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their performance has capitalized on improving diode-laser 
brightness and power. Further power-scaling, however, is 
fundamentally limited by the thermo-optical properties of 
the gain medium and the induced optical distortions, pri-
marily driven by the quantum defect between pump and the 
emission wavelengths. Alternatively, the geometry of the 
gain medium can be optimized to enhance thermal manage-
ment and minimize the thermal-lensing effects, such as the 
thin-disk [1], fibre [2], or slab architectures [3], which have 
demonstrated multi-kW average powers. Nonetheless, for 
many applications, the end-pumped bulk architecture still 
holds an important position for its simplicity and robust 
performance.

The basic design strategy for these lasers has been to try 
to mitigate the effects of the induced thermal-lensing and 
aberrations [4]. As such, it is important to understand the 
induced temperature distribution over the active volume of 
interest, that is, where the cavity mode passes through the 
excited region of the gain medium. Typically, this involves 
numerical simulations solving the heat equation with finite-
element algorithms, having almost completely replaced 
analytical solutions due to the complexity of the necessary 
assumptions made to obtain exact expressions. Analytical 
solutions, though, are unquestionably important: they high-
light qualitative and quantitative features of underlying 
physical phenomena and provide more accurate solutions 
in far less time than numerical calculations, particularly if 
trying to perform parameter-dependence studies. One strict 
assumption generally made in determining the exact solution 
for the temperature profile along an end-pumped solid-state 
laser is that the thermal conductivity of the crystal is not sig-
nificantly dependent on temperature [5]. While a reasonable 
assumption for many active media, operating at and above 
room temperature (RT), it is generally not valid when cooled 
to a cryogenic temperature (CT) [6]. Here, the gradient for 

Abstract Fundamentally power-limited by thermal effects, 
the design challenge for end-pumped “bulk” solid-state 
lasers depends upon knowledge of the temperature gradi-
ents within the gain medium. We have developed analytical 
expressions that can be used to model the temperature dis-
tribution and thermal-lens power in end-pumped solid-state 
lasers. Enabled by the inclusion of a temperature-dependent 
thermal conductivity, applicable from cryogenic to elevated 
temperatures, typical pumping distributions are explored and 
the results compared with accepted models. Key insights 
are gained through these analytical expressions, such as the 
dependence of the peak temperature rise in function of the 
boundary thermal conductance to the heat sink. Our general-
ized expressions provide simple and time-efficient tools for 
parametric optimization of the heat distribution in the gain 
medium based upon the material and pumping constraints.

1 Introduction

The end-pumped solid-state laser is a mature design archi-
tecture exploited for many scientific, industrial, and medical 
laser applications, in the tens-of-watts power regime. Cost 
effective, compact, and relatively efficient, in recent decades 
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the changing thermal conductivity with respect to tempera-
ture steepens considerably compared with the same around 
RT. With this argument in mind, and, therefore, including a 
temperature dependence for the thermal conductivity in the 
heat conduction equation, it is possible to exploit integral 
transforms to reach analytical solutions [7].

In this paper, we use the Kirchhoff transform [8] to 
convert the non-linear heat equation into a solvable linear 
equation for a cylindrical radially isotropic gain element. 
Analytical solutions for the temperature distribution along 
the length of a side-cooled end-pumped rod are presented 
for different pump distributions that can be used for prac-
tical configurations, such as near-diffraction-limited, to 
fibre-coupled diode-laser, pumps. Furthermore, this result 
provides novel analytical expressions for the thermal-lens 
strength associated with the pump-induced accumulated 
optical phase shift, which converge to well-known equations 
[5] when a temperature-independent thermal conductivity 
is chosen.

The rest of this paper is organized as follows: we start 
by introducing the model for the thermal conductivity k(T), 
which matches with actual measurements and provides sim-
ple solutions for the Kirchhoff transform, and its dependence 
over the two main temperature ranges of practical interest. 
Utilizing this form for k(T), the derivation of the exact solu-
tions for the temperature distribution along an end-pumped 
rod is given. Four different pump distributions are studied 
to cover commonly used pump sources, and to make direct 
comparison with previous work; these include the top-hat, 
Gaussian, generalized nth order super-Gaussian, and annu-
lar (donut) distributions. At this point, the importance of 
the heat transfer coefficient, h, at the boundary between rod 
and heat sink, is highlighted. An expression is derived that 
relates the pumping parameters to a minimum critical value 
for h, below which, the temperature at the center of rod rises 
rapidly. In the penultimate section, the expressions for the 
thermal-lens strength, now calculable at any temperature in 
the CT and well above RT regimes, are derived, and then 
compared with the two extremes reported in the literature, 
i.e., top-hat and Gaussian. The solution for the Gaussian 
pump is derived as a special solution to the generalized SG 
distribution. Finally, to end the paper, we summarize with 
conclusions and appendices for detailed workings.

