Skip to main content
Log in

Thermal aberrations and structured light I: analytical model for structured pumps and probes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Structured light, where optical beams are tailored in amplitude, phase and polarisation to some desired profile, has become topical of late, fuelled by the ease at which such fields can be created internal and external to the source. In this treatise, part I of a two part series, we consider the thermal effects (stress, lensing and phase aberrations) associated with high-power structured light, where the structure may be the pump, optically inducing the thermal effects in the medium, or the probe, experiencing thermally induced optical aberrations. We outline a general theory for arbitrary structured light pumps and probes, reducing to the prior studies of Gaussian and flat-top beams as special cases. We illustrate the power of the model using the structure of light as a new degree of freedom with which to mitigate thermally induced optical aberrations. Finally, in part II of this composite work (Scholes and Forbes, Appl Phys B, 2021. https://doi.org/10.1007/s00340-021-07656-z), we experimentally demonstrate the phase aberration predictions using a digital micro-mirror device for real-time simulation of such high-power thermal effects in a cheap, fast and versatile manner, without the need for elaborate high-power experiments. Our work brings together the disparate fields of thermal modelling and structured light, providing a framework for future work in the creation and delivery of high-power structured light fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Welling, C.J. Bickart, Spatial and temporal variation of the optical path length in flash-pumped laser rods. JOSA 56(5), 611–618 (1966)

    Article  ADS  Google Scholar 

  2. G. Baldwin, E. Riedel, Measurements of dynamic optical distortion in Nd-doped glass laser rods. J. Appl. Phys. 38(7), 2726–2738 (1967)

    Article  ADS  Google Scholar 

  3. J. Bradford, R. Eckardt, Compensating for pump-induced distortion in glass laser rods. Appl. Opt. 7(12), 2418–2420 (1968)

    Article  ADS  Google Scholar 

  4. J. Foster, L. Osterink, Thermal effects in a Nd:YAG laser. J. Appl. Phys. 41(9), 3656–3663 (1970)

    Article  ADS  Google Scholar 

  5. W. Koechner, Thermal lensing in a Nd:YAG laser rod. Appl. Opt. 9(11), 2548–2553 (1970)

    Article  ADS  Google Scholar 

  6. M. Innocenzi, H. Yura, C. Fincher, R. Fields, Thermal modeling of continuous-wave end-pumped solid-state lasers. Appl. Phys. Lett. 56(19), 1831–1833 (1990)

    Article  ADS  Google Scholar 

  7. A. Siegman, Analysis of laser beam quality degradation caused by quartic phase aberrations. Appl. Opt. 32(30), 5893–5901 (1993)

    Article  ADS  Google Scholar 

  8. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, P. Georges, Thermal lensing in diode-pumped ytterbium lasers-Part I: theoretical analysis and wavefront measurements. IEEE J. Quantum Electron. 40(9), 1217–1234 (2004)

    Article  ADS  Google Scholar 

  9. W. Koechner, Solid-State Laser Engineering (Springer, Berlin, 2013)

    MATH  Google Scholar 

  10. A.K. Cousins, Temperature and thermal stress scaling in finite-length end-pumped laser rods. IEEE J. Quantum Electron. 28(4), 1057–1069 (1992)

    Article  ADS  Google Scholar 

  11. T. Fan, Heat generation in Nd:YAG and Yb:YAG. IEEE J. Quantum Electron. 29(6), 1457–1459 (1993)

    Article  ADS  Google Scholar 

  12. L. Yan, C.H. Lee, Thermal effects in end-pumped Nd:phosphate glasses. J. Appl. Phys. 75(3), 1286–1292 (1994)

    Article  ADS  Google Scholar 

  13. S. Makki, J. Leger, Solid-state laser resonators with diffractive optic thermal aberration correction. IEEE J. Quantum Electron. 35(7), 1075–1085 (1999)

    Article  ADS  Google Scholar 

  14. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, D. Burns, Active transverse mode control and optimisation of an all-solid-state laser using an intracavity adaptive-optic mirror. Opt. Express 10(13), 550–555 (2002)

    Article  ADS  Google Scholar 

  15. V. Quetschke, J. Gleason, M. Rakhmanov, J. Lee, L. Zhang, K.Y. Franzen, C. Leidel, G. Mueller, R. Amin, D. Tanner et al., Adaptive control of laser modal properties. Opt. Lett. 31(2), 217–219 (2006)

    Article  ADS  Google Scholar 

  16. W. Lubeigt, M. Griffith, L. Laycock, D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics. Opt. Express 17(14), 12057–12069 (2009)

    Article  ADS  Google Scholar 

  17. J. Montoya, S.J. Augst, K. Creedon, J. Kansky, T.Y. Fan, A. Sanchez-Rubio, External cavity beam combining of 21 semiconductor lasers using SPGD. Appl. Opt. 51(11), 1724–1728 (2012)

    Article  ADS  Google Scholar 

  18. L.P. Ramirez, M. Hanna, G. Bouwmans, H. El Hamzaoui, M. Bouazaoui, D. Labat, K. Delplace, J. Pouysegur, F. Guichard, P. Rigaud et al., Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier. Opt. Express 23(5), 5406–5416 (2015)

