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Abstract
This article presents a critical look at the standard theory of bright and dark photorefractive screening solitons. We pay atten-
tion to the commonly overlooked fact of the inconsistency of the theory in the context of the accordance of soliton solution 
with the microscopic band transport models. Taking into account the material equations for the semi-insulating semicon-
ductor (SI-GaAs) and including the nonlinear transport of hot electrons, a simple differential equation has been developed 
to determine the distribution of refractive index changes in the material for a localized optical beam. An amendment to the 
standard solution of (1 + 1)D solitons has been proposed, which particularly should be used for dark solitons to obtain the 
plausible self-consistent solutions

1 Introduction

The photorefractive (PR) phenomenon is the high-sensitivity 
nonlinear optical effect in which the spatially nonuniform 
incident light induces changes in refractive index of photo-
conductive electrooptic materials. In the 1990s, the self-trap-
ping effect of optical beams in photorefractive materials was 
observed. Soon after the possibility of generating bright and 
dark screening solitons was theoretically predicted [1, 2]. 
Those predictions were shortly thereafter confirmed experi-
mentally [3–5], and the topic of solitons aroused great inter-
est, which continues to this day [6–11]. So far, various types 
of PR solitons have been investigated, such as screening and 
photovoltaic solitons in materials with both linear and square 
electrooptic effect in geometry with bulk PR crystals as well 
as in planar waveguides.

However, it is commonly ignored that the standard PR 
soliton theory is internally inconsistent with respect to its 
compatibility with the microscopic model of the photore-
fractive phenomenon. The procedure for finding a soliton-
state solution for an optical beam consists of two steps. In 
the first stage, exploiting the Kuhtarev-Vinetskii (K-V) band 
transport model, the dependence on the distribution of the 

space charge field is derived, which in turn induces changes 
in the refractive index Δn. Next, we look for a solution of a 
paraxial wave equation using the found expression for Δn. 
The problematic point is that when considering microscopic 
equations describing the properties of a specific material, 
commonly strong simplifying assumptions are made. As a 
result, the obtained soliton equation does not contain any 
microscopic parameter such as defect concentration, trap-
ping coefficients, etc. Such result suggests that soliton solu-
tions are universal and can be applied in the same form to 
various PR materials. Generally, such a conclusion is not 
correct. The present work is an attempt to reconcile the band 
transport model with the solution of the wave equation. It 
was pointed out that the commonly used expression for the 
distribution of the space charge field is a phenomenologi-
cal approximation, which in some situations can be very 
different from the rigorous solution based on the micro-
scopic model. A simple differential equation was derived 
that allows to determine the correct refractive index change 
profile in accordance with the material equations. Finally, it 
is shown how to modify the characteristic equation of soliton 
states to take into account the microscopic parameters of a 
given material. The proposed correction should be applied 
especially to the analysis of dark solitons. The band trans-
port model for the PR semiconductor GaAs was adopted for 
the considerations. There were two reasons for this choice 
of material. Photorefractive semiconductors are character-
ized by electron–hole conductivity, which means that such 
a model of the PR effect includes cases of simpler band 
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transport models with one type of carriers. In addition, in 
semiconductors such as GaAs, in strong electric fields, non-
linear electron transport appears, which was also included 
in the model under study. Secondly, according to authors’ 
knowledge photorefractive solitons have not been investi-
gated in semi-insulating GaAs so far, therefore some criteria 
have been formulated that may be helpful in designing such 
an experiment. Also, it should be noted that photorefractive 
semiconductors have two attractive features: a short response 
time, which results from the high mobility of carriers, and 
sensitivity in the near infrared spectral range, including 
wavelengths of fiber optic telecommunications. Their dis-
advantage is low the electro-optic coefficients which means 
that high values of the external electric field are required to 
produce screening solitons.

2  Parameters of bright and dark beam

Further herein we consider the one-dimensional light 
beam with the intensity distribution I(x) in the x-direction. 
For solitary beams, a total power intensity of a light I(x) 
is generally a sum of a signal beam intensity Is(x) and 
background intensity IB = Id + Ib, where Id is the so-called 
equivalent dark irradiance corresponding to the rate of 
free carriers thermal generation, which can be increased 
by means of artificial illumination Ib. Taking as an exam-
ple the optical beam described by the Gaussian function 
Is(x) = Im⋅exp(− ln2·x2/w2), where w = HWHM (width at a 
half maximum), the total intensity I(x) = Is(x) + IB can be 
written as

where for the bright beam (sign plus): I0 = IB, m = Im/I0, 
(m > 0) and for the dark beam (sign minus): I0 = I∞ + IB, 
m = I∞/I0, (0 < m < 1); I∞ is the signal beam intensity at 
a large distance from the center of the light distribution 
(I∞ → 0 for bright beams and I∞ → Im > 0 for dark beams), 
m is the contrast beam parameter.

