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Abstract
We present a new partially coherent source with spatiotemporal coupling. The stochastic light, which we call a spatiotem-
poral (ST) non-uniformly correlated (NUC) beam, combines space and time in an inhomogeneous (shift- or space-variant) 
correlation function. This results in a source that self-focuses at a controllable location in space-time, making these beams 
potentially useful in applications such as optical trapping, optical tweezing, and particle manipulation. We begin by devel-
oping the mutual coherence function for an ST NUC beam. We then examine its free-space propagation characteristics by 
deriving an expression for the mean intensity at any plane z ≥ 0 . To validate the theoretical work, we perform Monte Carlo 
simulations, in which we generate statistically independent ST NUC beam realizations and compare the sample statistical 
moments to the corresponding theory. We observe excellent agreement amongst the results.

1  Introduction

Research concerning the behavior of partially coherent light 
has been an active area of study for the past few decades. 
In the time since Mandel and Wolf introduced the mutual 
coherence and cross-spectral density functions [1], the study 
of random light has matured and become its own disci-
pline—statistical optics [2, 3]. Since roughly the year 2000, 
researchers, applying the foundational principles developed 
by Wolf, have created all manner of random light sources, 
e.g., sources that rotate [4, 5], self-split [6], self-steer [7], 
self-focus [8–10], produce far-fields patterns of any desired 
shape [11–13], and possess controllable angular momentum 
[14–17] (see Refs. [3, 18–20] for more details). The level of 
beam control afforded by coherence manipulation, as well 
as its innate resistance to scintillation and speckle [21–23], 
makes partially coherent light very well suited for free-
space/underwater optical communications, optical trapping, 
biological, and manufacturing applications [24]. Indeed, this 
has served as the impetus for much of this work.

Most beam control research, whether utilizing partially 
coherent or fully coherent light, assumes that space and time 
are separable. Recently this has begun to change, as scien-
tists have generated sources with spatiotemporal coupling 

resulting in beams with transverse (to the direction of propa-
gation) angular momentum [25–28] and anomalous propa-
gation and refractive behaviors [29–34]. A majority of this 
work has been performed using pulsed laser (coherent) 
sources, and only a few papers have discussed space-time-
coupled partially coherent light [35–39]. Therefore, coupling 
space and time in the correlation function of a random light 
source is a new, relatively unexplored dimension of beam 
control research.

In this paper, we present a new space-time-coupled par-
tially coherent beam. The beam couples space and time in an 
inhomogeneous correlation function resulting in controlla-
ble self-focusing after near-field propagation in space-time. 
The form of the correlation function derives from Lajunen 
and Saastamoinen’s non-uniformly correlated (NUC) purely 
spatial and temporal correlation functions discussed in Refs. 
[8] and [40], respectively.

We begin the analysis by deriving the mutual coherence 
function (MCF) of the spatiotemporal (ST) NUC beam using 
Gori and Santarsiero’s superposition rule for genuine par-
tially coherent sources [41]. We then explore the free-space 
propagation behavior of these beams and demonstrate self-
focusing in space-time. Following the theory discussion, 
we generate (in simulation) an ST NUC beam and compare 
Monte Carlo statistical moments (planar cuts through the 
MCF and mean intensities) to the corresponding theory. 
Lastly, we conclude with a summary of our work. *	 Milo W. Hyde IV 
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2 � Methodology

2.1 � ST NUC beam source‑plane MCF

We begin with the necessary and sufficient criterion for par-
tially coherent fields, also known as the superposition rule:

where Γ is the MCF, p is a positive function, and H is an 
arbitrary kernel [41]. As is customary for space-time-
coupled light, we ignore the beam’s distribution in the y 
direction.

Borrowing from Lajunen and Saastamoinen [8, 40], the p 
and H to produce an ST NUC beam are

 where � controls the coherence of the source in space-time 
(has units of meters), � is a constant that scales the time 
coordinate (has units of meters per second), � is a shift 
parameter that affects the x, t location of self-focusing, and 
lastly, � is the complex envelope, amplitude, or shape of the 
space-time pulse. For our purposes, we assume � is Gauss-
ian-shaped in both time and space, such that,

where Wt and Wx are the pulse widths in time and space, 
respectively, and �c is the light’s carrier frequency. Sub-
stituting Eqs. (2) and (3) into Eq. (1) and evaluating the 
integrals produces the source-plane ( z = 0 ) MCF:
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2.2 � ST NUC beam mean intensity at any plane z ≥ 0

The MCF at any plane z ≥ 0 in free space can be found by 
evaluating

where c is the speed of light in vacuum and �c is the beam’s 
carrier wavelength. This form of the MCF propagation inte-
gral is accurate for a narrowband source (i.e., 𝜔c ≫ 𝛥𝜔 ) 
and paraxial observation. The mean intensity, which we are 
ultimately interested in, can be found by evaluating Γ at a 
single space-time point, i.e., ⟨I(x, t, z)⟩ = Γ(x, t, x, t, z).