    Article  ADS  Google Scholar 

  19. M. Sparks, Optical distortion by heated windows in high-power laser systems. J. Appl. Phys. 42(12), 5029–5046 (1971)

    Article  ADS  Google Scholar 

  20. P. Hello, J.-Y. Vinet, Analytical models of thermal aberrations in massive mirrors heated by high power laser beams. Journal de Physique 51(12), 1267–1282 (1990)

    Article  Google Scholar 

  21. J. Peñano, P. Sprangle, A. Ting, R. Fischer, B. Hafizi, P. Serafim, Optical quality of high-power laser beams in lenses. JOSA B 26(3), 503–510 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.D. Mansell, J. Hennawi, E.K. Gustafson, M.M. Fejer, R.L. Byer, D. Clubley, S. Yoshida, D.H. Reitze, Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a shack-hartmann wave-front sensor. Appl. Opt. 40(3), 366–374 (2001)

    Article  ADS  Google Scholar 

  23. C. Pfistner, R. Weber, H. Weber, S. Merazzi, R. Gruber, Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods. IEEE J. Quantum Electron. 30(7), 1605–1615 (1994)

    Article  ADS  Google Scholar 

  24. Y.-F. Chen, C. Kao, T. Huang, C. Wang, S. Wang, Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers. IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997)

    Article  ADS  Google Scholar 

  25. M. Schmid, T. Graf, H. Weber, Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating. JOSA B 17(8), 1398–1404 (2000)

    Article  ADS  Google Scholar 

  26. W. Clarkson, Thermal effects and their mitigation in end-pumped solid-state lasers. J. Phys. D Appl. Phys. 34(16), 2381 (2001)

    Article  ADS  Google Scholar 

  27. U.O. Farrukh, A.M. Buoncristiani, C.E. Byvik, An analysis of the temperature distribution in finite solid-state laser rods. IEEE J. Quantum Electron. 24(11), 2253–2263 (1988)

    Article  ADS  Google Scholar 

  28. A. Forbes, L.R. Botha, “Physical optics modeling of intracavity thermal distortions in solid state laser resonators,” in Novel Optical Systems Design and Optimization V, vol. 4768. International Society for Optics and Photonics, 2002, pp. 153–163

  29. D. Burnham, Simple measurement of thermal lensing effects in laser rods. Appl. Opt. 9(7), 1727–1728 (1970)

    Article  ADS  Google Scholar 

  30. J. Murray, Pulsed gain and thermal lensing of Nd:LiYF 4. IEEE J. Quantum Electron. 19(4), 488–491 (1983)

    Article  ADS  Google Scholar 

  31. B. Neuenschwander, R. Weber, H.P. Weber, Determination of the thermal lens in solid-state lasers with stable cavities. IEEE J. Quantum Electron. 31(6), 1082–1087 (1995)

    Article  ADS  Google Scholar 

  32. P. Hardman, W. Clarkson, G. Friel, M. Pollnau, D. Hanna, Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals. IEEE J. Quantum Electron. 35(4), 647–655 (1999)

    Article  ADS  Google Scholar 

  33. M. MacDonald, T. Graf, J. Balmer, H. Weber, Reducing thermal lensing in diode-pumped laser rods. Opt. Commun. 178(4–6), 383–393 (2000)

    Article  ADS  Google Scholar 

  34. J. Blows, P. Dekker, P. Wang, J. Dawes, T. Omatsu, Thermal lensing measurements and thermal conductivity of Yb:YAB. Appl. Phys. B 76(3), 289–292 (2003)

    Article  ADS  Google Scholar 

  35. J. Bourderionnet, A. Brignon, J.-P. Huignard, R. Frey, Influence of aberrations on fundamental mode of high power rod solid-state lasers. Opt. Commun. 204(1–6), 299–310 (2002)

    Article  ADS  Google Scholar 

  36. S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, On thermal effects in solid-state lasers: the case of ytterbium-doped materials. Prog. Quantum Electron. 30(4), 89–153 (2006)

    Article  ADS  Google Scholar 

  37. M. Sabaeian, H. Nadgaran, Bessel-Gauss beams: investigations of thermal effects on their generation. Opt. Commun. 281(4), 672–678 (2008)

    Article  ADS  Google Scholar 

  38. H. Nadgaran, M. Servatkhah, The effects of induced heat loads on the propagation of Ince-Gaussian beams. Opt. Commun. 284(22), 5329–5337 (2011)

    Article  ADS  Google Scholar 

  39. M.-M. Zhang, S.-C. Bai, J. Dong, Effects of Cr4+ ions on forming Ince-Gaussian modes in passively Q-switched microchip solid-state lasers. Laser Phys. Lett. 16(2), 025003 (2019)

    Article  ADS  Google Scholar 

  40. H. Nadgaran, R. Fallah, Investigation of the pump reshaping effect on the thermally-affected helmholtz-gauss beams generated by a solid-state laser. Laser Phys. 25(8), 085007 (2015)

    Article  ADS  Google Scholar 

  41. D. Kim, S. Noh, S. Ahn, J. Kim, Influence of a ring-shaped pump beam on temperature distribution and thermal lensing in end-pumped solid state lasers. Opt. Express 25(13), 14668–14675 (2017)