3  Standard description of the space‑charge 
field as a phenomenological approach

The standard theoretical description of PR effect is usually 
based on the K-V band transport model which consists of a 
set of material equations involving optical excitation, trans-
port and trapping of free carriers. In the first theoretical works 
[1, 2] concerning PR solitons, a few rather strong simplifying 
assumptions were formulated to determine the refractive index 
variation. The approach outlined therein that leads to the sim-
ple formula of the space-charge field Esc(x) has been widely 

(1)I(x) = I0
[
1 ± m exp

(
− ln 2 ⋅ x2

/
w2

)]
,

accepted by other researchers and up to now has been used in 
the analysis of one-dimensional PR solitons. Usually, the sim-
plest version of the K-V model with the single trap level and 
one type of carriers is considered. This model is adequate for 
sillenites and ferroelectrics, but for semiconductors the model 
should be extended to include bipolar electron–hole transport. 
In both cases it can be shown that the standard solution for the 
space-charge field can be obtained through the phenomeno-
logical (macroscopic) approach in which only straightforward 
measurable parameters are taken into account. In the following 
the diffusion and photovoltaic effect are neglected. In that case 
the conduction current densities for electrons and holes are 
given through the differential Ohm law, respectively as

In the above equations, σn, σp are electron and hole photo-
conductivities, assuming that they are proportional to the light 
intensity I(x), where Cn and Cp denote quantities proportional 
to the carrier photogeneration rates. In the phenomenological 
approximation Cn and Cp do not depend on the electric field. In 
the steady state, for a conduction current we can write

where Jn(∞), Jp(∞) are the current densities at a sufficiently 
large distance from the beam center (formally infinitely 
large). Combining the equations given above, one gets

where Ĩ(x) = I(x)∕IB , ρ = I∞/IB, E0 = E(x → ∞) = E∞ and 
for the simplicity of notation the function of relative light 
intensity u(x) =

[
Is(x) + IB

]
∕
(
I∞ + IB

)
=
[
Ĩ(x) + 1

]
∕(𝜌 + 1) 

is introduced. In the case of bright beams: I∞ = 0 and ρ = 0. 
The Eq. (4b) describes the nonlinear response which is spa-
tially symmetric and local in respect to the light intensity 
pattern. If a constant voltage V is applied to the crystal of 
length L, additionally the external bias condition

is satisfied which permits to determine the value of E0 = E∞. 
Using Eqs. (4b) and (5) we find E0 = Ea

/⟨
u−1(x)

⟩
 , where ⟨

u−1(x)
⟩
= L−1 ∫ L∕2

−L∕2
u−1(x) dx . If the crystal length is much 

larger than the width of the optical beam, one obtains 

(2a)Jn = �n(x)E(x) = CnI(x) ⋅ E(x),

(2b)Jp = �p(x)E(x) = CpI(x) ⋅ E(x)

(3)Jn + Jp = Jtotal = Jn(∞) + Jp(∞),

(4a)

E(x)
[
Cn

(
Is(x) + IB

)
+ Cp

(
Is(x) + IB

)]

= E0

[
Cn

(
I∞ + IB

)
+ Cp

(
I∞ + IB

)]
,

(4b)E(x) = E0

I∞ + IB

Is(x) + IB
= E0

𝜌 + 1

Ĩs(x) + 1
=

E0

u(x)
,

(5)V = ∫
L∕2

−L∕2

E(x) dx = EaL
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⟨
u−1(x)

⟩
→ 1 and E0 → Ea. It should be noted that the field 

profile given by the expression (4b) depends only on the 
beam intensity distribution I(x) and is parameterized by the 
value of the coefficient ρ alone. No material parameters 
appear in the formula. For a symmetrical light beam, the 
distribution of the electric field is also symmetrical and spa-
tially local, i.e. there is no shift of the space-charge field 
amplitude with respect to the light intensity. To the authors’ 
knowledge, the expression (4b) is used in all works concern-
ing the analysis of screening (1 + 1)D solitons investigated 
not only in conventional PR crystals with linear electro-
optics effect, but also in the analysis of two-photon screen-
ing-photovoltaic solitons [12, 13] or solitons in centrosym-
metric materials with the quadratic electro-optic effect [14, 
15].

4  Photorefractive screening solitons 
in semi‑insulating GaAs

In what follows a more accurate expression describing the 
space-charge field distribution will be presented. Since the 
discussion is conducted in context of the possibility of gen-
erating photorefractive solitons (1 + 1D) in semiconductors, 
it is useful to recall shortly the basic assumptions of the 
commonly adopted theory of PR solitons taking the param-
eter values for semi-insulating GaAs.

If it is assumed that the light beam propagates along 
the z-axis and is allowed to diffract only in the x-direction, 
the intensity of the optical beam I = I(x, z) is related to 
the slow varying complex amplitude Φ(x,z) of the optical 
field Eopt(x,z,t) = Φ(x,z)exp(ikz − iωt) by the relationship: 
I = C·|Φ|2, where C = (1/2)nb(ε0/μ0)1/2, k = (ω/c)nb and nb is 
the unperturbed index of refraction. The evolution of beam 
within the paraxial approximation obeys the wave equation

where Φz = ∂Φ/∂z, Φxx = ∂2Φ/∂x2, Δnb =  − (1/2)nb
3reff·E is 

the change in the refractive index induced by the linear elec-
tro-optic effect characterized by the effective coefficient reff. 
In the absence of applied voltage (Ea = 0) both bright and 
dark beams during propagation across a crystal spread out 
due to diffraction. With the proper bias electric field, this 
spreading of the beam can be exactly balanced by the PR 
nonlinearity and a spatial soliton state is formed. Forming 
of bright solitons requires the self-focusing nonlinearity, 
whereas the creation of dark solitons—self-defocusing 
effect. Both types of nonlinearity can be obtained in the 
same crystal exhibiting the electro-optic Pockels effect by 

(6a)iΦz +
1

2k0nb
Φxx + k0Δnb(E)Φ = 0,

reversing the biasing voltage polarity. It is convenient to 
write the Eq.  (6a) in terms of normalized amplitude 
ϕ = (C/IB)1/2Φ and dimensionless coordinates � = z∕ZE with 
ZE = 2

/(
k0n

3
b
reffE

) and � = x∕XE with XE = 1

/(
k0n

2
b

√
reffE0

/
2

)
 .  

