Skip to main content
Log in

Quantum statistics of light emitted from a pillar microcavity

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A quantum behavior of the light emitted by exciton polaritons excited in a pillar semiconductor microcavity with embedded quantum well is investigated. Considering the bare excitons and photon modes as coupled quantum oscillators allows for an accurate accounting of the nonlinear and dissipative effects. In particular, using the method of the quantum states representation in a quantum phase space via quasiprobability functions (namely, a P-function and a Wigner function), we study the impact of the laser and the exciton-photon detuning on the second order correlation function of the emitted photons. We determine the conditions under which the phenomena of bunching, giant bunching, and antibunching of the emitted light emerge. In particular, we predict the effect of a giant bunching for the case of a large exciton to photon population ratio. Within the domain of parameters supporting a bistability regime we demonstrate the effect of bunching of photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.M. Gérard, D. Barrier, J.Y. Marzin et al., Appl. Phys. Lett. 69, 449 (1996). https://doi.org/10.1063/1.118135

    Article  ADS  Google Scholar 

  2. A. Baas, J. Karr, H. Eleuch and E. Giacobino, Phys. Rev. A 69, 023809 (2004). https://doi.org/10.1103/physreva.69.023809

  3. W. Choi, J.-H. Lee, K. An et al., Phys. Rev. Lett. 96, 093603 (2006). https://doi.org/10.1103/PhysRevLett.96.093603

    Article  ADS  Google Scholar 

  4. B. Ann, Y. Song, J. Kim et al., Sci. Rep. 9, 17110 (2019). https://doi.org/10.1038/s41598-019-53525-3

    Article  ADS  Google Scholar 

  5. H. Abbaspour, G. Sallen, S. Trebaol et al., Phys. Rev. B 92, 165303 (2015). https://doi.org/10.1103/physrevb.92.165303

    Article  ADS  Google Scholar 

  6. S.R.K. Rodriguez, W. Casteels, F. Storme et al., Phys. Rev. Lett. 118, 247402 (2017). https://doi.org/10.1103/PhysRevLett.118.247402

    Article  ADS  Google Scholar 

  7. T. Fink, A. Schade, S. Höfling et al., Nat. Phys. 14, 365–369 (2017). https://doi.org/10.1038/s41567-017-0020-9

    Article  Google Scholar 

  8. H. Deng, G. Weihs, C. Santori et al., Science 298, 199–202 (2002). https://doi.org/10.1126/science.1074464

    Article  ADS  Google Scholar 

  9. A. Verger, C. Ciuti, I. Carusotto, Phys. Rev. B 73, 193306193306 (2006). https://doi.org/10.1103/PhysRevB.73.193306

    Article  ADS  Google Scholar 

  10. M. Klaas, H. Flayac, M. Amthor et al., Phys. Rev. Lett. 120, 017401 (2018). https://doi.org/10.1103/physrevlett.120.017401

    Article  ADS  Google Scholar 

  11. S.S. Demirchyan, T.A. Khudaĭberganov, I.Yu. Chestnov and A. P. Alodzhants, J. Opt. Technol. 84, 75 (2017). https://doi.org/10.1364/jot.84.000075

    Article  Google Scholar 

  12. P.D. Drummond, C.W. Gardiner, Phys. A Math. Gen. 13, 2353–2368 (1980). https://doi.org/10.1088/0305-4470/13/7/018

    Article  ADS  Google Scholar 

  13. P.D. Drummond, K.J. McNeil, D.F. Walls, Opt. Acta Int. J. Opt. 321, 27 (1980). https://doi.org/10.1080/713820226

    Article  Google Scholar 

  14. H. Jabri, Phys. Rev. A 101, 053819 (2020). https://doi.org/10.1103/PhysRevA.101.053819

    Article  ADS  Google Scholar 

  15. F. Zou, D.-G. Lai, J.-Q. Liao, Opt. Express 28, 16175–16190 (2020). https://doi.org/10.1364/OE.391628

    Article  ADS  Google Scholar 

  16. A.V. Yulin, O.A. Egorov, F. Lederer, D.V. Skryabin, Phys. Rev. A 78, 061801061801 (2008). https://doi.org/10.1103/PhysRevA.78.061801

    Article  ADS  Google Scholar 

  17. C. Gardiner, Stochastic Methods: a Handbook for the Natural and Social Sciences, 4th edn. (Springer, Berlin, 2009). (ISBN 978-3-540-70712-7)

    MATH  Google Scholar 

  18. H. Haken, Synergetics: Introduction and Advanced Topics (Springer Science & Business Media, New York, 2013). (ISBN 978-3-662-10184-1)

    Google Scholar 

  19. W. Casteels, F. Storme, A. Le Boité, C. Ciuti, Phys. Rev. A 93, 033824 (2016). https://doi.org/10.1103/PhysRevA.93.033824

