Skip to main content
Log in

Correction of phase errors introduced by nonlinearity and specular reflection based on double N-step phase-shifting profilometry

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The N-step phase-shifting profilometry (PSP) is widely used to calculate the wrapped phases of static objects. However, measurement accuracy and precision can be affected by nonlinear error caused by system nonlinearity, as well as phase error resulting from overexposed regions on objects with highly reflective surfaces. To address these two issues, the phase error due to system nonlinearity and the phase error due to intensity saturation region are analyzed separately in this paper. This paper proposes introducing an additional set of fringe sequences with a π/N phase shift on top of the N-step PSP by fusing the unwrapped phase of the original fringe sequences with that of the additional fringe sequences, i.e., double N-step PSP, in order to suppress the nonlinear error and the error in overexposed regions. The experimental results demonstrate that the double N-step PSP can suppress not only the nonlinear error within the system, but also the error caused by the overexposed regions of the objects with high reflective surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. G. Rao, L. Song, S. Zhang, K. Chen, J. Xu, Depth-driven variable-frequency sinusoidal fringe pattern for accuracy improvement in fringe projection profilometry. Opt. Express 26, 19986–20008 (2018)

    Article  ADS  Google Scholar 

  2. J. Yu, Z. Meng, Z. Zhang, High-accuracy projector calibration method for fringe projection profilometry considering perspective transformation. Opt. Express 29, 15053–15066 (2021)

    Article  ADS  Google Scholar 

  3. S. Lv, X. Zhang, D. Yang, W. Deng, K. Qian, Fringe projection profilometry method with high efficiency, precision, and convenience: theoretical analysis and development. Opt. Express 30, 33515–33537 (2022)

    Article  ADS  Google Scholar 

  4. J. Lai, J. Li, C. He, F. Liu, A robust and effective phase-shift fringe projection profilometry method for the extreme intensity. Optik 179, 810–818 (2019)

    Article  ADS  Google Scholar 

  5. S. Zhang, High-speed 3D shape measurement with structured light methods: a review. Opt. Lasers Eng. 106, 119–131 (2018)

    Article  Google Scholar 

  6. S.S. Gorthi, P. Rastogi, Fringe projection techniques: whither we are? Opt. Lasers Eng. 48, 133–140 (2010)

    Article  Google Scholar 

  7. S. Jeught, J. Dirckx, Real-time structured light profilometry: a review. Opt. Lasers Eng. 87, 18–31 (2016)

    Article  Google Scholar 

  8. C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, Q. Chen, Phase shifting algorithms for fringe projection profilometry: a review. Opt. Lasers Eng. 109, 23–59 (2018)

    Article  Google Scholar 

  9. K. Zhong, Z. Li, Y. Shi, C. Wang, Y. Lei, Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping. Opt. Lasers Eng. 51, 1213–1222 (2013)

    Article  Google Scholar 

  10. Y. Hu, Q. Chen, S. Feng, C. Zuo, Microscopic fringe projection profilometry: a review. Opt. Lasers Eng. 135, 106192 (2020)

    Article  Google Scholar 

  11. H. Yu, D. Zheng, J. Fu, Y. Zhang, C. Zuo, J. Han, Deep learning-based fringe modulation-enhancing method for accurate fringe projection profilometry. Opt. Express 28, 21692–21703 (2020)

    Article  ADS  Google Scholar 

  12. Y. Yin, X. Peng, A. Li, X. Liu, B. Gao, Calibration of fringe projection profilometry with bundle adjustment strategy. Opt. Lett. 37, 542–544 (2012)

    Article  ADS  Google Scholar 

  13. D. Zheng, F. Da, Gamma correction for two step phase shifting fringe projection profilometry. Optik 124, 1392–1397 (2013)

    Article  ADS  Google Scholar 

  14. F. Lu, S. Xing, H. Guo, Self-correction of projector nonlinearity in phase-shifting fringe projection profilometry. Appl. Opt. 56, 7204–7216 (2017)

    Article  ADS  Google Scholar 

  15. J. Flores, J. Ferrar, G. Torales, R. Legarda-saenz, A. Silva, Color-fringe pattern profilometry using a generalized phase-shifting algorithm. J. Appl. Mech. 82, 8827–8824 (2015)