In this case the expressions (4b) and (6a) may be written 
accordingly as E = E0(1 +|ϕ∞|2)/(1 +|ϕ |2) and

Stationary solitons maintain the unchanged transverse pro-
file during propagation hence the solution in the form ϕ(ξ, 
ζ) = y(ξ)·exp(iΓζ)·exp[iψ(ξ, ζ)] is assumed with the real ampli-
tude y(ξ), the nonlinear propagation shift Γ and the phase function 
ψ(ξ, ζ). It turns out that for ψ = 0 such ansatz admits self-trapped 
solutions of Eq. (6b) corresponding to bright (the plus sign in 
the equation) and black solitons (the minus sign) not including, 
however, the so-called gray solitons, which have ψ ≠ 0 (phase is 
not constant across x), and propagate obliquely to the z-axis with 
the constant transverse velocity [6, 16, 17]. Using the appropri-
ate boundary conditions for bright and dark beams and following 
the scheme developed in previous works [1, 2] we arrive at the 
characteristic equations for bright and black soliton states

where ŷ denotes the amplitude normalized to unity, i.e. for 
bright beams ŷ = y/ymax, where ymax = y(ξ = 0), and for dark 
beams ŷ = y/ymax, where ymax = y(ξ → ∞). For bright and dark 
solitons, coefficients ρ0, ρ are defined, respectively, as I0/IB 
(I0 is the peak intensity value) and I∞/IB. Numerical integra-
tion of the above equations yields the profiles of the bright 
and black solitons described correspondingly by a symmet-
ric and antisymmetric function. In turn, taking into account 
the inverse functions we can calculate and plot the soliton 
existence curves presenting the dependence of the charac-
teristic beam width W (typically full width at half-maximum 
(FWHM)) as a function of the coefficients ρ0, ρ for a given 
value of the electric field Ea:

(6b)i�� +
1

2
��� ∓

(
1 + |�∞|2

1 + |�|2

)
� = 0

(7a)

ŷ𝜉 =
[
Fbright(𝜌0, ŷ)

]1∕2
,

where

Fbright(𝜌0, ŷ) = (2∕𝜌0)
[
−ŷ2 ln(1 + 𝜌0) + ln(1 + 𝜌0ŷ

2)
]
,

(7b)

ŷ𝜉 =
[
Fblack(𝜌, ŷ)

]1∕2
,

where

Fblack(𝜌, ŷ) = 2

[(
ŷ2 − 1

)
− (1 + 1∕𝜌) ln

(
1 + 𝜌ŷ2

1 + 𝜌

)]
,

(8a)Wbright(𝜌0) = 2

1

∫
1∕

√
2

Fbright(𝜌0, ŷ)
−1∕2dŷ,
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Figure 1a shows the existence curves for GaAs for the 

intensity FWHM of bright and dark solitary waves at the 
applied field of 20 kV/cm.

To obtain the value of W in µm, the length XE(20 kV/
cm) ≈ 11 μm is included [introduced in the description of 
Eq. (6a)]. As it can be seen from Fig. 1b, the production 
of a soliton with a width of approximately 20 μm requires 
an external field of about 10 kV/cm for a black soliton, 
while for a bright soliton a field of up to 50 kV/cm is 
needed, which makes the latter impractical. Although dark 
solitons do not require very large electric fields, they can 
be unstable, leading, inter alia, to their splitting during 
propagation. As shown in the earlier works bright solitons 
are stable for any ρ0 value, while black solitons reveal 
stability provided that ρ < 30 [17]. For this reason, ρ = 20 
was adopted in further considerations.

5  Rate equations involving electron 
transport nonlinearity

To describe the PR effect in semiconductors, the K-V band 
model includes electron–hole transport. In the considered 
model inside the band gap it is assumed a single dominant 
deep level of photoactive centers (here donors of density 
ND), responsible for the generation and recombination of 
both types of carriers. The shallow level of fully ionized 
acceptors of density NA = NA

− partially compensates of the 
deep donors. The shallow impurity species are inactive and 

(8b)Wblack(𝜌) = 2

1∕
√
2

∫
0

Fblack(𝜌, ŷ)
−1∕2dŷ.

do not participate in photorefractive transitions. The rate 
equations are [18, 19]

Material equations are supplemented by the bias condi-
tion (5). In above equations to simplify the notation we use 
the symbol ∇ = d/dx. Light intensities Is and IB are defined 
in Sect. 2, S = s/hν is the photoionization cross section s per 
photon energy, ρ is the charge density, E is the total electric 
field inside a crystal, ND, ND

+, NA, n, p denote respectively 
the concentration of donors, ionized donors, acceptors, free 
electrons and holes; γn, γp are the recombination coefficients 
for electrons and holes, μn, μp—electron and hole mobility; 
Jn, Jp—the current densities; ε = ε0εr, where ε0 and εr are 
the vacuum and relative low frequency dielectric constants. 
UT = kBT/q is the thermal potential (UT ≈ 26 mV at 300 K) 
where q is the elementary charge, kB—the Boltzmann’s con-
stant, T—the absolute temperature of lattice, Tn—the effec-
tive temperature of hot electrons. In above material equa-
tions thermal generation rate and the direct recombination 

(9a)
�n∕�t = 0 = Sn

(
Is + IB

)(
ND − N+

D

)
− �nnN

+
D
+ (1∕q)∇Jn,

(9b)
�p∕�t = 0 = Sp

(
Is + IB

)
N+
D
− �pp

(
ND − N+

D

)
− (1∕q)∇Jp,

(9c)��∕�t = 0 = −(1∕q)∇
(
Jn + Jp

)
,

(9d)Jn = q�n(E)nE + qUT∇
[
n�n(E)Tn(E)∕T

]
,

(9e)Jp = q�ppE + q�pUT∇p,

(9f)∇E = �∕�,

(9g)� = q
(
N+
D
− N−

A
+ p − n

)
.

