potential roles of epilithic biofilms in regulating the water quality of sea cucumber ponds, and the regulation of epilithic biofilms in sea cucumber culture ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albay M, Akcaalan R. 2003. Comparative study of periphyton colonisation on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiologia, 506-509 (1-3): 531–540, http://dx.doi.org/10.1023/B:HYDR.0000008606.69572.f6.

    Article  Google Scholar 

  • American Public Health Association. 1992. Standard Methods for the Examination of Water and Wastewater. 18 th ed. APHA, Washington, DC.

    Google Scholar 

  • Ballester E L C, Wasielesky W, Cavalli R O, Abreu P C. 2007. Nursery of the pink shrimp Farfantepenaeus paulensis in cages with artificial substrates: biofilm composition and shrimp performance. Aquaculture, 269 (1-4): 355–362, http://dx.doi.org/10.1016/j.aquaculture.2007.04.003.

    Article  Google Scholar 

  • Battaglene S C, Seymour J E, Ramofafia C. 1999. Survival and growth of cultured juvenile sea cucumbers, Holothuria scabra. Aquaculture, 178 (3-4): 293–322, http://dx.doi.org/10.1016/S0044-8486(99)00130-1.

    Article  Google Scholar 

  • Berger W H, Parker F L. 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science, 168 (3937): 1345–1347, http://dx.doi.org/10.1126/science.168.3937.1345.

    Article  Google Scholar 

  • Bray J R, Curtis J T. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs, 27 (4): 325–349, http://dx.doi.org/10.2307/1942268.

    Article  Google Scholar 

  • Callow M E. 1986. A world-wide survey of slime formation on anti-fouling paints. In: Evans L V, Hoagland K D eds. Algal Biofouling. Elsevier Science Publishers, Amsterdam, The Netherlands. p.1–20.

    Chapter  Google Scholar 

  • Chang Y Q, Sui X L, Li J. 2006. The current situation, problem and prospect on the Apostichopus japonicus aquaculture. Fisheries Science, 25 (4): 198–201. (in Chinese with English abstract)

    Google Scholar 

  • Cheng Z D, Gao Y H. 2012. Flora Algarum Marinarum Sinicarum. Tomus V. Bacillariophyta, No. II Pennatae I. Science Press, Beijing. (in Chinese)

    Google Scholar 

  • Cheng Z D, Gao Y H. 2013. Flora Algarum Marinarum Sinicarum. Tomus V. Bacillariophyta, No. III Pennatae II. Science Press, Beijing. (in Chinese)

    Google Scholar 

  • Chessman B C. 1985. Artificial-substratum periphyton and water quality in the Lower La Trobe River, Victoria. Australian Journal of Marine and Freshwater Research, 36 (6): 855–871, http://dx.doi.org/10.1071/MF9850855.

    Article  Google Scholar 

  • Clarke K R, Warwick R M. 2001. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd ed. PRIMER-E Ltd., Plymouth.

    Google Scholar 

  • Cooksey K E, Wigglesworth-Cooksey B. 1995. Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquatic Microbial Ecology, 9: 87–96, http://dx.doi.org/10.3354/ame009087.

    Article  Google Scholar 

  • Daume S, Brand-Gardner S, Woelkerling W J. 1999. Preferential settlement of abalone larvae: diatom films vs. non-geniculate coralline red algae. Aquaculture, 174 (3-4): 243–254, http://dx.doi.org/10.1016/S0044-8486(99)00003-4.

    Google Scholar 

  • Daume S, Krsinich A, Farrell S, Gervis M. 2000. Settlement, early growth and survival of Haliotis rubra in response to different algal species. Journal of Applied Phycology, 12 (3-5): 479–488, http://dx.doi.org/10.1023/A:1008110828581.

    Article  Google Scholar 

  • Dong G C, Dong S L, Wang F, Tian X L. 2010. effects of materials, incubation time and colors of artificial shelters on behavior of juvenile sea cucumber Apostichopus japonicus. Aquacultural Engineering, 43 (1): 1–5, http://dx.doi.org/10.1016/j.aquaeng.2010.01.002.