    Google Scholar 

  16. V. Suresh, Y. Zheng, B. Li, PMENet: phase map enhancement for Fourier transform profilometry using deep learning. Meas. Sci. Technol. 32, 105001 (2021)

    Article  ADS  Google Scholar 

  17. C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, Q. Chen, PMicro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second”. Opt. Lasers Eng. 102, 70–91 (2018)

    Article  Google Scholar 

  18. Z. Zhang, Z. Jing, Z. Wang, D. Kuang, Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase calculation at discontinuities in fringe projection profilometry. Opt. Lasers Eng. 50, 1152–1160 (2012)

    Article  Google Scholar 

  19. K. Qian, Windowed fourier transform for fringe pattern analysis. Appl. Opt. 43, 2695–2702 (2004)

    Article  Google Scholar 

  20. Z. Zhang, J. Zhong, Applicability analysis of wavelet-transform profilometry. Opt. express 21, 18777–18796 (2013)

    Article  ADS  Google Scholar 

  21. Z. Wang, J. Ma, M. Vo, Recent progress in two-dimensional continuous wavelet transform technique for fringe pattern analysis. Opt. Lasers Eng. 50, 1052–1058 (2012)

    Article  Google Scholar 

  22. L. Lu, V. Suresh, Y. Zheng, Y. Wang, J. Xi, B. Li, Motion induced error reduction methods for phase shifting profilometry: a review. Opt. Lasers Eng. 141, 106573 (2021)

    Article  Google Scholar 

  23. F. Deng, C. Liu, W. Sze, J. Deng, K. Fung, E. Lam, A polynomial phase-shift algorithm for high precision three-dimensional profilometry. Image Process Mach Vis Appl 8661, 866102 (2013)

    Google Scholar 

  24. P. Bing, K. Qian, H. Lei, A. Anand, Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry. Opt. Lett. 34, 416–418 (2009)

    Article  Google Scholar 

  25. S. Zhang, Active versus passive projector nonlinear gamma compensation method for high-quality fringe pattern generation. Dimen. Opt. Metrol. Inspect. Pract. Appl. III 9110, 911002 (2014)

    Google Scholar 

  26. N. Berberova, E. Stoykova, H. Kang, J.S. Park, B. Ivanov, SLM-based sinusoidal fringe projection under coherent illumination. Opt. Commun. 304, 116–122 (2013)

    Article  ADS  Google Scholar 

  27. S. Zhang, S. Yau, Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. Appl. Opt. 46, 36–43 (2007)

    Article  ADS  Google Scholar 

  28. X. Kang, Z. Yin, S. Dong, X. He, Determination of optimal binary defocusing based on digital correlation for fringe projection profilometry. Optik 272, 170263 (2023)

    Article  ADS  Google Scholar 

  29. Y. Lu, R. Zhang, H. Guo, Correction of illumination fluctuations in phase-shifting technique by use of fringe histograms. Appl. Opt. 55, 184–197 (2016)

    Article  ADS  Google Scholar 

  30. Y. Liu, J. Xi, Y. Yu, J. Chicharo, Phase error correction based on Inverse Function Shift Estimation in Phase Shifting Profilometry using a digital video projector. Opt. Metrol. Inspect. Ind. Appl. 7855, 219–226 (2010)

    Google Scholar 

  31. Z. Cai, X. Liu, H. Jiang, D. He, X. Peng, S. Huang, Z. Zhang, Flexible phase error compensation based on Hilbert transform in phase shifting profilometry. Opt. Express 23, 25171–25181 (2015)

    Article  ADS  Google Scholar 

  32. H. Zhu, H. Guo, Alternate iterative least-squares algorithm based on nonuniform phase shifting for suppressing nonlinearity errors in fringe projection profilometry. IEEE T. Instrum. Meas. 71, 1–13 (2022)

    Article  Google Scholar 

  33. K. Zhong, Z. Li, X. Zhou, Y. Li, Y. Shi, C. Wang, Enhanced phase measurement profilometry for industrial 3D inspection automation. Int. J. Adv. Manuf. Tech. 76, 1563–1574 (2015)

    Article  Google Scholar 

  34. Y. Fu, J. Fan, F. Jing, M. Tan, High Dynamic Range Structured Light 3-D Measurement Based on Region Adaptive Fringe Brightness. IEEE Trans. Ind. Electron., 1–11 (2023)