Fig. 1  a Existence curves for bright and black solitons for GaAs 
under the external field Ea = 20 kV/cm as the dependence of FWHM 
width of the soliton profile on the coefficients ρ0 and ρ, b soliton 

width (FWHM) for bright and dark solitons as a function of an 
applied field for the given values of coefficients ρ0 (bright beams) and 
ρ (dark beams)
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rate are neglected as small. The parameters used to calcu-
late the photorefractive response of SI-GaAs are listed in 
Table 1.

A characteristic property of GaAs is the nonlinear elec-
tron transport under electric fields exceeding 3 kV/cm, asso-
ciated with the phenomenon of inter-valley electron scatter-
ing on phonons [20, 21]. This effect consists in transferring 
electrons (heated in a strong electric field) from the central 
valley Γ to the higher side L valley, where electrons have 
approximately 20 times lower mobility. As a result, with an 
increase in the electric field, the average mobility of elec-
trons decreases, and with sufficiently strong fields (> 20 kV/
cm), the drift velocity of carriers reaches an approximately 
constant value of saturation vsat. The dependence of the elec-
tron drift velocity on the electric field can be modeled by an 
expression based on Monte-Carlo simulations [21]

The formula shows good agreement with experiments 
for GaAs at T = 300 K in the range of electric fields up 
to about 20 kV/cm [22]. Above this value, the electron 
drift velocity reveals a monotonic decline in the tested 
range to 200 kV/cm [22, 23]. Meanwhile, according to 
the expression (10) for E > 20 kV/cm, the electron veloc-
ity remains constant. In Eq.  (10) vsat is the saturation 
drift velocity, Esat = vsat/μe denotes the saturation field, 
vsat = (0.6 + 0.6μn − 0.2μn

2) ×  105 (m/s), where μn  [m2/s] is 
the nonlinear mobility of electrons (μn(E) = vn(E)/E) [21]. 
Assuming for GaAs the linear electron mobility μn = 0.5 
 m2/s = 5000  cm2/s we find vsat = 8.5 ×  106 cm/s and Esat 
≈ 1.7 kV/cm. The effective temperature Tn(E) appearing 
in Eq. (9d) rises with the electric field approximately as 
Tn(E) ≈ 300 K + (1/1500)[K m/V] × E[V/m] and in strong 
electric fields it can exceed the lattice temperature by hun-
dreds of degrees [18–20, 24]. On the other hand transport 
of hot holes remains linear under high fields [25]. Because 
experiments with generation of screening solitons require 

(10)vn(E) = vsat

[
1 +

E∕Esat − 1

1 + 0.04 ⋅
(
E∕Esat

)4

]
.

the application an external field higher than 10 kV/cm, for 
typical optical beams with FWHM widths of 10–20 µm, 
the drift transport strongly dominates over diffusion, so 
diffusion currents in Eqs. (9d) and (9e) may be ignored. 
This assumption is valid for both holes and electrons.

6  The space‑charge field equation

Our aim is to find the equation describing the space charge 
field induced by the low-intensity 1D optical beam. By 
referring to the system of rate equations the assumption 
of low-intensity implies that free carrier concentrations 
are much smaller than the concentrations of impurities (n, 
p ≪ ND, NA). On the basis of Eqs. (9a)–(9g) a differential 
equation for ∇E can be obtained without any simplifica-
tions, but such equation is complex and illegible. More 
importantly, it may exhibit instability when integrating 
with standard numerical algorithms. We will show, that 
a much simpler equation can be given by using one addi-
tional assumption. The continuity Eq. (9c) states that the 
sum of electron and hole current densities is constant. 
Here, a stronger assumption is made that both the elec-
tron and hole current densities separately can be taken as 
constant i.e. Jn = const. and Jp = const. This result follows 
immediately from a macroscopic approach. Referring to 
the expressions (9a) and (9b) the electron conductivity 
is proportional to the hole conductivity, σn(x) = C·σp(x). 
Within the microscopic model, which means that the 
spatial distributions of electrons and holes are mutually 
proportional: n(x) ∝ p(x). In that case, from the continuity 
equation ∇Jn + ∇Jp = 0, one finds ∇σn·(1 + C)E + ∇E·σn(1 
+ C) = 0, thus ∇(σnE) = 0, that is Jn = const. and similarly 
Jp = const. Below, the above assumption is generalized by 
applying it to the microscopic model. This allows writing 
the equations Jn = Jn0, Jp = Jp0, where Jn0, Jp0 denote cur-
rent densities sufficiently far from the beam: |x|≫ w. In that 
case concentrations of electrons and hole can be written as

Table 1  Parameters used in 
calculations for SI-GaAs [19]

Parameter Value

Wavelength λ = 1.064 μm
Refractive index nb = 3.55
Electro-optic coefficient r41 = 1.43 pm/V
Applied electric field Ea = 20 kV/cm
Cross section for photogeneration from traps sn = 1 ×  10−17  cm2 sp = 1 ×  10−16  cm2

Cross section for recombination to traps σn = 1 ×  10−14  cm2 σp = 5 ×  10−15  cm2

Trapping  coefficient1) γn = 4.5 ×  10−7  cm3/s γp = 2 ×  10−7  cm3/s
Low-field carrier mobility μn = 6000  cm2/Vs μp = 400  cm2/Vs
Deep trap (donors) concentration ND = 5·1016  cm−3

Compensation ratio of donor traps r = NA/ND = 0.1–0.9
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where r̃ = r−1 = ND/NA.
From Eqs. (9d) and (9e), omitting the diffusion compo-

nent, we have μnn(x)E(x) = μn0n0E0, p(x)E(x) = p0E0, where 
μn0 denotes the low-field electron mobility. Hence, we find

where for clarity, the normalized field e(x) = E(x)/E0 was 
introduced.