Direct substitution of Eq.  (4) into  (5) requires the 
numerical evaluation of two integrals. We can derive a 
simplified version of Eq. (5) by substituting in Eq. (1), 
with the p and H given in Eq. (2), and interchanging the 
integration order, such that,

where H
(
x, t, z;vx

)
 is

 The integral in Eq. (7) can be evaluated in closed form. Sub-
stituting this result into Eq. (6) and evaluating the resulting 
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MCF at a single space-time point yields the following 
expression for the mean intensity:

w h e r e  kc = 2�∕�c  ,  t̄ = t − z∕c − x2∕(2cz)  ,  a n d 
�
(
vx
)
=
[
1∕

(
4W2

x

)]2
+
[
vx − kc∕(2z)

]2 . The integral over 
vx must be evaluated numerically.

2.3 � Propagation behavior

To investigate how ST NUC beams evolve as they propagate, 
we evaluated Eq. (8) at z = 0–10 m in 10 cm steps. The 
ST NUC beam parameters were �c = 1 � m, Wx = 1.5 mm, 
Wt = 50 ps, � = 1.25 mm, � = Wx∕Wt m/s, and � = 0.6 mm. 
Figure 1 shows the mean intensities at six z locations; the 
associated movie (included as supplementary materials) 
shows the entire sequence. Figure 2 shows the temporal (a) 
and spatial (b) mean pulse shapes for the six z locations in 
Fig. 1 at x = 0 m and t − z∕c = 0 s, respectively.
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Note that the peak ⟨I(x, t, z)⟩ occurs at z ≈ 2.5 m and at 
an “off-axis” space-time location. For all z thereafter, the 
spatial width of ⟨I(x, t, z)⟩ grows due to diffraction, result-
ing in a drop in peak intensity; however, the general shape 
of ⟨I(x, t, z)⟩ remains roughly the same.

3 � Validation

In this section, we generate (in simulation) source-plane 
realizations of ST NUC beams, and then propagate them 
to the self-focusing plane at z = 2.5 m. We compute two-
dimensional slices through the source-plane MCF, and the 
mean intensities in both the source plane and at z = 2.5 m 
to validate the theory in Eqs. (4) and (8), respectively. 
Before presenting the results, we discuss the particulars 
of the simulation.

3.1 � Simulation setup

For the Monte Carlo simulations, we generated 5000 
source-plane ST NUC beam realizations with the 
parameters listed in Sect. 2.3: �c = 1 � m, Wx = 1.5 mm, 
Wt = 50 ps, � = 1.25 mm, � = Wx∕Wt m/s, and � = 0.6 mm. 
We discretized the optical fields using grids that were 
N = 512 points per side with sample spacings equal to 
10Wx∕N ≈ 29.30 � m and 10Wt∕N ≈ 0.9766 ps in the x and 
t dimensions, respectively.

After generating an ST NUC beam realization U(x, t) 
(see Sect. 3.2), we propagated the stochastic field instance 

(a) (b)

(c) (d)

(e) (f)

Fig. 1   Mean intensity ⟨I(x, t, z)⟩ : a z = 0  m, b z = 1.25  m, c 
z = 2.5 m, d z = 5 m, e z = 7.5 m, and f z = 10 m

Fig. 2   Temporal (a) and spatial (b) mean pulse shapes at the z loca-
tions in Fig. 1
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z = 2.5 m. We performed the simulated propagation using 
the following procedure: 

1.	 We transformed U from the time to the frequency � 
domain using a fast Fourier transform (FFT) computed 
along the t axis of U.

2.	 We evaluated Fresnel’s integral [42] using an FFT com-
puted along the x dimension of U(x,�) [43, 44].

3.	 We inverse transformed U back to the time domain using 
an FFT computed along the � axis of U(x,�, z).

Lastly, we computed Γ
(
x1, 0, t2, 0

)
 , ⟨I(x, t)⟩ , and ⟨I(x, t, z)⟩ 

from 5000 U to compare to Eqs. (4) and (8).