2  Temperature dependence of thermal 
conductivity

We focus our attention on the Nd:YAG crystal. Since YAG 
is a cubic crystal, the thermal conductivity can be consid-
ered as a scalar quantity. The dependence on temperature of 
the thermal conductivity can be modeled by the following 
formula:

where k0, T0 and m result from a best fit to measured data. 
Since these parameters strictly depend on the doping level 
of the rare-earth ion, we choose a particular doping concen-
tration, say ∼1%. We performed two best fits for two dif-
ferent temperature ranges around CT and RT. The first fit 
is based on measured data on a 1.3 at.% Nd:YAG sample 
in a temperature range of 40 K≤ T ≤175 K [10], while the 
second is based on published data of Sato et al. [11] relating 
to 1.2 at.% Nd:YAG in a temperature range of 300 K≤ T ≤
475 K. By finding the intersection of the two fitting curves, 
a common value of T0 and k0 = k(T0) for the two tempera-
ture ranges can be found. The values of the parameters for 
∼1 at.% Nd:YAG are, therefore, as follows: T0 = 164.17 K, 
k0 = 15.09 WK−1 m−1, mCT = −1.77, and mRT = −0.75. The 
data used and the corresponding best fits curves are shown 
in Fig. 1.

2.1  Temperature dependence of thermal conductivity 
for selected materials

In Table 1, the values of k0, T0, and m are provided for 
Nd:YAG at different temperatures, along with different 
doping concentrations and a variety of other interesting 
host materials, including some that would not normally be 
considered for an end-pumped rod architecture, rather more 
appropriate to a thin-disk geometry. These values result from 
a best fit of Eq. (1) to available data from the published 
literature [6, 11, 12]. As previously mentioned, the ther-
mal conductivity can be considered a scalar quantity strictly 

(1)k(T) = k0
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Fig. 1  Measured thermal conductivity dependence on temperature, 
after [10, 11], and best fits using Eq. (1)
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for isotropic laser crystals. However, since, in this thermal 
model, a pure radial heat flux will be assumed (see Sect. 3), 
uniaxial laser materials can also be included and, in this 
case, only the dependence on temperature along the a-axes 
is considered.

3  Analytical solution

The steady-state heat conductance equation, with temper-
ature-dependent thermal conductivity and different end-
pumping profiles, governing the system shown in Fig. 2, is:

where k(T) is the temperature-dependent thermal conduc-
tivity and S(r, z) is the thermal power per unit volume dis-
sipated in the laser rod.

The edge of the rod is considered to be surrounded by a 
heat sink, held at a constant temperature, Tc, by active cool-
ing. Heat transfer across the boundary between the laser rod 
and the heat sink is described by the heat transfer coefficient 
or surface conductance, h. The end faces are instead supposed 
to be in contact with air, with negligible heat flux through 
them. An equivalent hef coefficient can be calculated for the 
end faces [15], and since typically h >> hef, the assumption 
of pure radial heat flux can be made [5]. Furthermore, it is 
assumed in the following that the diameter of the pumped 
region is significantly smaller than the inverse of the absorp-
tion coefficient, reinforcing the statement of radial heat flux. It 
follows that the longitudinal derivatives in Eq. (2) with respect 
to the corresponding radial derivatives [14] can be neglected. 
Here, it is also assumed that the pump profile is axisymmetric, 
the behavior of the thermal conductivity k(T) of the crystal is 
described by Eq. (1), and the cooling is isotropic in the z-plane. 
These assumptions allow us to write Eq. (2) as follows:

Equation (3) can be solved introducing an integral transform 
(Kirchhoff transform) in terms of a function U defined as 
follows [8]:

By the fundamental theorem of calculus,

and, substituting Eq. (5) into Eq. (3) and using the chain 
rule of differentiation, Eq. (3) is transformed into the linear 
equation:

that can be easily solved for different pump distributions 
and the actual temperature can be determined by the inverse 
Kirchhoff transform.