    Article  ADS  Google Scholar 

  42. D. Lin, W. Clarkson, “Reduced thermal lensing in an end-pumped Nd:YVO4 laser using a ring-shaped pump beam,” in CLEO: Science and Innovations. Optical Society of America, 2016, pp. SM3M–5

  43. Z. Fang, K. Xia, Y. Yao, J. Li, Radially polarized LG\(_{01}\)-mode Nd:YAG laser with annular pumping. Appl. Phys. B 117(1), 219–224 (2014)

    Article  ADS  Google Scholar 

  44. Z. Fang, K. Xia, Y. Yao, J. Li, Radially polarized and passively Q-switched Nd:YAG laser under annular-shaped pumping. IEEE J. Sel. Top. Quantum Electron. 21(1), 337–342 (2014)

    Article  ADS  Google Scholar 

  45. T. Dietrich, M. Rumpel, T. Graf, M.A. Ahmed, Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb:YAG thin-disk laser. Opt. Express 23(20), 26651–26659 (2015)

    Article  ADS  Google Scholar 

  46. T. Omatsu, K. Miyamoto, A.J. Lee, Wavelength-versatile optical vortex lasers. J. Opt. 19(12), 123002 (2017)

    Article  ADS  Google Scholar 

  47. A. Forbes, Controlling lights helicity at the source: orbital angular momentum states from lasers. Philos. Trans. Royal Soc. A 375(2087), 20150436 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. A. Forbes, M. de Oliveira, M.R. Dennis, Structured light. Nat. Photon. 15, 253–262 (2021)

    Article  ADS  Google Scholar 

  49. S. Turtaev, I.T. Leite, K.J. Mitchell, M.J. Padgett, D.B. Phillips, T. Čižmár, Comparison of nematic liquid-crystal and dmd based spatial light modulation in complex photonics. Opt. Express 25(24), 29874–29884 (2017)

    Article  ADS  Google Scholar 

  50. S. Scholes, R. Kara, J. Pinnell, V. Rodríguez-Fajardo, A. Forbes, Structured light with digital micromirror devices: a guide to best practice. Opt. Eng. 59(4), 041202 (2019)

    Article  ADS  Google Scholar 

  51. G. Lazarev, P.-J. Chen, J. Strauss, A. Forbes, Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics. Opt. Express 27(11), 16206–16249 (2019)

    Article  ADS  Google Scholar 

  52. M.G. Nassiri, E. Brasselet, Multispectral management of the photon orbital angular momentum. Phys. Rev. Lett. 121(21), 213901 (2018)

    Article  ADS  Google Scholar 

  53. A. Rubano, F. Cardano, B. Piccirillo, L. Marrucci, Q-plate technology: a progress review. JOSA B 36(5), D70–D87 (2019)

    Article  Google Scholar 

  54. R.C. Devlin, A. Ambrosio, N.A. Rubin, J.B. Mueller, F. Capasso, Arbitrary spin-to-orbital angular momentum conversion of light. Science 358(6365), 896–901 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. A.J. Caley, M.J. Thomson, J. Liu, A.J. Waddie, M.R. Taghizadeh, Diffractive optical elements for high gain lasers with arbitrary output beam profiles. Opt. Express 15(17), 10699–10704 (2007)

    Article  ADS  Google Scholar 

  56. V.A. Soifer, Methods for Computer Design of Diffractive Optical Elements (John Wiley & Sons Inc, UK, 2001)

    Google Scholar 

  57. A. Forbes, I. Nape, Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci. 1(1), 011701 (2019)

    Article  ADS  Google Scholar 

  58. M.J. Padgett, Orbital angular momentum 25 years on. Opt. Express 25(10), 11265–11274 (2017)

    Article  ADS  Google Scholar 

  59. Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan, Optical vortices 30 years on: Oam manipulation from topological charge to multiple singularities. Light Sci Appl 8(1), 1–29 (2019)

    Article  Google Scholar 

  60. C. Rosales-Guzmán, B. Ndagano, A. Forbes, “A review of complex vector light fields and their applications,” Journal of Optics, vol. 20, no. 12, p. 123001, 2018. [Online]. Available: http://stacks.iop.org/2040-8986/20/i=12/a=123001

  61. A. Forbes, Structured light from lasers. Laser & Photonics Rev. 13(11), 1900140 (2019)

    Article  ADS  Google Scholar 

  62. M. Gerber, T. Graf, A. Kudryashov, Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror. Appl. Phys. B 83(1), 43–50 (2006)

    Article  ADS  Google Scholar 

  63. T.Y. Cherezova, L.N. Kaptsov, A.V. Kudryashov, CW industrial rod YAG: Nd 3+ laser with an intracavity active bimorph mirror. Appl. Opt. 35(15), 2554–2561 (1996)

    Article  ADS  Google Scholar 

  64. T.Y. Cherezova, S. Chesnokov, L. Kaptsov, A. Kudryashov, Super-Gaussian laser intensity output formation by means of adaptive optics. Opt. Commun. 155(1–3), 99–106 (1998)

    Article  ADS  Google Scholar 

  65. T.Y. Cherezova, S.S. Chesnokov, L.N. Kaptsov, V.V. Samarkin, A.V. Kudryashov, Active laser resonator performance: formation of a specified intensity output. Appl. Opt. 40(33), 6026–6033 (2001)