The space charge distribution ND
+ is directly related 

to the electric field in the crystal by Gauss’s law (9f), and 
assuming n, p, ≪ ND

+, NA one gets

and if we use the relationship (ND − NA)/NA = NDA/NA = ̃r − 1, 
we can also write

where the two characteristic lengths XD = εE0/(qND), 
XA = εE0/(qNA) = ̃r XD and r̃ = r−1 were defined.

By subtracting Eqs.  (4a) and (4b) we arrive at the 
equation

which describes the dynamic equilibrium condition between 
the rates of photogeneration and recombination of carri-
ers for charge density ρ. For low light intensities approxi-
mate equality ∂ρ/∂t ≈ ∂ND

+/∂t holds. Inserting expressions 
(11)–(13) into Eq.  (14) after some algebra we find the 
looked-for equation

where S = Sn/Sp.
The function fμ(e) = μn0/μn(e) is given by the rather com-

plicated dependence on the electric field. However, for fields 
E > 5 kV/cm a quasi-linear approximation fμ(e) = e(x)α can 
be used, where α ≈ 0.9. The important point regarding a 
stability of the solution is that the function fμ(e) is sublinear. 
The accuracy of the solution according to Eq. (15) decreases 
in the case of a strong influence of the electron nonlinearity. 
The reason is that the assumption n(x) ∝ p(x) is no longer 
correct. However, it has been verified to be valid for the 

(11a)n0 = Sn
(
I∞ + IB

)
(r̃ − 1)

/
𝛾n,

(11b)p0 = Sp
(
I∞ + IB

)/
𝛾p(r̃ − 1),

(12a)n(x) =
(
�n0∕�n

)
n0∕e(x),

(12b)p(x) = p0∕e(x),

(13a)
N+
D
= NA + (𝜀∕q)∇E = NA

(
1 + XA∇e

)
= NA

(
1 + r̃XD∇e

)
,

(13b)ND − N+
D
= NDA

[
1 − (r̃ − 1)−1XA∇e

]
,

(14)
��∕�t = 0 =

[
Sn
(
Is + IB

)
+ �pp

](
ND − N+

D

)
−
[
Sp(Is + IB) + �nn

]
N+
D

(15)

∇e(x) = X−1
A

S(r̃ − 1)
[
e(x)u(x) − 𝜇n0∕𝜇n

]
− [e(x)u(x) − 1]

(S + 1)e(x)u(x) +
(
𝜇n0∕𝜇n

)
S(r̃ − 1) + (r̃ − 1)−1

model with linear transport of carriers. In this case, setting 
μn0/μn = 1, Eq. (15) simplifies to the form

where the distance XA is written in terms of XD and r̃ . 
Equation (16) is a differential equation of the type de(x)/
dx = [A(x)e(x) + B]/[C(x)e(x) + D]. It does not have an ana-
lytical solution in general, but is easy to integrate.

As seen, in addition to the macroscopic parameters, i.e. 
the electric field E0 and electric permittivity ε, the Eq. (16) 
contains three microscopic material parameters: concen-
tration of traps (ND), impurity compensation ratio (r), and 
coefficient (S) that expresses the ratio of the electron to hole 
photogeneration rate. Note, that the equation does not con-
tain recombination coefficients γn, γp. In the physical inter-
pretation, this is due to the fact that in the steady state, the 
light-excited charge carriers in vast majority must finally 
be stored in the traps, building up the distribution of the 
space charge. Both the trapping cross-sections, as well as the 
mobility of carriers, affect only the dynamics of processes, 
determining the time of formation of the space charge. Equa-
tion (16) enables us to find the electric field distribution 
within the considered model of bipolar transport. Setting 
S = 0, (Sn = 0—only the hole transport remains), or alterna-
tively 1/S = 0, (Sp = 0 − only the electron transport occurs), 
Eq. (16) can be written correspondingly as:

where, to indicate the symmetry between the equations, they 
were written with coefficient r instead of r̃ = 1/r. When we 
replace the carrier type, symmetry relies on, as would be 
expected, the use of substitution r → 1 − r. For r = 0.5 ( ̃r = 2) 
both equations give the same solutions.

In PR materials as ferroelectrics and sillenites, charge 
transport phenomena can be described by means of the band 
model with one type of carrier, usually electrons. Moreover, 
for most photorefractive crystals, the inequality NA ≪ ND i.e. 
r ≪ 1 is satisfied. In such case, Eq. (17b) takes the simple 
form [26]

Contrary to Eq. (16), based on the assumption that the 
electron and hole currents are constant, Eqs. (17a)–(17c) for 
one kind of carrier are fully consistent with the K-V model. 
In particular cases, e.g. for the Gaussian beam, analytical 

(16)

∇e(x) =
(
r̃XD

)−1 [e(x)u(x) − 1][S(r̃ − 1) − 1]

(S + 1)e(x)u(x) + S(r̃ − 1) + (r̃ − 1)−1
,

(17a)∇ep(x) = (1 − r)X−1
D

(
epu − 1

)
r

epu(1 − r) + r
,

(17b)∇en(x) = rX−1
D

(
enu − 1

)
(1 − r)

enu ⋅ r + 1 − r
,

(17c)∇en(x) = rX−1
D

[
en(x)u(x) − 1

]
.
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solution can be provided, expressed by the error function 
[27]. The electric field distribution obtained from Eq. (17c) 
is given by

Referring to the above expression, we will examine the 
scope of validity of the approximation, where the second 
term may be omitted and the phenomenological formula (4b) 
can be applied.