  35. B. Salahieh, Z. Chen, J. Rodriguez, R. Liang, Multi-polarization fringe projection imaging for high dynamic range objects. Opt. Express 22, 10064–10071 (2014)

    Article  ADS  Google Scholar 

  36. P. Huang, Q. Hu, F. Chiang, Double three-step phase-shifting algorithm. Appl. Opt. 41, 4503–4509 (2002)

    Article  ADS  Google Scholar 

  37. D. Zheng, F. Da, K. Qian, S. Hock, Phase error analysis and compensation for phase shifting profilometry with projector defocusing. Appl. Opt. 55, 5721–5728 (2016)

    Article  ADS  Google Scholar 

  38. J. Wang, Y. Yang, Triple N-step phase shift algorithm for phase error compensation in fringe projection profilometry. IEEE T. Instrum. Meas. 70, 1–9 (2021)

    Article  ADS  Google Scholar 

  39. S. Han, Y. Yang, X. Ma, X. Zhao, X. Zhang, A complementary gray code like double N-step phase shift method without gray code fringe images. IEEE Photonics J. 15, 1–7 (2023)

    ADS  Google Scholar 

  40. P. Xu, J. Liu, J. Wang, High dynamic range 3D measurement technique based on adaptive fringe projection and curve fitting. Appl. Opt. 62, 3265–3274 (2023)

    Article  ADS  Google Scholar 

  41. L. Lu, V. Suresh, Y. Zheng, Y. Wang, J. Xi, B. Li, Motion induced error reduction methods for phase shifting profilometry: a review. Opt. Lasers Eng. 141, 106573 (2021)

    Article  Google Scholar 

  42. J. Xu, S. Zhang, Status, challenges, and future perspectives of fringe projection profilometry. Opt. Lasers Eng. 135, 106193 (2020)

    Article  Google Scholar 

  43. J. Wang, Y. Yang, P. Xu, J. Liu, Adaptive fringe projection algorithm for image saturation suppression. Precis. Eng. 82, 140–155 (2023)

    Article  Google Scholar 

  44. Z. Wu, W. Guo, Q. Zhang, Two-frequency phase-shifting method vs. Gray-coded-based method in dynamic fringe projection profilometry: a comparative review. Opt. Lasers Eng. 153, 106995 (2022)

    Article  Google Scholar 

  45. C. Zhang, H. Zhao, F. Gu, Y. Ma, Phase unwrapping algorithm based on multi-frequency fringe projection and fringe background for fringe projection profilometry. Meas. Sci. Technol. 26, 045203 (2015)

    Article  ADS  Google Scholar 

  46. J. Wang, Y. Yang, Phase extraction accuracy comparison based on multi-frequency phase-shifting method in fringe projection profilometry. Meas. 199, 111525 (2022)

    Article  Google Scholar 

  47. H. Guo, H. He, M. Chen, Gamma correction for digital fringe projection profilometry. Appl. Opt. 43, 2906–2914 (2004)

    Article  ADS  Google Scholar 

  48. M. Baker, J. Xi, J. Chicharo, Elimination of γ Non-linear Luminance Effects for Digital Video Projection Phase Measuring Profilometers, Proc. 4th IEEE Int. Symp. Electron. Design Test Appl., 496–501 (2008)

  49. X. Ye, H. Cheng, H. Wu, D. Zhou, H. Tam, Gamma correction for three-dimensional object measurement by phase measuring profilometry. Optik 126, 5534–5538 (2015)

    Article  ADS  Google Scholar 

  50. C. Zuo, L. Huang, M. Zhang, Q. Chen, A. Asundi, Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Opt. Lasers Eng. 85, 84–103 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Natural Science Foundation of Shandong Province (Contract No. ZR2021MF024 and ZR2020QF101) and National Natural Science Foundation of China (Contract No. 62273274).

Author information

Authors and Affiliations

Authors

Contributions

WZ Derived the relevant equations and wrote the body of the manuscript. SS and ZL assisted WZ in performing the experiments. PX and JTL prepared Figs. 1, 2, 3, 4, 5, 6, 7, 8. PX and JHW reviewed the manuscript

Corresponding author

Correspondence to Jianhua Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Shan, S., Li, Z. et al. Correction of phase errors introduced by nonlinearity and specular reflection based on double N-step phase-shifting profilometry. Appl. Phys. B 130, 1 (2024). https://doi.org/10.1007/s00340-023-08142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08142-4

Navigation