Using Eq. (1), one obtains

where C is an arbitrary constant of integration. It is impor-
tant to note that Eq. (7) is not valid if m = −1; however, 

(2)� ⋅ [k(T)�T(r, z)] + S(r, z) = 0,

(3)
1

r

d

dr

[
rk(T)

dT(r, z)

dr

]
+ S(r, z) = 0.

(4)U(r, z) = ∫
T

k(�)d�.

(5)k(T) =
dU

dT

(6)∇2U(r, z) =
1

r

dU(r, z)

dr
+

d
2U(r, z)

dr2
= −S(r, z)

(7)U =
k0

(m + 1)Tm
0

Tm+1 + C,

Table 1  Thermal conductivity parameters for selected materials

References: a [6], b [12], and c [11]

Crystal T [K]
k0 

[
W

Km

]
T0 [K] m

YAGa 80–300 17.29 199.96 −1.57
1.3 at.% Nd:YAG 40–175 15.09 164.17 −1.77
2 at.% Yb:YAGa 80–300 12.59 199.45 −1.46
4 at.% Yb:YAGa 11.72 199.38 −1.17
15 at.% Yb:YAGa 9.08 199.25 −0.87
LuAGa 12.06 199.43 −1.14
YLF(a)a 8.31 199.17 −1.57
5 at.% Yb:YLF(a)a 5.74 199.24 −1.04
LuLF(a)a 7.86 199.13 −1.65
GGGb 100–300 12.19 199.44 −1.25
CY2O3

b 20.43 200.37 −1.19
GdVO4(a)b 13.71 199.57 −1.30
YAGc 300–475 14.00 199.58 −0.78
0.7 at.% Nd:YAGc 13.55 199.56 −0.77
0.9 at.% Nd:YAGc 13.36 199.56 −0.77
1.2 at.% Nd:YAGc 15.09 164.17 −0.75
5.0 at.% Yb:YAGc 8.98 199.22 −0.56
9.4 at.% Yb:YAGc 8.12 199.19 −0.54
22.9 at.% Yb:YAGc 6.86 199.16 −0.48

L

b

z

Pump

r

O

Fig. 2  End-pumped laser rod representation. Point O is located at 
r = 0 and z = 0
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the temperature distribution in this case has already been 
derived by Hodgson and Weber for a side-pumped laser rod 
[9].

The four different pump distributions studied in this 
paper, corresponding to four different S(r, z) terms in Eq. 
(6), are shown in Fig. 3 at z = 0 (see Sect. 3.1 for the value 
of the parameters considered). They are, respectively, the 
top-hat (TH), Gaussian (G), super-Gaussian (SG), and donut 
(D). Two super-Gaussian profiles are reported in the figure, 
one for the fourth order and the other for the eighth order.

3.1  Top‑hat pumping

Although not a typically realistic pump distribution for end-
pumped lasers, the top-hat profile is the simplest starting 
solution, which can be easily compared with the previous 
literature studies [5, 15]. Consider the following thermal 
loading distribution:

where Q0 is a normalization constant, � is the pump absorp-
tion coefficient, a is the radius of the pumping beam, and b 
is the radius of the laser rod. The normalization constant Q0 
can be calculated using the following relation:

where �hP is the total heating power (�h is the fractional 
thermal load) and V is the volume of the pump-photon 
distribution in the rod, where it is assumed that there are 

(8)S(r, z) =

{
Q0e

−𝛼z 0 ≤ r ≤ a

0 a < r ≤ b,

(9)Q0 =
�hP

V
,

insignificant energy migration effects and the heat source 
is created at the point of pump-photon absorption, that is

where 1 − e−�L = �abs is the absorption efficiency. Substitut-
ing Eqs. (9) and (10) into Eq. (8), the thermal power per unit 
volume dissipated into the laser rod becomes:

where Pin is the incident pump power.
Equation (6) is solved separately between 0 ≤ r ≤ a and 

a < r ≤ b, resulting in two functions U1 and U2, respectively, 
leading to two temperature solutions, T1(r, z) and T2(r, z) in the 
respective regions, as shown in Appendix A. These solutions 
are as follows:

for 0 ≤ r ≤ a and

for a < r ≤ b, where F0 is a constant defined as follows:

Figure 4 shows the calculated temperature distribution using 
Eqs. (12) and (13) with the following parameters: b = 1.25, 
L = 5 mm, a = 300 μm, Pin = 25 W, �h = 0.25, Tc = 300 K, 
� = 350 m−1 and h = 2 WK−1cm−2 (the choice of this value 
for h will be discussed in Sect. 4).