7  The range of applicability 
of phenomenological approach

For typical optical beams with an intensity width FWHM 
of the order of 10–20 μm, the power intensity distribution 
I(x) may be treated as a slowly varying function, which 
suggests the assumption that the induced electric field pro-
file has a similar property, hence inequality XA·∇e(x) ≪ 1 
is satisfied. This assumption is commonly used in the 
theoretical analysis concerning bright as well as dark 
solitons [1–16]. As it will be shown this approximation 
is correct for bright beams, but has a limited applicabil-
ity for dark beams. Here, we will estimate the approxi-
mate criteria when the formula e(x) ≈ 1/u(x) is correct, 
it means the second term in Eq. (18) can be ignored. For 
convenience, we assume that bright and dark beams are 
given by expressions ebright(�) = 1∕

[
1 + m0 exp

(
−�2

)]
 , 

edark(�) = 1∕
[
1 − m exp

(
−�2

)]
 respectively, where χ = (x/w) 

· (ln2)1/2. Using parameters ρ0 and ρ like in Fig. 2a, m0 = ρ0 
and m = ρ/(ρ + 1). It should be noted, that if we take into con-
sideration small values of ρ0 and ρ = m/(1 − m) i.e. ρ0, ρ ~ 1, 
the analysis can be omitted. In that case the derivatives ∇χe 

(18)en(x) = 1∕u(x) + XA∇en(x)∕u(x).

are also small and it can be expected that the approximation 
e(χ) ≈ 1/u(χ) should not lead to major errors. Differences 
may appear for ρ0, ρ ≫ 1. In the case of bright beams it can be 
found that in the range 20 < ρ0 < 250 the derivate maximum 
∇χe∣max ≈ 1 which takes place for χ ≈ 2. For dark beams, the 
value of the derivate maximum depends much more strongly 
on the parameter ρ. In the range 0.8 < m < 0.95 (4 < ρ < 20) 
the rough criterion can be written as ∇χe∣max ≈ 0.2 m/
(1 − m)2 = 0.2ρ(1 + ρ), for χ ≈ 0.15. To check the validity of 
the approximation e(χ) ≈ 1/u(χ), we take for semi-insulating 
GaAs the density of shallow impurities NA =  1016  cm−3 and 
the external field Ea = 20 kV/cm, which corresponds to the 
characteristic length XA = εEa/qNA ~ 0.1 μm. Considering 
the typical HWHM width of an optical beam w = 5 μm and 
assuming the intensity ratio ρ0 = ρ = 20 for bright and dark 
beam, we obtain in the former case XA·∇e∣max ≈ XA/(2 × 
1.2w) ~ 0.01 << 1. The second term in Eq. (18) is negligible. 
Note also, that in photorefractive crystals belonging to ferro-
electrics and sillenites as SBN and BSO—materials widely 
used in soliton experiments, one finds similar values of XA 
under an external field Ea ~ 1 kV/cm [26].

As seen, in the vast majority of cases, the phenom-
enological approximation for bright beams is valid. The 
situation changes as regards dark beams. In that case the 
space-charge field distributions cannot be considered as 
slow-varying, because for ρ = 20 the derivative ∇χe∣max >  > 1 
and XA·∇e∣max > 1. This shows that for dark beams the mac-
roscopic scheme is not an appropriate approximation and 
the internal electric field profile should be determined on 
the basis of microscopic model equations i.e. using Eqs. (17) 
or (18).

It is worth looking at the phenomenological approxima-
tion also from another point of view. Referring to Eq. (13a), 

Fig. 2  a The linear transport model with bipolar conductivity—com-
parison of analytical and numerical solutions for normalized electric 
field distribution, b the linear transport model with electron conduc-

tivity—comparing the macroscopic and microscopic solutions for dif-
ferent values of the coefficient r 
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the assumption XA∇e(x) ≪ 1 leads to the dependence ND
+(x) 

≈ NA, according to which depletion of ionized donor traps 
is negligible over all regions of the crystal. On the other 
hand, if we consider the model with one type of carrier, 
by combining the expression (13a) with (18) one obtains 
ND

+(x)/NA = e(x)u(x). One can see immediately that for a 
dark beam distribution u(x), if the light intensity tends to 
zero at some point, a complete depletion of the available 
traps occurs at this point, regardless of the profile of func-
tion u(x). Moreover, it is easy to show that for dark beams 
with large values of ρ, the application of Eq. (18) yields the 
unphysical result—negative value of the donor density.