    Article  ADS  Google Scholar 

  66. S. Ngcobo, I. Litvin, L. Burger, A. Forbes, A digital laser for on-demand laser modes. Nat. Commun. 4(1), 1–6 (2013)

    Article  Google Scholar 

  67. D. Naidoo, F.S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, A. Forbes, Controlled generation of higher-order poincaré sphere beams from a laser. Nat. Photonics 10(5), 327 (2016)

    Article  ADS  Google Scholar 

  68. H. Sroor, Y.-W. Huang, B. Sephton, D. Naidoo, A. Vallés, V. Ginis, C.-W. Qiu, A. Ambrosio, F. Capasso, A. Forbes, High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics 14, 498–503 (2020)

    Article  ADS  Google Scholar 

  69. D. Naidoo, I.A. Litvin, A. Forbes, Brightness enhancement in a solid-state laser by mode transformation. Optica 5(7), 836–843 (2018)

    Article  ADS  Google Scholar 

  70. I.A. Litvin, G. King, H. Strauss, Beam shaping laser with controllable gain. Appl. Phys. B 123(6), 174 (2017)

    Article  ADS  Google Scholar 

  71. F. Schepers, T. Bexter, T. Hellwig, C. Fallnich, Selective Hermite-Gaussian mode excitation in a laser cavity by external pump beam shaping. Appl. Phys. B 125(5), 75 (2019)

    Article  ADS  Google Scholar 

  72. C. Chang, Y. Hsieh, C. Lee, C. Sung, P. Tuan, J. Tung, H. Liang, Y. Chen, Generating high-peak-power structured lights in selectively pumped passively q-switched lasers with astigmatic mode transformations. Laser Phys. 27(12), 125805 (2017)

    Article  ADS  Google Scholar 

  73. P. Tuan, Y. Hsieh, Y. Lai, K. Huang, Y. Chen, Characterization and generation of high-power multi-axis vortex beams by using off-axis pumped degenerate cavities with external astigmatic mode converter. Opt. Express 26(16), 20481–20491 (2018)

    Article  ADS  Google Scholar 

  74. M.L. Lukowski, J.T. Meyer, C. Hessenius, E.M. Wright, M. Fallahi, Generation of high-power spatially structured beams using vertical external cavity surface emitting lasers. Opt. Express 25(21), 25504–25514 (2017)

    Article  ADS  Google Scholar 

  75. D. Kim, J. Kim, High-power TEM\(_{00}\) and Laguerre-Gaussian mode generation in double resonator configuration. Appl. Phys. B 121(3), 401–405 (2015)

    Article  ADS  Google Scholar 

  76. J. Kim, J. Mackenzie, W. Clarkson, High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG\(_{01}\)) mode output. Opt. Express 19(15), 14526–14531 (2011)

    Article  ADS  Google Scholar 

  77. M. Okida, T. Omatsu, M. Itoh, T. Yatagai, Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO 4 1.3-\(\mu \)m bounce laser. Opt. Express 15(12), 7616–7622 (2007)

    Article  ADS  Google Scholar 

  78. H. Sroor, I. Litvin, D. Naidoo, A. Forbes, Amplification of higher order Poincaré sphere beams through Nd:YLF and Nd:YAG crystals. Appl. Phys. B 125(3), 49 (2019)

    Article  ADS  Google Scholar 

  79. H. Sroor, N. Lisa, D. Naidoo, I. Litvin, A. Forbes, Purity of vector vortex beams through a birefringent amplifier. Phys. Rev. Appl. 9(4), 044010 (2018)

    Article  ADS  Google Scholar 

  80. M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen et al., High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses. Appl. Phys. B 123(5), 139 (2017)

    Article  ADS  Google Scholar 

  81. J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M.A. Ahmed, T. Graf, Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization. Appl. Phys. B 123(5), 156 (2017)

    Article  ADS  Google Scholar 

  82. C. Chang, X. Chen, J. Pu, High-energy nanosecond radially polarized beam output from Nd:YAG amplifiers. Opt. Rev. 24(2), 188–192 (2017)

    Article  Google Scholar 

  83. Y. Jung, Q. Kang, R. Sidharthan, D. Ho, S. Yoo, P. Gregg, S. Ramachandran, S.-U. Alam, D.J. Richardson, Optical orbital angular momentum amplifier based on an air-hole erbium-doped fiber. J. Lightwave Technol. 35(3), 430–436 (2017)

    Article  ADS  Google Scholar 

  84. S. Scholes, A. Forbes, Thermal aberrations and structured light II: experimental simulation with DMDs. Appl. Phys. B (2021). https://doi.org/10.1007/s00340-021-07656-z

    Article  Google Scholar 

  85. S. Timoshenko, J. Goodier, “Theory of elasticity 3rd ed., 1970,” McGrow?Hill-(’7) Zienl-: iewicz, 0. C. and\_ Cheung, YK, The Engineer, p. 341, 1967

  86. B.A. Boley, J.H. Weiner, Theory of thermal stresses. Courier Corporation, 2012

  87. E. Bernhardi, A. Forbes, C. Bollig, M.D. Esser, Estimation of thermal fracture limits in quasi-continuous-wave end-pumped lasers through a time-dependent analytical model. Opt. Express 16(15), 11115–11123 (2008)

