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Abstract
A simplified (i.e., single shot) method is demonstrated to generate a Fourier hologram from multiple two-dimensional (2D) 
perspective images (PIs) under low light level imaging conditions. It was shown that the orthographic projection images 
(OPIs) can be synthesized using PIs and then, following incorporation of corresponding phase values, a digital hologram 
can be generated. In this work, a fast dictionary learning (DL) technique, known as Sequential Generalised K-means (SGK) 
algorithm, is used to perform Integral Fourier hologram reconstruction from fewer samples. The SGK method transforms 
the generated Fourier hologram into its sparse form, which represented it with a linear combination of some basis functions, 
also known as atoms. These atoms are arranged in the form of a matrix called a dictionary. In this work, the dictionary is 
updated using an arithmetic average method while the Orthogonal Matching Pursuit algorithm is opted to update the sparse 
coefficients. It is shown that the proposed DL method provides good hologram quality, (in terms of peak signal-to-noise 
ratio) even for cases of ~ 90% sparsity.

1 Introduction

Since its initial inception, optical holography has gained 
wide acceptance as a reliable means of reconstructing a 
field’s phase information from intensity-based images, i.e., 
holograms [1–4]. Holography has been usefully applied in 
biomedical imaging [3], cryptography [4], data storage [5, 
6], and entertainment [7]. The classical holographic tech-
nique can be broadly classified under two general headings 
depending on type of recording process employed. Type (i), 
Optical Holography [8] involves the use of coherent light 
sources, e.g., Lasers, or lower coherence sources, e.g., LEDs, 
and optical components such as lenses, mirrors, and typi-
cally involves free space propagation. The implementation 

and stability of such physical systems can be challenging, 
furthermore the use of coherent sources results in speckle 
(multiplicative noise) which can significantly degrade the 
hologram quality. Type (ii), Computer Generated Holo-
gram (CGH) are synthesized using digital computers [7]. 
They therefore typically are less physically constrained 
than optically recorded holograms. Nevertheless, the full 
three-dimensional (3D) information of objects is needed to 
synthesise the holograms, and this may not be viable for all 
scenarios.

Methods to generate holograms under spatially incoher-
ent light illumination have been reported [9–11]. In a previ-
ous work, we demonstrated a single-shot imaging method 
for generating (Fourier) holograms from multiple perspec-
tive 2D images, known as Elemental Images (EIs) [12]. In 
that work, it was also shown that hologram generation is 
possible even under low light level (i.e., photon counting) 
illumination conditions. This approach does not require the 
complex optics, optoelectronics alignment, access to coher-
ent light source, and controlled laboratory environment of 
the more traditional holographic system. However as indi-
cated, to generate such holograms, a large number of EIs 
have to be processed, making this technique computationally 
expensive.
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Sparse Representation (SR) is widely used by those in the 
signal processing research community to faithfully recon-
struct signals from fewer measurements, commonly referred 
to as sparse coefficients. Applications of SR have been suc-
cessfully demonstrated in a number of research fields, e.g., 
object recognition [13], denoising [14], and image compres-
sion [15].In general, SR methods approximate the signal/
image with linear combinations of fewer basis functions 
(known as atoms) and these samples can be used to recon-
struct the original signal/image, with zero or minimal error. 
A set of these atoms represented in the form of a matrix is 
called a dictionary. Based on the type of dictionary, SR can 
be broadly classified into two approaches: (a) analytic and 
(b) learning based approach [16].In analytic based SR meth-
ods, an implicit dictionary involving fixed basis functions, 
e.g., wavelets [17, 18], curvelets [19], and shearlets [20], are 
used. Thus, these implicit dictionaries represent a signal in 
a sparse form using a fixed number of coefficients. It is to 
be noted that implicit dictionaries lack adaptability as they 
apply predefined basis functions and fail to reconstruct the 
complex data [21].

To overcome these limitations, a learning-based approach 
known as dictionary learning (DL) with adaptive dictionar-
ies (or) explicit dictionaries are widely used. In explicit dic-
tionaries, atoms are determined (learned) from the training 
data. The approach has been shown to result in improved 
accuracy when used for image reconstruction [22]. In gen-
eral, sparse representation based on DL involves two major 
steps: (1) sparse coding and (2) dictionary update. During 
the sparse coding stage, the dictionary is fixed, and the 
sparse coefficients of the signal are estimated. During the 
dictionary update step, the dictionary is updated iteratively 
given fixed sparse coefficients, until the approximation to the 
signal converges [23]. Various types of algorithms have been 
proposed to estimate the sparse coefficients, e.g., greedy 
approaches[Matching pursuit (MP) and orthogonal match-
ing pursuit (OMP)], thresholding-based approaches (hard 
and soft thresholding) and homotopy approaches (least angle 
regression, least absolute shrinkage and selection operators) 
[24].