8  The microscopic versus macroscopic 
solution

In order to verify the accuracy of the solutions obtained from 
expressions (15)–(17), the system of material equations was 
solved using the numerical method. We have extended the 
numerical scheme described in [28] based on the semi-
implicit algorithm, by including bipolar conductivity and hot 
electron transport. Figure 2a presents profiles of the internal 
electric field generated by a 10-μm-sized dark optical beam 
with the intensity factor ρ = 20. The rigorous numerical solu-
tion was compared with the solutions obtained according to 
Eq. (16). We find a good agreement, which also confirms the 
correctness of the assumption that the spatial distributions 
of electrons and holes are mutually proportional. Figure 2b 
shows the distributions of the normalized e(x) field for the 
dark beam, calculated according to the model with unipo-
lar electron transport. The field profiles were plotted using 
Eq. (17b) and compared with the distribution resulting from 
the standard phenomenological approach—Eq. (4b). It is 
evident that the macroscopic solution may provide the result 
significantly different from the microscopic solution. In the 
presence of a strong electric field the space-charge field dis-
tribution reveals asymmetry and the peak is shifted from the 
center of light intensity distribution. For self-trapping beams 
such effect leads to bending the beam trajectory from the 
z-direction [6, 12, 16, 29].

In Fig. 2b, the maxima of the amplitude distribution 
lie exactly on the curve 1/u(x). The microscopic solution 
always leads to a lower field amplitude than predicted by 
the expression (4b). Note, the space charge field, being 
the response of the PR crystal to the dark beam, can reach 
values even tenfold times greater than the values of the 
applied field. The value of the crystal's internal electric 
field has a physical limit. It should not exceed the ava-
lanche breakdown voltage. While for bright beams, the 
space-charge field (Esc) tends to zero, completely screen-
ing the applied field (given the diffusion, the internal field 
can become negative), for dark beams with a high intensity 

ratio ρ, the Esc field can exceed the applied field more 
than tenfold. The distribution of the space-charge in traps 
induced by a localized optical beam roughly resembles the 
linearly graded junction p–n. The breakdown voltage for 
such type of junction can be estimated using the relation-
ship [30]

where Eg is the energy band gap in eV, and a is the impurity 
gradient in  cm−4. Knowing the width WJ of the space-charge 
region of linearly graded junction, we can find the maxi-
mum electric field from the relation [30] Emax = 1.5·VB/WJ. 
In the case of GaAs (Eg = 1.42 eV) assuming NA ~  1016  cm−3 
for a dark beam of half width w = 5 μm and the intensity 
ratio ρ = (10 − 20), we obtain a ~  1016   cm−4, hence VB a 
(100 − 150) V, and consequently, Emax ~ (350 − 400) kV/cm. 
According to the macroscopic description, the field ampli-
tude attains a value about 20-fold larger than the external 
field—see Fig. 3b. At the applied field of 20 kV/cm it means 
Emax ≈ 400 kV/cm, a value comparable to an avalanche 
breakdown.

In the case of a significant influence of nonlinear electron 
transport (here r = 0.2), Eq. (15) gives only a rough approxi-
mation of the numerical solution, which reveals a strong 
asymmetry of the field distribution e(x) as shown in Fig. 3a. 
By reducing the concentration of electrons in relation to 
the holes (r = 0.5), the asymmetry of the field distribution 
decreases—Fig. 4b. In that case, Eq. (15) predicts the distri-
bution profile close to the numerical solution. At the same 
time, Eq. (16) valid for the linear transport model yields an 
electric field profile e(x) which is always in agreement with 
numerical calculations.

To sum up, it can be stated that the use of the stand-
ard relationship (4b) in the case of dark beams is generally 
incorrect. On the other hand, the macroscopic approach is 
almost always a good approximation for the study of bright 
solitons, as long as the model with linear transport is con-
sidered. As seen in Fig. 4a the analytical solution (4b) prac-
tically coincides with the numerical solution. However, if 
the influence of hot electron transport is strong, numeri-
cal methods are required to obtain the correct solution. In 
Fig. 4b we plotted field profiles of dark beam electric field 
calculated numerically for two values of the coefficient r 
considering the model with the nonlinear electron transport 
and the profile obtained according to Eq. (4b). Different 
values of the coefficient r imply a different ratio of hole to 
electron density, which for x → ∞ is given by the expres-
sion Q = p0/n0 = (Sp/Sn)(γn/γp)[r/(1 − r)]2. Thus, for r = 0.2 we 
find Q = 1.2, which means that electron and hole currents 
are comparable, while for r = 0.5 (Q ≈ 20) the hole current 
clearly dominates. In the first case a relative strong impact 
of hot electrons results in a significant increase in the width 

(19)VB = 60
(
Eg∕1.1

)6∕5[
a∕(3 × 1020)

]−2∕5
[V],
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and asymmetry of the electric field distribution—Fig. 4b. 
For r > 0.5 the profile of electric field approaches the shape 
described by the linear theory.

The applicability of the expression (15) including the 
electron transport nonlinearity deserves more detailed 
consideration. In semiconductors such as GaAs exhib-
iting the negative differential resistivity, instabilities of 
charge domains may appear at high electric fields, mani-
fested by current oscillations. A well-known example are 
the microwave-frequency Gunn oscillations observed in 
n-type GaAs [31]. Gunn domains do not occur in semi-
insulating GaAs, although light-triggered low-frequency 
oscillations can be excited using a localized optical beam 

[32]. Instability effects also appear within the numerical 
model used in the present work taking advantage the time 
equations describing the dynamics of transport processes 
[33]. However, carrier domains oscillations are observed 
provided that there is a sufficiently high concentration of 
electrons in relation to the concentration of holes. Since 
only stationary space-charge distributions are considered 
here, the analysis in the frame of the model with nonlinear 
transport was limited to the case of n0/p0 < 1 or n0/p0 ~ 1. 
For this reason under the strong influence of non-linear 
electron transport, the results predicted by expression (15) 
become unreliable.