    Article  ADS  Google Scholar 

  20. W. Casteels, R. Fazio, C. Ciuti, Phys. Rev. A 95, 012128 (2017). https://doi.org/10.1103/PhysRevA.95.012128

    Article  ADS  Google Scholar 

  21. Th.K. Mavrogordatos, EPL 116, 54001 (2016). https://doi.org/10.1209/0295-5075/116/54001

    Article  ADS  Google Scholar 

  22. E. Zubizarreta Casalengua, J.C. López Carreño, F.P. Laussy, E. del Valle, Laser Photonics Rev. 14, 1900279 (2020). https://doi.org/10.1002/lpor.201900279

    Article  ADS  Google Scholar 

  23. A. Delteil, T. Fink, A. Schade et al., Nat. Mater. 18, 219–222 (2019). https://doi.org/10.1038/s41563-019-0282-y

    Article  Google Scholar 

  24. L. Mandel, Opt. Lett. 4(7), 205–207 (1979). https://doi.org/10.1364/OL.4.000205

    Article  ADS  Google Scholar 

  25. Albrecht Werner, Oleg A.. Egorov, Falk Lederer, Phys. Rev. B 89, 245307 (2014). https://doi.org/10.1103/physrevb.89.245307

    Article  ADS  Google Scholar 

  26. T. Khudaiberganov, S. Arakelian, I.O.P. Conf, Ser. Mater. Sci. Eng. 896, 012126 (2020). https://doi.org/10.1088/1757-899X/896/1/012126

    Article  Google Scholar 

  27. G. Muñoz-Matutano, A. Wood, M. Johnsson et al., Nat. Mater. 18, 213–218 (2019). https://doi.org/10.1038/s41563-019-0281-z

    Article  Google Scholar 

  28. K.V. Kheruntsyan, J. Opt. B Quantum Semiclass. Opt. 1, 225 (1999). https://doi.org/10.1088/1464-4266/1/2/005

    Article  ADS  MathSciNet  Google Scholar 

  29. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge University Press, Cambridge, 2013). (ISBN 978-0-511-60875-9)

    MATH  Google Scholar 

  30. G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. (Cambridge University Press, Cambridge, 1995). (ISBN 0-521-48391-3)

    MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the Ministry of Science and Higher Education of the Russian Federation under Agreement no. 0635-2020-0013. The work was also supported by the RFBR within the framework of the scientific projects no. 20-02-00515 and 21-52-10005. I.Yu.C. acknowledges the support from the Grant of the President of the Russian Federation for state support of young Russian scientists no. MK-5318.2021.1.2.

Author information

Authors and Affiliations

Authors

Contributions

TAK has carried out the analytical and numerical calculations. TAK and IYuC analysed and interpreted the obtained results and prepared the main text of the paper. All the authors contributed to the writing of the final form of the manuscript.

Corresponding author

Correspondence to Timur A. Khudaiberganov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Derivation of basic equations based on the P-representation method

Using the generalized P-representation and using the c-numbers instead of operators we turn from master equation (2) to the Fokker–Planck equation for the P-function [12]:

$$\begin{aligned}&{\frac{\partial P}{\partial t} =\left[ -\frac{\partial }{\partial \phi } \left( -\left( i\varDelta _\mathrm{ph} +\gamma _\mathrm{ph} \right) \phi +\tilde{E}_\mathrm{d} -i\omega _\mathrm{R} \chi \right) -\frac{\partial }{\partial \chi } \left( -\left( -i\varDelta _\mathrm{ex} +\gamma _\mathrm{ex} \right) \chi -i\omega _\mathrm{R} \phi -2i\alpha \chi ^{+} \chi ^{2} \right) +\right. } \nonumber \\&\quad {\left. +\frac{\partial ^{2} }{\partial \chi ^{2} } \left( -i\alpha \chi ^{2} \right) + \mathrm{h.c.}\right] P,} \end{aligned}$$
(8)

where \(\chi\) and \(\phi\)—are c-numbers. A solution of the Fokker–Planck equation (8) is obtained by the method of potentials in the adiabatic limit [12]:

$$\begin{aligned} \begin{array}{l} {P_\mathrm{ss} \left( \chi ,\chi ^{+} \right) =N\chi ^{-2-i\frac{\gamma }{\alpha } } \chi ^{+} {}^{-2+i\frac{\gamma ^{*} }{\alpha } }\exp \left( -\sigma \tilde{E}_\mathrm{d} \frac{1}{\chi } -\sigma ^{*} \tilde{E}_\mathrm{d}^{*} \frac{1}{\chi ^{+} } +2\chi \chi ^{+} \right) }\end{array}, \end{aligned}$$
(9)