    Article  Google Scholar 

  • Dunstan G A, Volkman J K, Barrett S M, Leroi J M, Jeffrey S W. 1994. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry, 35 (1): 155–161, http://dx.doi.org/10.1016/S0031-9422 (00)90525-9.

    Article  Google Scholar 

  • Fairchild G W, Sherman J W. 1992. Linkage between epilithic algal growth and water column nutrients in softwater lakes. Canadian Journal of Fisheries and Aquatic Sciences, 49 (8): 1641–1649, http://dx.doi.org/10.1139/f92-183.

    Article  Google Scholar 

  • Ford T E, Walch M, Mitchell R, Kaufman M J, Vestal J R, Ditner S A, Lock M A. 1989. Microbial film formation on metals in an enriched arctic river. Biofouling, 1 (4): 301–311, http://dx.doi.org/10.1080/08927018909378118.

    Article  Google Scholar 

  • Gao Q F, Wang Y S, Dong S L, Sun Z L, Wang F. 2011. Absorption of different food sources by sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea): evidence from carbon stable isotope. Aquaculture, 319 (1-2): 272–276, http://dx.doi.org/10. 1016/j.aquaculture.2011.06.051.

    Article  Google Scholar 

  • Hamel J F, Hidalgo R Y, Mercier A. 2003. Larval development and juvenile growth of the galapagos sea cucumber Isostichopus fuscus. SPC Beche-de-Mer Information Bulletin, 18: 3–8.

    Google Scholar 

  • Hillebrand H, Sommer U. 2000. Diversity of benthic microalgae in response to colonization time and eutrophication. Aquatic Botany, 67 (3): 221–236, http://dx.doi.org/10.1016/S0304-3770(00)00088-7.

    Article  Google Scholar 

  • Hoagland K D, Roemer S C, Rosowski J R. 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). American Journal of Botany, 69 (2): 188–213.

    Article  Google Scholar 

  • Hoagland K D, Rosowski J R, Gretz M R, Roemer S C. 1993. Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. Journal of Phycology, 29 (5): 537–566, http://dx.doi.org/10.1111/j.0022-3646.1993.00537.x.

    Article  Google Scholar 

  • Huchette S M H, Beveridge M C M, Baird D J, Ireland M. 2000. The impacts of grazing by tilapias (Oreochromis niloticus L.) on periphyton communities growing on artificial substrate in cages. Aquaculture, 186 (1-2): 45–60.

    Article  Google Scholar 

  • Hudon C, Bourget E. 1981. Initial colonization of artificial substrate: community development and structure studied by scanning electron microscopy. Canadian Journal of Fisheries and Aquatic Sciences, 38 (11): 1371–1384, http://dx.doi.org/10.1139/f81-184.

    Article  Google Scholar 

  • Ishida N, Mitamura O, Nakayama M. 2006. Seasonal variation in biomass and photosynthetic activity of epilithic algae on a rock at the upper littoral area in the north basin of Lake Biwa, Japan. Limnology, 7 (3): 175–183, http://dx. doi.org/10.1007/s10201-006-0181-1.

    Article  Google Scholar 

  • Jin D X, Cheng Z D, Lin J M, Liu S C. 1982. The Marine Benthic Diatoms in China, Volume 1. Ocean Press, Beijing. (in Chinese)

    Google Scholar 

  • Jin D X, Cheng Z D, Liu S C, Ma J X. 1992. The Marine Benthic Diatoms in China, Volume 2. Ocean Press, Beijing. (in Chinese)

    Google Scholar 

  • Kelly M G, Cazaubon A, Coring E, Dell’Uomo A, Ector L, Goldsmith B, Guasch H, Hürlimann J, Jarlman A, Kawecka B, Kwandrans J, Laugaste R, Lindstrøm E A, Leitao M, Marvan P, Padisák J, Pipp E, Prygiel J, Rott E, Sabater S, van Dam H, Vizinet J. 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology, 10 (2): 215–224, http://dx.doi.org/10.1023/A:1008033201227.