The temperature-independent thermal conductivity case 
can be obtained from Eqs. (12) and (13) setting m = 0. In this 
way, the temperature distribution inside the rod is given by 
the following:

where ΔT(r, z) = T(r, z) − T(b, z). Equation (15) shows the 
well-known quadratic radial dependence of the temperature 

(10)V = ∫
2�

0

d�∫
a

0

rdr ∫
L

0

e−�zdz =
�a2�abs

�
,

(11)S(r, z) =

{
𝜂hPin𝛼e

−𝛼z

𝜋a2
0 ≤ r ≤ a

0 a < r ≤ b,

(12)

T1(r, z) =

{
F0e

−�z

[
1 −

r2

a2
+ ln

(
b2

a2

)]

+

(
T
c
+

�
h
Pin�e

−�z

2�bh

)m+1
} 1

m+1

(13)

T2(r, z) =

[
F0e

−�z ln

(
b2

r2

)
+

(
Tc +

�hPin�e
−�z

2�bh

)m+1
] 1

m+1

(14)F0 =
�hPin�(m + 1)Tm

0

4�k0
.

(15)

ΔT(r, z) =
𝜂hPin𝛼e
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Fig. 3  Different heat source distributions considered. The total heat-
ing power for each is 5.16 W
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inside the pumped region of the rod and the logarithmic 
dependence outside [15]. In Fig. 5, a comparison, at the 
pumped surface of the rod, z = 0, for ΔT(r, z) considering a 
temperature-dependent thermal conductivity, and Eq. (15), 
is shown. The parameters for this comparison are the same 
as those for Fig. 4. The constant thermal conductivity in Eq. 
(15) is evaluated using Eq. (1) at T = Tc.

3.1.1  Temperature profile for different coolant 
temperatures

Maintaining the same thermal load conditions, whilst lower-
ing the temperature of the heat sink surrounding the Nd:YAG 
crystal, which is an artificial example as the spectroscopic 

proprieties of the gain medium also change [13], a decrease 
in the maximum temperature rise at the center of the crystal 
is obtained. This is due to the corresponding increase in 
the thermal conductivity as shown in Fig. 1. Equations (12) 
and (13) can be used to have a quantitative measure of this 
effect. In Fig. 6, the temperature rise is calculated with the 
same parameters above and different coolant temperatures.

3.2  Gaussian pumping

A more realistic and often used pumping distribution 
employing a diffraction-limited pump is a Gaussian, which 
is defined as follows:

where w is the 1/e2 radius of the intensity profile of the 
pump beam. The volume of the heated region is given by 
the following:

and the term in the brackets in Eq. (17) can be set to unity in 
most cases of interest, where the pump beam is significantly 
smaller than the radius of the laser rod. Using Eqs. (9) and 
(16), the heat source becomes:

Thus, Eq. (6) in the case of Gaussian pumping is

(16)S(r, z) = Q0e
−2

r2

w2 e−�z,

(17)V =
�

2
w2

(
1 − e

−2
b2

w2

)
�abs

�

(18)S(r, z) =
2�hPin�

�w2
e
−2

r2

w2 e−�z.

Fig. 4  Temperature profile of a top-hat end-pumped laser rod
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Fig. 5  Comparison between our analytical temperature difference 
profile in the case of RT top-hat pumping and the one published by 
Cousins [15]
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Fig. 6  Temperature difference profile for the same thermal load 
conditions as Fig.  5 but with different coolant temperatures. At 
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= 225  K, the thermal conductivity is extrapolated from the RT 

expression
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and with the following boundary conditions: 

 yields:

where E1(u) is the exponential integral defined as follows:

Note that if a temperature-independent thermal conductivity 
(i.e., m = 0) is considered, Eq. (21) becomes

which gives a temperature difference between the center and 
the edge of the rod equal to

For Ph = �hPin, Eq. (24) is the same result as the one pub-
lished by Innocenzi et al. [14]. Figure 7 shows a comparison 
between our temperature profile and the one published by 
Innocenzi et al. with the same parameters used for the top-
hat case (w = 300 μm is chosen). In addition, in this case, 
the constant thermal conductivity is evaluated using Eq. (1) 
at T = Tc.