3.2 � Generating ST NUC beam realizations

We note that while the superposition rule [see Eq. (1)] is 
purely mathematical in nature, it can be physically interpreted 
or applied to generate partially coherent sources in two main 
ways. If an incoherent primary source of shape p is passed 
through a linear optical system with impulse response H, 
Eq. (1) is the result. This “incoherent interpretation” of Eq. (1) 
has been used to generate many spatial and pulsed partially 
coherent beams, all of which (to the author’s knowledge) have 
been uniformly correlated or Schell-model sources, where H is 
simply the Fourier kernel [19, 41, 45, 46]. Generating a NUC 
beam by filtering a spatially incoherent source is theoretically 
possible; however, the requisite optical system is inhomogene-
ous (shift- or space-varying) and, therefore, difficult to physi-
cally realize.

The second interpretation of Eq. (1) views H as a coherent 
optical field parameterized by vx, vt . The function p weights the 
H with specific values of vx, vt , such that, the incoherent sum 
of all possible H produces the desired MCF. This approach is 
referred to as the pseudo-modes technique [47]. For example, 
the pseudo-mode H to produce any Schell-model source is a 
tilted plane wave with a tilt angle given by vx, vt . The form of 
p ultimately determines the correlation function of the source. 
Using pseudo-modes, both Schell-model and NUC beams have 
been produced [48–53]. In all cases, the pseudo-mode is gener-
ated using a laser and some form of the spatial light modula-
tor. The partially coherent source is produced by incoherently 
summing many such pseudo-modes, properly weighted by p.

Here, we use a hybrid technique which combines the two 
described above [54]. In this approach, H is composed of 
a function modeling the pulse shape and a kernel [the H in 
Eq. (2) is in this form]. The “input” into the linear system is a 
delta-correlated, circular-complex-Gaussian (CCG) random 
function, which is scaled by p. Specialized to an ST NUC 
beam, this is

where r is the delta-correlated, CCG random function and 
U is a stochastic ST NUC pseudo-mode, more aptly called 
an ST NUC field realization or instance. We note that since 
Eq. (9) is a linear transform of a Gaussian random process, 
the field U is also a Gaussian random process. Therefore, U 
has the same first-order statistics as fully developed speckle 
fields, namely, uniform phase and Rayleigh amplitude [55].

Being a superposition integral, Eq. (9) is equivalent to a 
matrix-vector product and is numerically evaluated as such. 
Digitally, Eq. (9) can be cast as

where ij is a double index representing every combination of 
discrete x, t, m is an index representing discrete vx , ⊙ is the 
Hadamard product, and �vx is the spacing in the vx dimen-
sion. In the ST NUC beam simulations, �vx = 5.49 × 104 1/
m2 . This spacing results in 100 grid points across the width 
of p. The other symbols in Eq. (10) are � , which is an N2 × 1 
vector representing Eq. (3); h, which is an N2 ×M matrix 
representing the complex exponential kernel in Eq.  (9); 
r, which is an M × 1 vector of zero-mean, unit-variance 
CCG random numbers; and p, which is an M × 1 vector 
representing continuous p in Eq. (2). For the simulations, 
N = M = 512.

The ST NUC beam realizations produced by Eq. (10) are 
N2 × 1 vectors. They must be reshaped into N × N  matri-
ces to physically represent optical fields. Figure 3 shows 
example ST NUC field instances with the source parameters 
listed above. We note that ST NUC beam realizations, like 
those in Fig. 3, can be physically generated using a device 
called a Fourier transform pulse shaper. This device has been 
described in the literature many times, e.g., Refs. [27, 29, 
35, 42, 45, 56, 57].

3.3 � Results

Figures 4 and 5 show the simulation results. In Fig. 4, (a) 
and (b) report the theoretical and simulated real part of the 
source-plane MCF Re

[
Γ
(
x1, 0, t2, 0

)]
 , respectively; (c) and 

(d) show the imaginary part Im
[
Γ
(
x1, 0, t2, 0

)]
 . Subfigures 

(f) and (g) display the theoretical and simulated source-plane 
mean intensities. Subfigures (a) and (b), (c) and (d), and (f) 
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and (g) use the same false color scales defined by the color 
bars on the right sides of (b), (d), and (g), respectively.

Lastly, subfigures (e) and (h) plot the root-mean-square 
errors (RMSEs) � for Γ

(
x1, 0, t2, 0

)
 and ⟨I(x, t)⟩ versus trial 

number q on log-log scales. The RMSEs were computed 
using the following expression:

where f is the moment of interest. Also included on (e) and 
(h) are the best-fit lines to show the asymptotic behavior of 
the error.