Similarly, for dictionary update, various approaches have 
also been proposed, for instance: Method of optimal direc-
tions (MOD) and K-Singular Value Decomposition (K-SVD) 
[25], Online Dictionary Learning [26], Lagrange dual 
method [27] and Sequential Generalised K-means (SGK) 
[14]. Of these, SGK is the most preferred dictionary update 
method for higher dimensional data denoising and recon-
struction, as it is computationally efficient [28]. As noted, 
computational complexity is one of the major limitations 
on integral Fourier hologram generation. Therefore, in this 
work, for the first time, the computationally efficient SGK 
method is used to perform sparse reconstruction of synthe-
sized integral hologram.

The rest of the paper is organised as follows: Sect. 2 intro-
duces the basics of integral Fourier hologram generation 
process and SGK dictionary update method. Experimental 
and simulation results are presented in Sect. 3. Finally, a 
conclusion is provided in Sect. 4.

2  Methodology

2.1  Fourier integral hologram

This section briefly discusses the generation of integral 
hologram from 2D perspective images. A combination of a 
camera and a lenslet array captures multiple 2D Elemental 
Images (EIs). The result describes a projection geometry, 
i.e., a geometrical relationship between a scene and the cor-
responding view imaged at the camera plane. Using these 
captured EIs, grouping pixels from same location in every 
EI, multiple Orthographic Projection Images (OPIs) can be 
generated, see Fig. 1a. Each OPIs is then numerically Fou-
rier transformed and integrated to produce one pixel in the 
synthesized hologram (red colour dot in Fig. 1b). Repeat-
ing this process for all OPIs, the Fourier hologram of the 
3D object can be synthesized. A detailed description of the 
integral Fourier hologram generation process is presented in 
[12], further details are not given here.

2.2  Dictionary learning method

Let S be the integral Fourier Hologram generated by the 
process described in Sect. 2.1, which is complex. We then 
apply our proposed technique to the amplitude of the holo-
gram i.e., amp (Hologram). This process is mathematically 
represented as follows:

The main objective of the proposed method is hologram 
reconstruction Z ∈ RM×N from sparse samples with zero or 
minimal error. As mentioned, the amplitude of Fourier holo-
gram can be modelled as a linear combination of atoms as 
follows:

where A ∈ RM×K is an overcomplete dictionary, and � ∈ RK×N 
is a sparse coefficient matrix of the Fourier hologram. The 
dictionary A with n atoms is represented as:

In Eq. (2), dictionary A and sparse coefficient matrix � 
are unknowns. To estimate these, a cost function, with dif-
ferent constraints such as sparsity or error constraints, is 

(1)Z = |S|

(2)Z = A�,

(3)A =
[
a1, a2, a3 … .an

]
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used. Mathematically, the cost function based on sparsity 
constraint is given as:

where T is the sparsity level and i indicates the column num-
ber. The cost function based on error constraint is given as:

where ε is the error threshold. Using Lagrangian multipliers, 
Eqs. (4), (5) can be simplified as follows:

where � is the regularization parameter. In general, patch-
based DL methods are commonly used when training dataset 
is not largely available [29]. In this process, the data are 

(4)

({
𝛽i
}N

i=1
, Â

)
= arg min

𝛽i,A

∑N

i=1
‖‖Zi − A𝛽i

‖‖
2

2
.subject to ‖‖𝛽i‖‖0 ≤ T ,

(5)

({
𝛽i
}N

i=1
, Â

)
= arg min

𝛽i,A

∑N

i=1
‖‖𝛽i‖‖0, subject to ‖‖Zi − A𝛽i

‖‖
2

2
≤ ε,

(6)
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i=1
, Â

)
= arg min

𝛽i,A

∑N

i=1

1

2
‖‖Zi − A𝛽i

‖‖
2

2
+ 𝜆‖‖𝛽i‖‖0,

Fig. 1  Integral Fourier Holo-
gram Generation process. a EIs 
to OPIs generation and b OPIs 
to Fourier Hologram generation