In Fig. 8, the analytical temperature difference profiles with 
the same parameters above, but for different coolant tempera-
tures, are again shown.

3.3  Generalized nth order super‑Gaussian

Often in the case of higher power solid-state lasers, fibre-
coupled diode-laser pumps are employed. For a substantial 

(19)1

r

dU

dr
+

d
2U

dr2
= −

2�hPin�

�w2
e
−2

r2

w2 e−�z,

(20a)
dU

dr

||||r=0 = 0

(20b)
dU

dr

||||r=b = h
[
Tc − T(r = b)

]

(21)

T(r, z) =

{
F0e

−�z

[
ln

(
b2

r2

)
+ E1

(
2b2

w2

)

− E1

(
2r2

w2

)]
+

[
Tc +

�hPin�e
−�z

2�bh

]m+1} 1

m+1

,

(22)E1(u) = ∫
∞

1

e−ut

t
dt.

(23)
T(r, z) =

�hPin�e
−�z

4�k0

[
ln

(
b2

r2

)
+ E1

(
2b2

w2

)

− E1

(
2r2

w2

)]
+ Tc +

�hPin�e
−�z

2�bh
,

(24)

ΔT(r, z) =
�hPin�e

−�z

4�k0

[
ln

(
b2

r2

)
+ E1

(
2b2

w2

)
− E1

(
2r2

w2

)]
.

part of the pump distribution in the laser rod, the pump can be 
approximated by a super-Gaussian. The heat source considered 
is as follows:

where n is an even integer. The volume of the heated region 
can be found as follows:

(25)S(r, z) = Q0e
−�ze

−2
rn

wn ,

(26)
V = ∫

2�

0

d�∫
b

0

re
−2

rn

wn dr ∫
L

0

e−�zdz

= 2�
4
−

1

n w2

n

[
Γ
(
2

n
, 0

)
− Γ

(
2
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, 2
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�abs

�
,
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Fig. 7  Comparison between our analytical temperature difference 
profile in the case of Gaussian pumping and the one published by 
Innocenzi [14]
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Fig. 8  Temperature difference profile for the same thermal load con-
ditions as Fig. 7 but with different coolant temperatures
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where Γ(a, x) is the incomplete gamma function. For n = 2, 
b = 1.25 mm and w = 300 μm, Γ

(
2

n
, 2

bn

wn

)
≈ 10−15, and since 

for higher values of n, this term is even smaller, it can be safely 
ignored. Furthermore, by definition, Γ

(
2

n
, 0

)
= Γ

(
2

n

)
, so the 

normalized heat source is

Figure 9 shows the heat sources for n = 2, 4, 8, 16 and 32 
at z = 0 with the following parameter values: w = 300 μm, 
Pin = 25 W, �h = 0.25, � = 350 m−1.

Substituting Eq. (27) into Eq. (6), and using the same 
boundary conditions of the previous section, the temperature 
profile inside the end-pumped laser rod is found to be:

where

(27)S(r, z) =
n�hPin�

2�4
−

1

n w2Γ
(

2

n

)e−�ze−2 rn

wn .

(28)

T(r, z) =

{
G0e

−�z
[
b
2
2F2

(
2

n
,
2

n
;1 +

2

n
, 1 +

2

n
; −

2bn

wn

)

− r
2
2F2

(
2

n
,
2

n
;1 +

2

n
, 1 +

2

n
; −

2rn

wn

)]

+

(
T
c
+

�
h
Pin�e

−�z

2�bh

)m+1
} 1

m+1

,

(29)G0 =
2

(
2

n
−1

)
nF0

Γ
(

2

n

)
w2

,

pFq

(
a1,… , ap; b1,… , bq;z

)
 is the Generalized Hypergeomet-

ric Function, defined as

and (x)k stands for the Pochhammer symbol, that is

Figures 10 and 11 show Eq. (28) for n =2, 4, 8, 16, and 32 
at z = 0 with the same values of the parameters used in the 
previous sections at RT.