where \(\gamma =\gamma _\mathrm{ex} +\frac{\omega _\mathrm{R}^{2} \gamma _\mathrm{ph} }{\gamma _\mathrm{ph}^{2} +\varDelta _\mathrm{ph}^{2} } -i\left( \varDelta _\mathrm{ex} +\frac{\varDelta _\mathrm{ph} \omega _\mathrm{R}^{2} }{\gamma _\mathrm{ph}^{2} +\varDelta _\mathrm{ph}^{2} } \right)\), \(\sigma =\omega _\mathrm{R} \frac{\gamma _\mathrm{ph} -i\varDelta _\mathrm{ph} }{\alpha \left( \gamma _\mathrm{ph}^{2} +\varDelta _\mathrm{ph}^{2} \right) }\) and N—is a normalization constant.

We use solution (9) to calculate the correlation functions of any order for excitons:

$$\begin{aligned}&{G^{\left( \mathrm{mn}\right) } =\left\langle \left( \chi ^{+} \right) ^{\mathrm{m}} \chi ^{\mathrm{n}} \right\rangle =\int \chi ^{+} {}^{m} \chi ^{n} P_\mathrm{ss}d\mu } \nonumber \\&\quad {=(-1)^{n+m}\frac{\left( \sigma \tilde{E}_{\mathrm{d}} \right) ^{\mathrm{n}} \left( \sigma ^{*} \tilde{E}_{\mathrm{d}}^{*} \right) ^{\mathrm{m}} \varGamma \left( {\mathrm{i}\gamma ^{*} \big / \alpha } \right) \varGamma \left( -{\mathrm{i}\gamma \big / \alpha } \right) }{\varGamma \left( \mathrm{m}+{\mathrm{i}\gamma ^{*} \big / \alpha } \right) \varGamma \left( \mathrm{n}-{\mathrm{i}\gamma \big / \alpha } \right) }\frac{{}_{0} \mathrm{F}_{2} \left( \mathrm{m}+{\mathrm{i}\gamma ^{*} \big / \alpha } ,\mathrm{n}-{\mathrm{i}\gamma \big / \alpha } ,2 \left| \sigma \right| ^{2} \left| \tilde{E}_{\mathrm{d}} \right| ^{2} \right) }{{}_{0} \mathrm{F}_{2} \left( {\mathrm{i}\gamma ^{*} \big / \alpha } ,-{\mathrm{i}\gamma \big / \alpha } ,2 \left| \sigma \right| ^{2} \left| \tilde{E}_{\mathrm{d}} \right| ^{2} \right) } },d \end{aligned}$$
(10)

where \(\varGamma\) is a gamma function and \({}_{0} \mathrm{F}_{2}\) is a hypergeometric function.

The stochastic differential equations can be obtained in the Ito calculus by converting the Fokker–Planck equation (8) into the Ito form [12]:

$$\begin{aligned} \left\{ \begin{array}{l} {\frac{\partial }{\partial t} \phi =-\left( i\varDelta _\mathrm{ph} +\gamma _\mathrm{ph} \right) \phi +\tilde{E}_\mathrm{d} -i\omega _\mathrm{R} \chi ,} \\ {\frac{\partial }{\partial t} \phi ^{+} =-\left( -i\varDelta _\mathrm{ph} +\gamma _\mathrm{ph} \right) \phi ^{+} +\tilde{E}_\mathrm{d}^{*} +i\omega _\mathrm{R} \chi ^{+} ,} \\ {\frac{\partial }{\partial t} \chi =-\left( -i\varDelta _\mathrm{ex} +\gamma _\mathrm{ex} \right) \chi -i\omega _\mathrm{R} \phi -2i\alpha \chi ^{+} \chi ^{2}+\left( 1-i\right) \sqrt{\alpha } \chi \xi \left( t\right) ,} \\ {\frac{\partial }{\partial t} \chi ^{+} =-\left( i\varDelta _\mathrm{ex} +\gamma _\mathrm{ex} \right) \chi ^{+} +i\omega _\mathrm{R} \phi ^{+} +2i\alpha \chi ^{+2} \chi +\left( 1+i\right) \sqrt{\alpha } \chi ^{+} \xi ^{+} \left( t\right) ,} \end{array}\right. \end{aligned}$$
(11)

where \(\xi \left( t\right)\) is an independent stochastic function, whose correlation functions satisfy the following relations: \(\left\langle \xi \left( t\right) \right\rangle =0\), \(\left\langle \xi ^{+} \left( t\right) \right\rangle =0\), \(\left\langle \xi \left( t\right) \xi ^{+} \left( t'\right) \right\rangle =\delta \left( t-t'\right)\).