    Article  Google Scholar 

  • Khatoon H, Yusoff F, Banerjee S, Shariff M, Bujang J S. 2007. Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds. Aquaculture, 273 (4): 470–477, http://dx.doi.org/10.1016/j.aquaculture.2007.10.040.

    Article  Google Scholar 

  • Kinoshita T, Tanaka S. 1939. Hokkaido san namako no syokuji ni tsuite (A report of the feeding pattern of the sea cucumber Stichopus japonicus in Hokkaido). Suisankenkyushi, 34: 32–35. (in Japanese)

    Google Scholar 

  • Korte V L, Blinn D W. 1983. Diatom colonization on artificial substrata in pool and riffle zones studied by light and scanning electron microscopy. Journal of Phycology, 19 (3): 332–341, http://dx.doi.org/10.1111/j.0022-3646.1983.00332.x.

    Article  Google Scholar 

  • Kutka F J, Richards C. 1996. Relating diatom assemblage structure to stream habitat quality. Journal of the North American Benthological Society, 15 (4): 469–480, http://dx.doi.org/10.2307/1467799.

    Article  Google Scholar 

  • Lane C M, Taffs K H, Corfield J L. 2003. A comparison of diatom community structure on natural and artificial substrata. Hydrobiologia, 493 (1-3): 65–79, http://dx.doi.org/10.1023/A:1025498732371.

    Article  Google Scholar 

  • Liess A, Hillebrand H. 2004. Invited review: direct and indirect effects in herbivore-periphyton interactions. Archiv für Hydrobiologie, 159 (4): 433–453, http://dx.doi.org/10. 1127/0003-9136/2004/0159-0433.

    Article  Google Scholar 

  • Margalef R. 1958. Information theory in ecology. General Systems Yearbook, 3: 36–71.

    Google Scholar 

  • Miller A R, Lowe R L, Rotenberry J T. 1987. Succession of diatom communities on sand grains. Journal of Ecology, 75 (3): 693–709, http://dx.doi.org/10.2307/2260200.

    Article  Google Scholar 

  • Nadon M O, Himmelman J H. 2006. Stable isotopes in subtidal food webs: have enriched carbon ratios in benthic consumers been misinterpreted? Limnology and Oceanography, 51(6): 2828–2836, http://dx.doi.org/10. 4319/lo.2006.51.6.2828.

    Article  Google Scholar 

  • Oemke M P, Burton T M. 1986. Diatom colonization dynamics in a lotic system. Hydrobiologia, 139 (2): 153–166, http://dx.doi.org/10.1007/BF00028099.

    Article  Google Scholar 

  • Patrick R. 1976. The formation and maintenance of benthic diatom communities. Proc. Am. Phil. Soc., 120: 475–484.

    Google Scholar 

  • Pielou E C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13: 131–144, http://dx.doi.org/10.1016/0022-5193(66)90013-0.

    Article  Google Scholar 

  • Qian Z M, Xing R L, Wu C X, Wang C H, Tang N. 2009. effects of temperature on growth and physiological biochemical compositions of eight benthic diatoms. Journal of Yantai University (Natural Science and Engineering Edition), 22 (1): 30–34. (in Chinese with English abstract)

    Google Scholar 

  • Rao T S, Rani P G, Venugopalan V P, Nair K V K. 1997. Biofilm formation in a freshwater environment under photic and aphotic conditions. Biofouling, 11 (4): 265–282, http://dx.doi.org/10.1080/08927019709378336.

    Article  Google Scholar 

  • Reid M A, Tibby J C, Penny D, Gell P A. 1995. The use of diatoms to assess past and present water quality. Australian Journal of Ecology, 20 (1): 57–64, http://dx.doi.org/10. 1111/j.1442-9993.1995.tb00522.x.