    Article  ADS  Google Scholar 

  88. R.B. Hetnarski, M.R. Eslami, “Theory of elasticity and thermal stresses: explanations, problems and solutions,” 2013

  89. R.J. Noll, Zernike polynomials and atmospheric turbulence. JOsA 66(3), 207–211 (1976)

    Article  ADS  Google Scholar 

  90. R. Oron, N. Davidson, A.A. Friesem, E. Hasman, Continuous-phase elements can improve laser beam quality. Opt. Lett. 25(13), 939–941 (2000)

    Article  ADS  Google Scholar 

  91. R. Oron, N. Davidson, A.A. Friesem, E. Hasman, Efficient formation of pure helical laser beams. Opt. Commun. 182(1–3), 205–208 (2000)

    Article  ADS  Google Scholar 

  92. D. Wei, Y. Cheng, R. Ni, Y. Zhang, X. Hu, S. Zhu, M. Xiao, Generating controllable Laguerre-Gaussian laser modes through intracavity spin-orbital angular momentum conversion of light. Phys. Rev. Appl. 11(1), 014038 (2019)

    Article  ADS  Google Scholar 

  93. J. Xia, Z. Yang, H. Chen, Z. Du, Y. Lü, “Tangentially and radially polarized Nd:YAG hollow lasers with two pairs of axicons,” Infrared Physics & Technology, p. 103301, 2020

  94. S. Scholes, A. Forbes, Improving the beam quality factor (\(\text{ M}^2\)) by phase-only reshaping of structured light. Opt. Lett. 45(13), 3753–3756 (2020)

    Article  ADS  Google Scholar 

  95. P. Shukla, J. Lawrence, Y. Zhang, Understanding laser beam brightness: a review and new prospective in material processing. Opt. & Laser Technol. 75, 40–51 (2015)

    Article  ADS  Google Scholar 

  96. A.E. Siegman, Defining, measuring, and optimizing laser beam quality. Int. Soc. Opt. Photonics 1993, 2–12 (1868)

    Google Scholar 

  97. S. Saghafi, C. Sheppard, The beam propagation factor for higher order Gaussian beams. Opt. Commun. 153(4–6), 207–210 (1998)

    Article  ADS  Google Scholar 

  98. Y. Lumer, I. Moshe, A. Meir, Y. Paiken, G. Machavariani, S. Jackel, Effects of thermally induced aberrations on radially and azimuthally polarized beams. JOSA B 24(9), 2279–2286 (2007)

    Article  ADS  Google Scholar 

  99. N. Barré, M. Romanelli, M. Brunel, Role of cavity degeneracy for high-order mode excitation in end-pumped solid-state lasers. Opt. Lett. 39(4), 1022–1025 (2014)

    Article  ADS  Google Scholar 

  100. S. Scholes, V. Rodríguez-Fajardo, A. Forbes, “Lossless reshaping of structured light,” JOSA A, vol. 37, no. 11, pp. C80–C85, Nov 2020. [Online]. Available: http://josaa.osa.org/abstract.cfm?URI=josaa-37-11-C80

Download references

Acknowledgements

We thank the Council of Scientific and Industrial Research with the Department of Science for the funding provided through the Interbursary Incentive Funding Programme (CSIR-DST IBS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Forbes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the production or publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Solution to the non-homogenous heat equation

For radially symmetric systems, we begin with

$$\begin{aligned} \begin{aligned} u(r,t)&= \sum _{n=1}^{\infty }p_n J_0(\gamma _n r)\exp (-\Delta t),\\ p_n&= \frac{2}{(RJ_1(\beta _n))^2}\int _0^R u(r,t') rJ_0(\gamma _n r) dr. \end{aligned} \end{aligned}$$
(40)

Assume the following form for the solution to Q(rt).

$$\begin{aligned} \begin{aligned} Q(r,t) = \sum _{n=1}^{\infty }q_nR_n(r). \end{aligned} \end{aligned}$$
(41)

Replacing \(R_n(r)\) with the Eigen-fuction

$$\begin{aligned} \begin{aligned} Q(r,t) = \sum _{n=1}^{\infty }q_n\textit{J}_0(\gamma _nr). \end{aligned} \end{aligned}$$
(42)

The Bessel functions have a known orthogonality relation given by

$$\begin{aligned} \begin{aligned} \int _{0}^{R}{} \textit{J}_0(\gamma _nr)r\textit{J}_0(\gamma _mr)dr = \frac{R^2}{2}\delta _{m,n}[\textit{J}_1(\beta _n)]^2. \end{aligned} \end{aligned}$$
(43)

Using Fourier’s trick we can exploit this orthogonality to isolate the function \(q_n\)

$$\begin{aligned} \int _{0}^{R}Q(r,t)r\textit{J}_0(\gamma _nr)dr&= \int _{0}^{R}\sum _{n=1}^{\infty }q_n\textit{J}_0(\gamma _nr)r\textit{J}_0(\gamma _mr)dr,\nonumber \\ \int _{0}^{R}Q(r,t)r\textit{J}_0(\gamma _nr)dr&= q_n\frac{R^2}{2}[\textit{J}_1(\beta _n)]^2, \end{aligned}$$
(44)
$$\begin{aligned} q_n = \frac{2}{(R\textit{J}_1(\beta _n))^2}\int _{0}^{R}Q(r,t)r\textit{J}_0(\gamma _nr)dr. \end{aligned}$$
(45)