The center temperature is found to be maximum in the 
case of n = 4. This is quite surprising, since one might have 
expected that it increases going from the TH (n = ∞) to G 
pump profile (n = 2). A more in-depth analysis, varying both 
the transversal dimensions of the crystal and the pump laser 
waist in Eq. (28), shows that the relationship between the 
center temperatures in Figs. 10 and 11 remains the same. 
Indeed, this does not depend on the lab parameters, but 
rather on how G0 and

depend on n.
However, T(0, 0) is not included in the calculation of the 

thermal dioptric power of the pumped rod, which does follow 
the expected trend (see Sect. 5). It will be shown that what 
matters is the coefficient of the quadratic term in the Taylor 
expansion of the temperature distribution, whose modulus is 

(30)pFq
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)
=

∞∑
k=0

(a1)k ⋯ (ap)k
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Fig. 9  Heat source distributions in the case of super-Gaussian pump-
ing
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pumping
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maximum in the case of G pumping and decreases in the SG 
pumping case as n increases.

3.3.1  Gaussian solution as the special case 
of the super‑Gaussian with n = 2

It can be shown for the special case of n = 2 in Eq. (28) 
that its solution for the temperature profile is the same as 
that derived from the Gaussian distribution (Eq. 21). In this 
case, the Generalized Hypergeometric Function in Eq. (28) 
corresponds to

From Eq. (31) 

 and substituting these values into Eq. (32), one obtains

(32)2F2(1, 1;2, 2;z) =

∞∑
k=0

(1)k(1)k

(2)k(2)k

zk

k!
.

(33a)(1)k = k!

(33b)(2)k = (k + 1)!

(34)

2F2(1, 1;2, 2;z) =

∞∑
k=0

1

(k + 1)2
zk

k!

=

∞∑
k=0

1

k + 1

zk+1

z(k + 1)!

=
1

z

∞∑
k+1=1

1

k + 1

zk+1

(k + 1)!
.

By the definition of the exponential integral:

Equation (32) becomes:

Substituting Eq. (36) into (28) with n = 2, the temperature 
profile is found to be exactly as Eq. (21).

3.4  Donut pumping

Finally, a fourth pump distribution that can be exploited to 
excite higher-order LG cavity modes is a donut shape [16]. 
This can be described by the following:

Using the same procedure explained in the previous sections, 
the following temperature distributions can be obtained, 
respectively, for 0 ≤ r ≤ d1, d1 < r ≤ d2, and d2 < r ≤ b:

and

(35)Ei(x) = � + ln |x| +
∞∑
n=1

xn

nn!
,

(36)2F2(1, 1;2, 2;z) =
1

z

[
−� − ln |z| + Ei(z)

]
.

(37)S(r, z) =

⎧⎪⎨⎪⎩

0 0 ≤ r ≤ d1
𝜂hPin𝛼

𝜋(d2
2
−d2

1
)
e−𝛼z d1 < r ≤ d2

0 d2 < r ≤ b.

(38)

T1(z) =

⎧
⎪⎨⎪⎩
F0e

−�z

d
2

2
− d2

1
+ d

2

2
ln

�
b2

d
2

2

�
− d2

1
ln

�
b2

d2
1

�

d2
2
− d2

1

+

�
Tc +

�hPin�e
−�z

2�bh

�m+1⎫⎪⎬⎪⎭

1

m+1

(39)

T2(r, z) =

⎧
⎪⎨⎪⎩
F0e

−�z
d
2

2
− r2 + d

2

2
ln

�
b
2

d
2

2

�
− d

2

1
ln

�
b
2

r2

�

d
2

2
− d

2

1

+

⎡⎢⎢⎢⎣
T
c
+

�
h
Pin�e

−�z

2�bh

⎤⎥⎥⎥⎦

m+1⎫⎪⎬⎪⎭

1

m+1

(40)

T3(r, z) =

{
F0e

−�z ln

(
b2

r2

)
+

[
Tc +

�hPin�e
−�z

2�bh

]m+1} 1

m+1

.
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Fig. 11  Temperature difference profile in the case of super-Gaussian 
pumping (zoom)
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Also, in this case, the temperature distribution reduces to the 
known literature-reported result if m = 0 is imposed (see the 
very recent paper of Kim et al. [18]).

A summary of all the analytical temperature solutions 
obtained at z = 0 is shown in Fig. 12. To ensure a valid com-
parison with the other temperature solutions, for the donut 
pump, d1 = 0.225 mm and d2 = 0.375 mm have been chosen. 
In this way, the volume of the pump-photon distribution in the 
rod is the same for all the pump distributions.