    Article  Google Scholar 

  • Ren Y C, Dong S L, Qin C X, Wang F, Tian X L, Gao Q F. 2012. Ecological effects of co-culturing sea cucumber Apostichopus japonicus (Selenka) with scallop Chlamys farreri in earthen ponds. Chinese Journal of Oceanology and Limnology, 30 (1): 71–79, http://dx.doi.org/10.1007/s00343-012-1038-6.

    Article  Google Scholar 

  • Ren Y C, Wang F, Dong S L, Liu F. 2010. Seasonal characteristics of primary production of sea cucumber (Apostichopus japonicus) culture ponds in Jinghai Bay, Rongcheng. Periodical of Ocean University of China, 40 (3): 24–28. (in Chinese with English abstract)

    Google Scholar 

  • Richard M, Trottier C, Verdegem M C J, Hussenot J M E. 2009. Submersion time, depth, substrate type and sampling method as variation sources of marine periphyton. Aquaculture, 295 (3-4): 209–217, http://dx. doi.org/10.1016/j.aquaculture.2009.07.005.

    Article  Google Scholar 

  • Robinson C T, Rushforth S R. 1987. effects of physical disturbance and canopy cover on attached diatom community structure in an Idaho stream. Hydrobiologia, 154 (1): 49–59, http://dx.doi.org/10.1007/BF00026830.

    Article  Google Scholar 

  • Scott C, Fletcher R L, Bremer G B. 1996. Observations on the mechanisms of attachment of some marine fouling bluegreen algae. Biofouling, 10 (1-3): 161–173, http://dx.doi.org/10.1080/08927019609386277.

    Article  Google Scholar 

  • Sekar R, Venugopalan V P, Nandakumar K, Nair K V K, Rao V N R. 2004. Early stages of biofilm succession in a lentic freshwater environment. Hydrobiologia, 512 (1-3): 97–108, http://dx.doi.org/10.1023/B:HYDR.0000020314.69538.2c.

    Article  Google Scholar 

  • Shannon C E, Weaver W. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.

    Google Scholar 

  • Shapiro S S, Wilk M B. 1965. An analysis of variance test for normality (complete samples). Biometrika, 52 (3-4): 591–611, http://dx.doi.org/10.1093/biomet/52.3-4.591.

    Article  Google Scholar 

  • Simental-Trinidad J A, Sánchez-Saavedra M D P, Correa-Reyes J G. 2001. Biochemical composition of benthic marine diatoms using as culture medium a common agricultural fertilizer. Journal of Shellfish Research, 20 (2): 611–617.

    Google Scholar 

  • Siver P A. 1977. Comparison of attached diatom communities on natural and artificial substrates. Journal of Phycology, 13 (4): 402–406, http://dx.doi.org/10.1111/j.1529-8817. 1977.tb02949.x.

    Google Scholar 

  • Siver P A. 1980. Microattachment patterns of diatoms on leaves of Potamogeton robbinsii Oakes. Transactions of the American Microscopical Society, 99 (2): 217–220, http://dx.doi.org/10.2307/3225710.

    Article  Google Scholar 

  • Slater M J, Jeffs A G. 2010. Do benthic sediment characteristics explain the distribution of juveniles of the deposit-feeding sea cucumber Australostichopus mollis ? Journal of Sea Research, 64 (3): 241–249, http://dx.doi.org/10.1016/j. seares.2010.03.005.

    Article  Google Scholar 

  • Stevenson R J, Bothwell M L, Lowe R L. 1996. Algal Ecology: Freshwater Benthic Ecosystems. Aquatic Ecology Series. Academic Press, California.

    Google Scholar 

  • Stevenson R J, Peterson C G. 1989. Variation in benthic diatom (Bacillariophyceae) immigration with habitat characteristics and cell morphology. Journal of Phycology, 25 (1): 120–129, http://dx.doi.org/10.1111/j.0022-3646. 1989.00120.x.

    Article  Google Scholar 

  • Strickland J D H, Parsons T R. 1977. A Practical Handbook of Seawater Analysis. Canadian Government Publishing Centre, Ottawa.