The solution u(rt) to the PDE is assumed to have the form

$$\begin{aligned} \begin{aligned} u(r,t) = \sum _{n=1}^{\infty }a_n(t)R_n(r). \end{aligned} \end{aligned}$$
(46)

Substituting this form back into the PDE gives

$$\begin{aligned} \begin{aligned}&\frac{\partial u}{\partial t} = \sum _{n=1}^{\infty } \frac{\partial a_n}{\partial t}R_n,\\ \end{aligned} \end{aligned}$$
(47)

and

$$\begin{aligned} \begin{aligned}&\nabla ^2u = \sum _{n=1}^{\infty }a_n\nabla ^2R_n. \end{aligned} \end{aligned}$$
(48)

It should be noted that Eq. 48 implicitly assumes that the derivative of an infinite sum is equivalent to the sum of its derivatives. This is generally true for PDEs with homogeneous boundary conditions,

$$\begin{aligned} \begin{aligned} \sum _{n=1}^{\infty } \frac{\partial a_n}{\partial t}R_n - \alpha \left(\sum _{n=1}^{\infty }a_n\nabla ^2R_n\right)&= Q(r,t),\\ \sum _{n=1}^{\infty } \frac{\partial a_n}{\partial t}R_n - \alpha \left(\sum _{n=1}^{\infty }a_n\nabla ^2R_n\right)&= \sum _{n=1}^{\infty }q_n R_n(r).\\ \end{aligned} \end{aligned}$$
(49)

To avoid calculating the Laplacian of the Eigen-function we can use the following relation. Since \(R_n(r)\) is an Eigen-function it obeys the relationship

$$\begin{aligned} \begin{aligned} R_n^{''}(r) + \frac{1}{r}R_n^{'}(r) + \lambda _n^2R_n = 0. \end{aligned} \end{aligned}$$
(50)

Here the prime \('\) indicates the derivative. Substituting gives

$$\begin{aligned} \begin{aligned} \sum _{n=1}^{\infty } \frac{\partial a_n}{\partial t}R_n - \alpha \left\{ \sum _{n=1}^{\infty }a_n[-(\lambda _n)^2R_n]\right\}&= \sum _{n=1}^{\infty }q_nR_n,\\ \sum _{n=1}^{\infty }\left[ R_n\left( \frac{\partial a_n}{\partial t} + \alpha \lambda _n^2a_n - q_n\right) \right]&= 0,\\ \sum _{n=1}^{\infty }\left[ \textit{J}_0(\gamma _nr)\left( \frac{\partial a_n}{\partial t} + \Delta a_n - q_n\right) \right]&= 0.\\ \end{aligned} \end{aligned}$$
(51)

Since \(\textit{J}_0(\gamma _nr) \ne 0\) for all r, \(\frac{\partial a_n}{\partial t} + \Delta a_n - q_n =0\). This is now an ODE problem. Consider also the initial condition

$$\begin{aligned} \begin{aligned} u(r,0)&= 0,\\ \sum _{n=1}^{\infty }a_n(0)R_n(r)&= 0,\\ \sum _{n=1}^{\infty }a_n(0)\textit{J}_0(\gamma _nr)&= 0.\\ \end{aligned} \end{aligned}$$
(52)

thus

$$\begin{aligned} \begin{aligned} a_n(0)&= 0. \end{aligned} \end{aligned}$$
(53)

Hence we solve

$$\begin{aligned} \begin{aligned} \frac{\partial a_n}{\partial t} + \Delta a_n - q_n&=0,\\ \end{aligned} \end{aligned}$$
(54)

with

$$\begin{aligned} a_n(0)&= 0, \end{aligned}$$
(55)
$$\begin{aligned} \frac{{\partial a_{n} }}{{\partial t}} & = q_{n} - \Delta a_{n} , \\ \frac{{\frac{{\partial a_{n} }}{{\partial t}}}}{{q_{n} - \Delta a_{n} }} & = 1, \\ \int {\frac{{\frac{{\partial a_{n} }}{{\partial t}}}}{{q_{n} - \Delta a_{n} }}} dt & = \int 1 dt, \\ - \frac{{\log (q_{n} - \Delta a_{n} )}}{\Delta } & = t + C_{1} , \\ - \log (q_{n} - \Delta a_{n} ) & = (t + C_{1} )\Delta . \\ \end{aligned}$$
(56)

Therefore

$$\begin{aligned} \begin{aligned} a_n(t) = \frac{[-\exp (-\Delta t) +1]q_n}{\Delta }. \end{aligned} \end{aligned}$$
(57)

For non-zero initial conditions where \(p_n\) is non-trivial, Eq. 57 becomes

$$\begin{aligned} \begin{aligned} a_n(t) = \frac{\exp (-\Delta t)\{[-1 + \exp (\Delta t)]q_n + \Delta p_n\}}{\Delta }. \end{aligned} \end{aligned}$$
(58)

Thus finally

$$\begin{aligned} \begin{aligned} u(r,t)&= \sum _{n=1}^{\infty }\frac{\exp (-\Delta t)\{[-1 + \exp (\Delta t)]q_n + \Delta p_n\}}{\Delta }{} \textit{J}_0(\gamma _nr).\\ \end{aligned} \end{aligned}$$
(59)

With

$$\begin{aligned} \begin{aligned} q_n(t)&= \frac{2}{(R\textit{J}_1(\beta _n))^2}\int _{0}^{R}Q(r,t)r\textit{J}_0(\gamma _nr)dr,\\ \end{aligned} \end{aligned}$$
(60)

and

$$\begin{aligned} \begin{aligned} p_n&= \frac{2}{(RJ_1(\beta _n))^2}\int _0^R u(r,t') rJ_0(\gamma _n r) dr,\\ \end{aligned} \end{aligned}$$
(61)

for \(t'<t\).