Fig. 3  Spatial profiles of internal electric field as a response to a 
dark beam (ρ = 20). a Comparison of numerical solution (r = 0.2—
relatively strong influence of hot electrons) with the one calculated 
from differential Eq.  (15), b numerical solution for nonlinear trans-

port model (r = 0.5—weak influence of hot electrons) and solutions 
obtained from Eqs. (15) and (16) (linear transport model) as well as 
(4b) (macroscopic approximation)

Fig. 4  Distribution of the normalized space-charge field induced 
by the bright optical beam. a The linear model with electron–hole 
transport; solid and dashed lines—numerical solutions and phenom-
enological approximation (4b), b the nonlinear transport model—

numerical solutions determined for r = 0.2 (comparable electron and 
hole densities), r = 0.5 (pronounced domination of hole density over 
electron density)
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9  Improved solution for dark solitons

Considering the obtained results in the context of the abil-
ity to generate black solitons in SI-GaAs, and taking into 
account the electron nonlinearity, we can observe stable 
distribution of the Esc field with slight asymmetry and non-
locality when the hole concentration exceeds the electron 
concentration by at least an order of magnitude. At the same 
time, we can notice that the phenomenological approxima-
tion given by Eq. (4b) used in the standard soliton theory dif-
fers significantly from the solution resulting from the band 
transport model. If the nonlocality and asymmetry in the 
electric field distribution is small, the standard relationship 
(4b) can be modified, which provides a much better accord-
ance with the correct solution e(x). For this purpose, we 
introduce three auxiliary parameters α, β, δ and write the 
formula (4b) in the form

Parameters α and β control the height and width of the 
space-charge field profile, whereas the value of parameter δ 
ensures that the boundary condition e(x →  ± ∞) = 1 is satis-
fied, therefore we obtain δ = 1 − (α/β)(ρ + 1)/(ρ + 1/β). Let 
the factor α indicate how many times the amplitude of the 
exact distribution e(x) is reduced with respect to the mac-
roscopic solution, i.e. α = max[e(x)]/max[1/u(x)], while the 
β value can be approximated as β ≈ α/2. Finally, we get the 
formula

The expression (20b) gives an acceptable approxima-
tion of the solution consistent with the numerical solution 
obtained from Eqs. (15)–(17a, 17b, 17c). In the following, 
we will consider the nonlinear model with a distinct advan-
tage of the hole current over the electron current, assum-
ing the coefficient r = 0.5. Figure 5 presents profiles of nor-
malized field e(x) obtained from numerical integration of 
Eq. (15) and from the analytical formula (20b).

Having the distribution of the field e(x) and repeating 
the derivation given in Sect. 3, we arrive at the equation 
describing the black soliton, which is a corrected version of 
the Eq. (7b). The equation has the form

(20a)eapprox(x) =
𝛼

𝛽

(𝜌 + 1)
[
𝜌Ĩs(x) + 1∕𝛽

] + 𝛿.

(20b)eapprox(x, 𝜌, 𝛼) =
2(𝜌 + 1)

Ĩs(x) + 𝛼∕2
−

2(𝜌 + 1)

𝜌 + 2∕𝛼
+ 1.

(21)

ŷ𝜉 =
[
Fblack(𝜌, 𝛼, ŷ)

]1∕2

= 2

[(
ŷ
2 − 1

) 1 + 𝜌

2∕𝛼 + 𝜌
− (1 + 1∕𝜌) ln

(
2∕𝛼 + 𝜌ŷ2

2∕𝛼 + 𝜌

)]1∕2
.

In contrast to the standard theory, the soliton profile is 
now parameterized by two factors: the intensity ratio ρ and 
the coefficient α depending on the parameters of the micro-
scopic model, in the general case α = α(r, ND, S). Taking 
into account the field distribution shown in Fig. 5, after 
integration of Eq. (21) we find the intensity profile of the 
black soliton shown in Fig. 6a, which for comparison also 
includes the soliton profile according to the standard theory. 
Rather unexpectedly, despite significant discrepancies in the 
field profiles, the intensity profiles of solitons differ slightly. 
However, this is not always the case. In Fig. 6b, waveforms 
of solitons are plotted considering the model in which elec-
trons are the sole charge carriers and assuming the impurity 
compensation ratio r = 0.01. In this case differences become 
clearly observable between outcomes of the standard and the 
corrected theory.

The proposed amendment therefore comes down to two 
steps. In the first one, on the basis of Eqs. (4a, 4b), the 
amplitude of the field distribution e(x) is determined, which 
allows to find the value of the α coefficient. In the second 
step, using the characteristic Eq. (21), the corrected profile 
of the soliton is obtained.

Fig. 5  Normalized electric field distribution formed by a dark beam 
for ρ = 20 calculated from differential Eq.  (15) (solid line), centered 
profile e(x) (dash-dot line) and approximation based on Eq. (20b)
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10  Conclusions

In summary, it has been shown that the commonly used 
description of the space-charge electric field induced in 
PR material as a response to the localized (1 + 1)D opti-
cal beam is a macroscopic description. This approach is a 
good approximation for bright beams but is generally incor-
rect for dark beams leading to large unconformities with 
the photorefractive material equations. Taking into account 
the microscopic band transport model for semi-insulating 
GaAs, involving electron and hole competition as well as 
the nonlinear effect of hot electrons, a differential equation 
was developed, that allows to determine the correct profile of 
the space charge field Esc(x). Using the obtained results for 
the theory of photorefractive black solitons, the a modifica-
tion of the characteristic soliton state equation was presented 
which offers a good agreement with the numerical solution 
and permits to obtain the self-consistent solution between 
the paraxial wave equation and microscopic band transport 
model.
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