4  A brief digression on the heat transfer 
coefficient

The heat transfer coefficient, h, and its influence on the tem-
perature distribution in this thermal model deserves a special 
mention. For the sake of simplicity, we limit our discussion 
to the pump-input surface, z = 0, where the maximum rise 
of temperature is expected. In the case of a top-hat pumping 
distribution, from Eq. (12), the maximum temperature is given 
by the following:

Figures 13 and 14 show, respectively, the dependence of Eq. 
(41), and its derivative with respect to h, on h. Input param-
eters chosen are the same as in Sect. 3.1, with Tc = 300 K. 

As one can see from these figures and as one would expect, 
an increasing h implies that the maximum temperature rise 
asymptotes to a minimum constant value. Since this constant 
value is strictly reached at h = ∞ (i.e., in the case of perfect 
cooling), it is not easy to define an expression for a critical 

(41)

T1(0, 0) =

{
F0

[
1 + ln

(
b2

a2

)]
+

(
Tc +

�hPin�

2�bh

)m+1
} 1

m+1

.

value of h, below which the maximum temperature rises rap-
idly. However, from the only h-dependent term in Eq. (41), one 
can define the limiting case, such that if

then the dependence of T1(0, 0) on h can be ignored. For 
the parameters used in this paper, the left-hand side of Eq. 
(42) is approximately equal to 0.093 WK−1cm−2. As it can 
be seen, this value is just off the scale in Figs. 13 and 14, 
and ultimately a tolerable increase in the peak temperature 
rise would have to be chosen to find a critical value for h. 
For example, a 1% increase with respect to Tc (e.g. at 300 K) 

(42)
𝜂hPin𝛼

2𝜋bTc
<< h,
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Fig. 12  Analytical solutions of the heat equation for each distribution 
considered
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would imply a critical value for h ∼ 9.3 WK−1cm−2. This is 
five times higher than the best value reported by Chénais 
et al. [5], when employing heat sink grease as the thermal 
interface to a copper mount.

4.1  Dependence of the temperature rise on h

To date, the effect of h has only been related to the temperature 
difference across the boundary layer, since from the tempera-
ture-independent thermal conductivity model, the temperature 
difference between the center of the rod and the boundary does 
not depend on h [5]. As can be seen from Eqs. (41) and (13), 
this is no longer true when considering k(T), as expressed in:

(note that setting m = 0, this dependence disappears).
Actually this is quite intuitive when considering k(T), as h, 

resulting mainly in a different temperature at the boundary of 
the rod, therefore, changes the thermal conductivity of the rest 
of the laser crystal.

5  Analytical expression for the thermal‑lens 
power

Consider first the case of top-hat pumping and assume h = ∞, 
i.e., use the approximation of perfect cooling. A Taylor expan-
sion can be performed at r ≈ 0, giving

and the approximation of T2(r, z) at r ≈ 0 is instead

Figure 15 shows the agreement of the approximate function 
(44) in the pumped region (r ≤ a) of the laser rod at z = 0 
for the RT.

(43)

T1(0, 0) − T2(b, 0) =

{
F0

[
1 + ln

(
b2

a2

)]
+

(
Tc +

�hPin�

2�bh

)m+1
} 1

m+1

− Tc −
�hPin�

2�bh

(44)

T(r, z) =

{
F0e

−�z

[
1 + ln

(
b2

a2

)]
+ Tm+1

c

} 1

m+1

−
F0e

−�z
{
F0e

−�z
[
1 + ln

(
b2

a2

)]
+ Tm+1

c

}−
m

m+1

a2(m + 1)
r2 + O(r3)

(45)

T2(r, z) =

{
F0e

−�z

[
1 + ln

(
b2

a2

)]
+ Tm+1

c

} 2

m+1

−
2F0e

−�z
{
F0e

−�z
[
1 + ln

(
b2

a2

)]
+ Tm+1

c

} 1−m

m+1

a2(m + 1)
r2

+ O(r3).

In a similar manner as detailed by Hodgson et al. [19], we 
consider the thermo-optic coefficient increasing linearly with 
temperature, that is

Then, utilizing the definition for the optical path difference 
(OPD) [17]

and substituting Eq. (46) into Eq. (47), one obtains

Furthermore, using

the thermal-lens dioptric power is found to be

(46)�(T) = �0 + �1T .

(47)OPD(r) = ∫
L

0

�(T)T(r, z)dz

(48)OPD(r) = �0 ∫
L

0

T(r, z)dz + �1 ∫
L

0

T2(r, z)dz.