For Cartesian symmetry, a procedurally identical process is used in two dimensions. Beginning with the solution to the homogenous heat equation in Cartesian coordinates

$$\begin{aligned} \begin{aligned} u(x,y,t)&= \sum _{m=1}^{\infty }\sum _{n=1}^{\infty }p_{m,n}\sin (\gamma _n^\dagger x)\sin (\gamma _n^\dagger y)\exp (-\Delta ^\dagger t),\\ p_{m,n}&= \frac{4}{D^2}\int _0^D\int _0^Du(x,y,t')\sin (\gamma _n^\dagger x)\sin (\gamma _n^\dagger y)dxdy, \end{aligned} \end{aligned}$$
(62)

the \(\sin ()\) functions are identified as the Eigen-functions for this system. Again by exploiting orthogonality the source Q(xyt) can be decomposed as

$$\begin{aligned} \begin{aligned} q_n = \frac{4}{D^2}\int _0^D\int _0^D Q(x,y,t)\sin (\gamma _n^\dagger x)\sin (\gamma _n^\dagger y)dxdy.\\ \end{aligned} \end{aligned}$$
(63)

Assuming

$$\begin{aligned} \begin{aligned} u(x,y,t) = \sum _{m=1}^{\infty }\sum _{n=1}^{\infty } a_{nm}S_nS_m, \end{aligned} \end{aligned}$$
(64)

leads to

$$\begin{aligned} \begin{aligned} \sum _{m=1}^{\infty }\sum _{n=1}^{\infty }\left\{ \sin (\gamma _n^\dagger x)\sin (\gamma _n^\dagger y)\left[ \frac{\partial a_{nm}}{\partial t}+\Delta ^\dagger a_{nm} - q_{nm} \right] \right\} = 0, \end{aligned} \end{aligned}$$
(65)

and so for

$$\begin{aligned} u(x,y,0)\,= 0,\nonumber \\ u(D,D,t)\,= 0,\nonumber \\ u(0,0,t)\,= 0,\end{aligned}$$
(66)
$$\begin{aligned} a_{nm} = \frac{q_{nm} - q_{nm}\exp (\Delta ^\dagger t)}{\Delta ^\dagger }. \end{aligned}$$
(67)

Generally speaking, the approach presented here may be expanded to n dimensions. To achieve this, the solution will comprise n summations with n Eigen functions (which are determined by the geometry and the boundary conditions) and n integrals in the decompositions of p and q.

Appendix B Derivation of the stress

The stress \(\sigma (r,t)\) experienced by a material is found using the relationship between the radial stress \(\sigma _r\) and the angular stress \(\sigma _{\theta }\),

$$\begin{aligned} \begin{aligned} \sigma (t)&= |\sigma _{\theta } - \sigma _r|.\\ \end{aligned} \end{aligned}$$
(68)

With

$$\begin{aligned} \sigma _{\theta }&= \frac{\breve{\gamma } Y}{1-\breve{\nu }}\Bigl [\frac{1}{R^2}\int _{0}^{R}u(r)rdr + \frac{1}{r^2}\int _{0}^{r}u(\acute{r})\acute{r}d\acute{r} - u(r)\Bigr ],\nonumber \\ \sigma _{r}&= \frac{\breve{\gamma } Y}{1-\breve{\nu }}\Bigl [\frac{1}{R^2}\int _{0}^{R}u(r)rdr - \frac{1}{r^2}\int _{0}^{r}u(\acute{r})\acute{r}d\acute{r}\Bigr ], \end{aligned}$$
(69)
$$\begin{aligned} \int _{0}^{R}u(r)rdr&=\int _{0}^{R}\sum _{n=1}^{\infty }\Bigl [\frac{(-\exp (-\Delta t) + 1)q_n}{\Delta }{} \textit{J}_0(\gamma _n r) +\nonumber \\&\exp (-\Delta t)p_n\textit{J}_0(\gamma _n r)\Bigr ]rdr. \end{aligned}$$
(70)

Assuming the sum and the integral are interchangeable

$$\begin{aligned} \begin{aligned} \int _{0}^{R}u(r)rdr&=\sum _{n=1}^{\infty }\Bigl \{\frac{[-\exp (-\Delta t) + 1]q_n}{\Delta }\int _{0}^{R}{} \textit{J}_0(\gamma _n r)rdr +\\&\exp (-\Delta t)p_n\int _{0}^{R}{} \textit{J}_0(\gamma _n r)\Bigr \}rdr. \end{aligned} \end{aligned}$$
(71)

Using the integral property of Bessel Functions,

$$\begin{aligned} \begin{aligned} \int _{0}^{a}x\textit{J}_0(x)dx = a\textit{J}_1(a). \end{aligned} \end{aligned}$$
(72)