Figure 5 shows the mean intensity results in the self-
focusing plane at z = 2.5 m. The top row of figures shows 
the theoretical and simulated mean intensities in (a) and 
(b), respectively, while (c) plots the RMSE for ⟨I(x, t, z)⟩ , 
with best-fit line, on a log-log scale. Figure 5a and b are 
encoded using the same color scale defined by the color 
bar immediately to the right of (b). The middle row of fig-
ures reports the theoretical and simulated temporal pulse 
shapes at x = 0 m: (d) is a direct comparison of theory ver-
sus simulation and (e) is the same result with the simulated 
⟨I⟩ shifted by −50 ps. Lastly, the bottom row of figures dis-
plays the theoretical and simulated spatial pulse shapes at 
t − z∕c = 0 s. Like the row above, (f) is a direct comparison 
of theory versus simulation and (g) is the same result with 
the simulated ⟨I⟩ shifted by −1 mm.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3   ST NUC beam realizations: a, c, and e |U| and b, d, and f 
arg (U)

(a) (b)

(c) (d)

(f)

(e)

(g)

(h)

Fig. 4   Source-plane MCF Γ
(
x1, 0, t2, 0

)
 and mean intensity ⟨I(x, t)⟩ 

results: a theory Re(Γ) , b simulation Re(Γ) , c theory Im(Γ) , d simula-
tion Im(Γ) , e Γ

(
x1, 0, t2, 0

)
 root-mean-square-error (RMSE) � versus 

trial number q, f theory ⟨I⟩ , g simulation ⟨I⟩ , and h ⟨I(x, t)⟩ root-mean-
square-error (RMSE) � versus trial number q 

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 5   Mean intensity ⟨I(x, t, z)⟩ at z = 2.5 m: a theory, b simulation, 
c ⟨I(x, t, z)⟩ root-mean-square-error (RMSE) � versus trial number q, 
d temporal pulse shape at x = 0 m (theory versus simulation), e sub-
plot (d) with simulated result shifted by −50 ps, f spatial pulse shape 
at t − z∕c = 0  s (theory versus simulation), and g subplot  (f) with 
simulated result shifted by −1 mm
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The agreement between theory and simulation in Figs. 4 
and 5 is excellent. These results validate the analysis presented 
in Sect. 2. The slopes of the best-fit lines in the RMSE plots 
in Fig. 4e, h, and Fig. 5c are −0.5070 , −0.5471 , and −0.5045 , 
respectively. Therefore, the error asymptotically goes like 
�(q) ∼ q−1∕2 . Recall that ST NUC beam realizations, gener-
ated using Eq. (10) and pictured in Fig. 3, are CCG distrib-
uted. Thus, they have the same first-order statistics as fully 
developed speckle fields [2, 55]. From Goodman’s seminal 
work on speckle [55], we know that the speckle contrast, after 
incoherently summing M statistically independent speckle 
patterns, is C = 1∕

√
M . This, of course, is the same as the 

asymptotic behavior of the error and physically explains why 
the RMSE behaves as it does.

4 � Conclusion

In this paper, we developed and analyzed a new space-time-
coupled a partially coherent source called a spatiotemporal 
(ST) non-uniformly correlated (NUC) beam. The ST NUC 
beam combined space and time in an inhomogeneous (shift-
variant or space-variant) correlation function and exhibited 
self-focusing at a near-field location in space-time.

Using the superposition rule for genuine partially coher-
ent sources, we first developed the source-plane ST NUC 
mutual coherence function (MCF). We then derived the 
mean intensity for any plane z ≥ 0 in free space by propa-
gating the source-plane MCF. We used the mean intensity 
expression to predict the space-time pulse shapes at numer-
ous z locations, for the purpose of understanding the beam’s 
propagation behavior.

To validate our analysis, we performed Monte Carlo simu-
lations in which we generated and propagated 5,000 ST NUC 
beam realizations and computed sample statistics (the MCF 
and mean intensity) to compare to theory. After discussing 
the simulation details, we presented the results and observed 
excellent agreement amongst the simulated and theoretical 
moments. The quality of these results validated our analysis.

Engineered space-time coupling with stochastic light 
sources is a new, relatively unexplored aspect of beam con-
trol research. Potential applications of this work include 
optical trapping, particle manipulation, optical tweezing, 
medicine, and atomic optics.
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