Appendix 2: Derivation of the Wigner function

We use the Wigner function for a visual presentation of the statistical properties of the exciton-polariton system based on the steady-state solution for the P-function (9). The Wigner function one can be expressed in terms of the P-representation as follow [28]:

$$\begin{aligned} \begin{array}{l} {W\left( \chi \right) =\frac{2}{\pi } \mathrm{e}^{-2\left| \chi \right| ^{2} } \int _{C_{x } }\int _{C_{x ^{+} } }P_\mathrm{ss}\left( x ,x ^{+} \right) \exp \left( 2\chi ^{*} x +2\chi x^{+} -2x ^{+} x \right) \mathrm{d} x^{+} \mathrm{d}x}\end{array}. \end{aligned}$$
(12)

Then substituting (9) in (12), changing variables in the integral as \(x\rightarrow -E_\mathrm{d}\sigma /t\) and using the Schläfli’s integral [29]

$$\begin{aligned} J_{\nu } \left( z\right) =\frac{\left( z/2\right) ^{\nu } }{2\pi i} \int _{C}t^{-\nu -1} \exp \left[ t-\frac{z^{2} }{4t} \right] \mathrm{d}t, \end{aligned}$$
(13)

we obtain the following relation for the excitonic Wigner function:

$$\begin{aligned} W\left( \chi \right) =N'e^{-2\left| \chi \right| ^{2} } \left| \frac{J_{-i\frac{\gamma }{\alpha } -1} \left( \sqrt{8 \tilde{E}_\mathrm{d} \sigma \chi ^{*}} \right) }{\left( \chi ^{*}\right) ^{-\left( i\frac{\gamma }{\alpha } +1\right) /2} } \right| ^{2}, \end{aligned}$$
(14)

where \(N'\) is a normalization constant, defined by the following expression:

$$\begin{aligned} N'=\frac{2}{\pi \left| \left( 2 \tilde{E}_\mathrm{d} \sigma \right) ^{-i\frac{\gamma }{\alpha } -1} \right| } \frac{\varGamma \left( -i\frac{\gamma }{\alpha } \right) \varGamma \left( i\frac{\gamma ^{*} }{\alpha } \right) }{{}_{0} \mathrm{F}_{2} \left( {\mathrm{i}\gamma ^{*} \big / \alpha } ,-{\mathrm{i}\gamma \big / \alpha } ,2\left| \sigma \tilde{E}_\mathrm{d} \right| ^{2} \right) }. \end{aligned}$$
(15)

Here we use the following expansion of the power series of the Bessel function [30]

$$\begin{aligned} \begin{array}{l} J_{\nu }(\sqrt{t})=\left( \frac{t}{4}\right) ^{\nu /2}\sum \limits _{k=0}^{\infty }\frac{(-1)^{k}(t/4)^{k}}{k!\varGamma (k+\nu +1)}\end{array}. \end{aligned}$$
(16)

According to (14) the Wigner function is always positive and equals the squared modulus of the Bessel function with the complex index \(-i\gamma /\alpha -1\). The Wigner function of photons is obtained from the governing principle (3):

$$\begin{aligned} \begin{array}{l} {W\left( \phi \right) =N''\exp \left( {-2\frac{\left( \gamma _\mathrm{ph} \mathrm{Im}(\phi ) +\varDelta _\mathrm{ph} \mathrm{Re}(\phi ) \right) ^{2} +\left( \gamma _\mathrm{ph} \mathrm{Re}(\phi ) -\varDelta _\mathrm{ph} \mathrm{Im}(\phi ) -\tilde{E}_\mathrm{d} \right) ^{2} }{\omega _\mathrm{R}^{2} } }\right) } {\left| \frac{J_{-i\frac{\gamma }{\alpha } -1} \left( \sqrt{8\tilde{E}_\mathrm{d} \sigma \frac{\left( i\tilde{E}_\mathrm{d} +\phi ^*\left( \varDelta _\mathrm{ph} -i\gamma _\mathrm{ph} \right) \right) }{\omega _\mathrm{R} } } \right) }{\left( \frac{\left( i\tilde{E}_\mathrm{d} +\phi ^*\left( \varDelta _\mathrm{ph} -i\gamma _\mathrm{ph} \right) \right) }{\omega _\mathrm{R} } \right) ^{\left( -i\frac{\gamma }{\alpha } -1\right) /2} } \right| ^{2}}\end{array}, \end{aligned}$$
(17)

where we introduced new normalized constant \(N''=\frac{\omega _\mathrm{R}^{2} }{\varDelta _\mathrm{ph}^{2} +\gamma _\mathrm{ph}^{2} } N'.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khudaiberganov, T.A., Chestnov, I.Y. & Arakelian, S.M. Quantum statistics of light emitted from a pillar microcavity. Appl. Phys. B 128, 117 (2022). https://doi.org/10.1007/s00340-022-07835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07835-6

Navigation