Using variable substitution. Let

$$\begin{aligned} \begin{aligned} \gamma _n r&= x,\\ dr&= \frac{dx}{\gamma _n}.\\ \end{aligned} \end{aligned}$$
(73)

For

$$\begin{aligned} \begin{aligned} r&= R,\\ x&=\gamma _n R,\\&=\beta _n,\\ \int _{0}^{R}u(r)rdr&=\sum _{n=1}^{\infty }\Bigl \{\frac{[-\exp (-\Delta t) + 1]q_n}{\Delta }\int _{0}^{R}{} \textit{J}_0(\gamma _n r)rdr \\+&\exp (-\Delta t)p_n\int _{0}^{R}{} \textit{J}_0(\gamma _n r)\Bigr \}rdr,\\ \end{aligned} \end{aligned}$$
(74)

becomes

$$\begin{aligned} \begin{aligned} \int _{0}^{R}u(r)rdr&=\sum _{n=1}^{\infty }\Bigl \{\frac{[-\exp (-\Delta t) + 1]q_n}{\Delta }\int _{0}^{\beta _n}{} \textit{J}_0(x)\frac{x}{\gamma _n}\frac{dx}{\gamma _n} \\+&\exp (-\Delta t)p_n\int _{0}^{\beta _n}{} \textit{J}_0(x)\frac{x}{\gamma _n}\frac{dx}{\gamma _n}\Bigr \}. \end{aligned} \end{aligned}$$
(75)

Using equation 72

$$\begin{aligned} \begin{aligned} \int _{0}^{R}u(r)rdr&=\sum _{n=1}^{\infty }\Bigl \{\frac{[-\exp (-\Delta t) + 1]q_n}{\Delta }\Bigl [\frac{1}{\gamma _n^2}\beta _n\textit{J}_1(\beta _n)\Bigr ] +\\&\exp (-\Delta t)p_n\Bigl [\frac{1}{\gamma _n^2}\beta _n\textit{J}_1(\beta _n)\Bigr ]\Bigr \},\\ \int _{0}^{R}u(r)rdr&=\sum _{n=1}^{\infty }\Bigl (\Bigl [\frac{R^2}{\beta _n}{} \textit{J}_1(\beta _n)\Bigr ]\Bigl \{\frac{[-\exp (-\Delta t) + 1]q_n}{\Delta } +\\&\exp (-\Delta t)p_n\Bigr \}\Bigr ). \end{aligned} \end{aligned}$$
(76)

Performing an identical operation with a dummy variable \(\acute{r}\), it is found

$$\begin{aligned} \begin{aligned} \int _{0}^{r}u(\acute{r})\acute{r}d\acute{r}&=\sum _{n=1}^{\infty }\Bigl (\Bigl [\frac{R}{\beta _n}r\textit{J}_1(\gamma _nr)\Bigr ]\Bigl \{\frac{[-\exp (-\Delta t) + 1]q_n}{\Delta } \\+&\exp (-\Delta t)p_n\Bigr \}\Bigr ).\\ \end{aligned} \end{aligned}$$
(77)

For the temperature function u(rt) where the source \(Q(r,t) = 0\). Equations 76 and 77 reduce to,

$$\begin{aligned} \begin{aligned} \int _{0}^{R}u(r)rdr&=\sum _{n=1}^{\infty }\left[ \frac{R^2}{\beta _n}{} \textit{J}_1(\beta _n)\exp (-\Delta t)p_n\right] ,\\ \end{aligned} \end{aligned}$$
(78)

and

$$\begin{aligned} \begin{aligned} \int _{0}^{r}u(\acute{r})\acute{r}d\acute{r}&=\sum _{n=1}^{\infty }\left[ \frac{R}{\beta _n}r\textit{J}_1(\gamma _nr)\exp (-\Delta t)p_n\right] .\\ \end{aligned} \end{aligned}$$
(79)

Thus for \(Q\ne 0\) the stress is

$$\begin{aligned} \begin{aligned} \sigma (t)&= \Bigl |\frac{\breve{\gamma } Y}{1 - \breve{\nu }}\Bigl \{\frac{2}{r}\sum _{n=1}^{\infty }\Bigl [\frac{-q_n\exp (-\Delta t) + q_n}{\Delta }\\& \quad +\frac{\Delta p_n(n)\exp (-\Delta t)}{\Delta }\Bigr ]\frac{R}{\beta _n}J_1(\gamma _nr) - u(r)\Bigr \}\Bigr |. \end{aligned} \end{aligned}$$
(80)

For \(Q=0\)

$$\begin{aligned} \begin{aligned} \sigma (t) = \left| \frac{\breve{\gamma } Y}{1 - \breve{\nu }}\left\{ \frac{2}{r}\sum _{n=1}^{\infty }\left[ p_n(n)\exp (-\Delta t)\right] \frac{R}{\beta _n}J_1(\gamma _nr) - u(r)\right\} \right| .\\ \end{aligned} \end{aligned}$$
(81)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholes, S., Forbes, A. Thermal aberrations and structured light I: analytical model for structured pumps and probes. Appl. Phys. B 127, 122 (2021). https://doi.org/10.1007/s00340-021-07657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07657-y

Navigation