Fig. 2  SGK dictionary learning method’s workflow
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divided into patches and each patch is reconstructed sepa-
rately. In our work, we used the patch-based DL method with 
cost function which is defined as [30]:

where, Ri,j is the patch selection operator, which extracts 
the patches from the generated hologram Z at position (i, j) , 
and �i,j is the sparse decomposition of Ri,j(Z) in the diction-
ary A.We note that the dictionary A and sparse coefficient 
matrix �,in Eq. (7), are estimated using SGK dictionary 
learning (SGK-DL) method via two steps iteration process. 
The flowchart of the proposed SGK-DL method is given in 
Fig. 2. The dictionary is initialised with Discrete Cosine 
Transform (DCT) and in the first step, sparse coding was 
performed through greedy Orthogonal Matching Pursuit 
(OMP) algorithm which estimates the sparse coefficients 
( 𝛽) by an orthogonal projection of each atom of the diction-
ary on to the residual. Then, in the second step, diction-
ary is updated by arithmetic average of training data, i.e., 
samples of hologram [28]. As indicated, these two steps are 
iteratively performed until the hologram model gets into 

(7)
(
𝛽, Â

)
∈ arg min

𝛽,A

∑
i,j

1

2

‖‖‖Ri,j(Z) − A𝛼i,j
‖‖‖
2

2
+ 𝜆

‖‖‖𝛼i,j
‖‖‖1),

convergence. After the convergence, the reconstructed mag-
nitude hologram is given as follows:

3  Experimental results

In our experiments, a lens array with identical elemental 
lenses of 1mm × 1mm pitch and 3.3mm focal length is used. 
Figure 3a shows the 3D object, with the size of 4cm × 4cm , 
used in our experiment. To note, the object was kept at 
approximately 50 mm from our imaging system. A detailed 
hologram generation process with all required parameter 
is presented in [12], and is not discussed further here. Fig-
ure 3 depicts the images that are obtained from our experi-
ments. The inset images in Fig. 3b, c indicate the clear 
difference between the perspective-based and orthographic 
projection-based images.

Figure  3d depicts the hologram synthesized as 
explained in Sect. 2.1. Figure 3e, f shows the hologram 

(8)Ẑ = Â𝛽

Fig. 3  Reconstruction results: a 
3D object used in our experi-
ment, b captured elemental 
images, c generated ortho-
graphic projection images, 
d generated integral Fourier 
Hologram, e hologram recon-
struction at depth = 32 mm and 
f reconstructed hologram at 
depth = 85 mm, g reconstructed 
Fourier hologram at ideal depth 
location, e the reconstructed 
hologram (PSNR 34.10 dB) 
through SGK-DL method with 
89% sparsity and f reconstructed 
hologram (PSNR 42.19 dB) 
with 78% sparsity. To note, 
thresholding is not opted
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reconstructed at different locations and Fig. 3g shows the 
hologram reconstructed at 50 mm . To test the performance 
of our proposed work, we chose the patch size as 3 × 1 , 
the dictionary size as 3 × 9 and the number of iterations 
is set to 10 . As it can be seen, we can reconstruct hol-
ogram with zero or minimal error (see Fig. 3h, i) even 
when the sparsity level is set to 89 and 78%, i.e., only 11 
and 22% of original hologram data has been utilised to 
reconstruct the full hologram. We note that typically when 
using SGK-DL method, better reconstruction results are 
achieved when parameters such as patch size, dictionary 
size, sparsity level and number of iterations are properly 
selected. Of these, sparsity level (T) is a critical param-
eter, which can be further tuned based on the thresholding 
approaches employed. By optimising thresholding, good 
quality reconstruction with better PSNR can be achieved.

4  Conclusion

In this work, a method for hologram reconstruction based 
on the use of a fast dictionary learning approach is pre-
sented. In this process, the amplitude of an integral holo-
gram is transformed into sparse coefficients and recon-
struction is performed with fewer samples. Sparse coding 
and dictionary update are implemented in an iterative 
manner, until the reconstructed data reach a converging 
point. An orthogonal matching pursuit algorithm is used 
to solve for the sparse coefficients and arithmetic average 
of training data samples is performed for the dictionary 
update. The proposed method is shown to achieve better 
reconstruction in terms of PSNR. It is expected that the 
parameters involved in the dictionary learning method, i.e., 
dictionary size, sparsity level, and number of iterations, 
significantly impact the reconstruction quality. Therefore, 
in our future work, we aim to develop an adaptive selection 
of parameters with various thresholding values in the dic-
tionary learning method for better reconstruction results.
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