    Google Scholar 

  • Sui X L, Liu X G, Wang J. 2010. The status and key issues of sea cucumber culture in Liaoning Province. Fisheries Science, 29 (11): 688–690. (in Chinese with English abstract)

    Google Scholar 

  • Sun Z L, Gao Q F, Dong S L, Shin P K S, Wang F. 2013. Seasonal changes in food uptake by the sea cucumber Apostichopus japonicus in a farm pond: evidence from C and N stable isotopes. Journal of Ocean University of China, 12 (1): 160–168, http://dx.doi.org/10.1007/s11802-012-1952-z.

    Article  Google Scholar 

  • Tian C Y, Li Q, Liang Y. 2008. Healthy Culture of the Sea Cucumber Apostichopus japonicus. Ocean University Press, Qingdao. (in Chinese)

    Google Scholar 

  • Tseng C K. 1983. Common Seaweeds of China. Science Press, Beijing, China.

    Google Scholar 

  • Tuchman M, Blinn D W. 1979. Comparison of attached algal communities on natural and artificial substrata along a thermal gradient. British Phycological Journal, 14 (3): 243–254, http://dx.doi.org/10.1080/00071617900650281.

    Article  Google Scholar 

  • Underwood A J. 1984. Microalgal food and the growth of the intertidal gastropods Nerita atramentosa Reeve and Bembicium nanum (Lamarck) at four eights on a shore. Journal of Experimental Marine Biology and Ecology, 79 (3): 277–291, http://dx.doi.org/10.1016/0022-0981(84)90201-6.

    Article  Google Scholar 

  • van Dijk G M. 1993. Dynamics and attenuation characteristics of periphyton upon artificial substratum under various light conditions and some additional observations on periphyton upon Potamogeton pectinatus L. Hydrobiologia, 252 (2): 143–161, http://dx.doi. org/10.1007/BF00008152.

    Article  Google Scholar 

  • Wetzel R G. 1964. A comparative study of the primary productivity of higher aquatic plants, periphyton, and phytoplankton in large, shallow lake. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 49 (1): 1–61, http://dx.doi.org/10.1002/iroh.19640490102.

    Article  Google Scholar 

  • Wetzel R G. 1983. Periphyton of Freshwater Ecosystems. Springer, Netherlands. http://dx.doi.org/10.1007/978-94-009-7293-3.

    Book  Google Scholar 

  • Williams D M, Round F E. 1986. Revision of the genus Synedra Ehrenb. Diatom Research, 1 (2): 313–339.

    Article  Google Scholar 

  • Wu Y F, Antoine S E, Bowker D W. 1999. Colonisation of epilithic diatom population of the River Taff, South Wales, U.K. Limnologica, 29 (2): 174–185, http://dx.doi. org/10.1016/S0075-9511(99)80065-6.

    Article  Google Scholar 

  • Yang H S, Yuan X T, Zhou Y, Mao Y Z, Zhang T, Liu Y. 2005. effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquaculture Research, 36 (11): 1085–1092, http://dx.doi. org/10.1111/j.1365-2109.2005.01325.x.

    Article  Google Scholar 

  • Zhang B L, Sun D Y, Wu Y Q. 1995. Preliminary analysis on the feeding habit of Apostichopus japonicus in the rocky coast waters off Lingshan Island. Marine Sciences, (3): 11–13. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichun Sun  (孙世春).

Additional information

Supported by the National Key Technology R&D Program of China (No. 2006BAD09A01), the Science and Technology Development Project in Shandong Province (No. 2010GHY10505), and the Science and Technology Development Project of Yantai (No. 2011049)

An erratum to this article is available at http://dx.doi.org/10.1007/s00343-017-7466-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Du, R., Zhang, X. et al. Succession and seasonal variation in epilithic biofilms on artificial reefs in culture waters of the sea cucumber Apostichopus japonicus . Chin. J. Ocean. Limnol. 35, 132–152 (2017). https://doi.org/10.1007/s00343-016-5205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5205-z

Keywords

Navigation