(49)OPD(0) − OPD(r) =
Dthr

2

2
,

(50)

Dth =
2�0F0

a2(m + 1)

⋅ ∫
L

0

e−�z
{
F0e

−�z

[
1 + ln

(
b2

a2

)]
+ Tm+1

c

}−
m

m+1

dz

+
4�1F0

a2(m + 1)

⋅ ∫
L

0

e−�z
{
F0e

−�z

[
1 + ln

(
b2

a2

)]
+ Tm+1

c

} 1−m

m+1

dz,
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Fig. 15  Analytical solution and its Taylor expansion inside the 
pumped region in the approximation of perfect cooling at z = 0
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which gives (see Appendix B for details)

Note that, thanks to the particular dependence on r and z on 
the temperature distribution (Eq. 44), a higher order poly-
nomial fit equation for the thermo-optic coefficient could 
also be used, that is

in which case the thermal-lens dioptric power is found to be

Finally, in the case of temperature-independent thermal con-
ductivity (m = 0), and, thermo-optic coefficient (�1 = 0), it 
is remarkable that Eq. (51) reduces to the well-known result 
for the thermal-lens dioptric power generated in a TH end-
pumped laser rod [5]:

A similar analysis can also be followed in the case of SG 
pumping (and then of G if n = 2 is considered), whereby 
the thermal-lens dioptric power is given by the following:

where, for the sake of simplicity, the constant

(51)

Dth =
2

a2�
�
1 + ln

�
b2

a2

��

⋅

⎧⎪⎨⎪⎩
�0

��
F0e

−�z

�
1 + ln

�
b2

a2

��
+ Tm+1

c

� 1

m+1

�0

L

+ �1

��
F0e

−�z

�
1 + ln

�
b2

a2

��
+ Tm+1

c

� 2

m+1

�0

L

⎫
⎪⎬⎪⎭
.

(52)�(T) =

N∑
i=0

�iT
i,

(53)

D
th
=

2

a2�

[
1 + ln

(
b2

a2

)]

×

N∑
i=0

{
�
i
⋅

[
(F0e

−�z

[
1 + ln

(
b2

a2

)]
+ T

m+1
c

)
i+1

m+1

]0
L

}
.

(54)D�
th
=

�0�hPin�abs

2�k0.a
2

(55)

Dth =
2

�b22F2

{
�0

[(
G0b

2
2F2e

−�z + Tm+1
c

) 1

m+1

]0
L

+ �1

[(
G0b

2
2F2e

−�z + Tm+1
c

) 2

m+1

]0
L

}
,

is indicated just with 2F2.
Again, this result contracts to the well-known one for 

the thermal-lens dioptric power generated by a Gaussian-
beam end-pumped laser rod in the case of constant thermal 
conductivity and thermo-optic coefficient (n = 2, m = 0 and 
�1 = 0)[14]:

Figure 16 shows the thermal-lens powers as a function of the 
coolant temperature in both ranges (CT and RT), defined in 
Sect. 2, for four different pump distributions with the same 
parameters of Fig. 4. Two different linear expressions for 
the thermo-optic coefficient are used, for the CT and RT 
ranges, corresponding to the valid temperature ranges for 
the thermal conductivity fits. The values utilized for �0 and 
�1 for each range have been found as follows.

Consider the thermo-optic coefficient defined as follows 
[17]:

where dn∕dT(T) is the thermal dispersion, C� is a parameter 
between 0 and 1 that includes the limitation of a heated ele-
ment of the rod in the free expansion along the longitudinal 
direction, due to the colder surrounding, if a transversely 
localized temperature increase occurs, � is the Poisson’s 
ratio, n0 is the refractive index, and �T (T) the thermal expan-
sion coefficient. Supposing both the thermal dispersion and 
the thermal expansion coefficient linearly depend upon tem-
perature, that is

and

Equation (57) becomes

that is, equivalent to Eq. 46, by defining

and

For the sake of simplicity, C� is set equal to 1 [17], and, 
since for YAG � = 0.25 and n0 ∼ 1.8, Eqs. (61) and (62), 
therefore, become

2F2

(
2

n
,
2

n
;1 +

2

n
, 1 +

2

n
; −

2bn

wn

)

(56)D�
th
=

�0�hPin�abs

�k0w
2

.

(57)�(T) =
dn

dT
(T) + C�(n0 − 1)(1 + �)�T (T),

(58)
dn

dT
(T) = l0 + l1T

(59)�T (T) = l2 + l3T .

(60)
�(T) = l0 + C�(n0 − 1)(� + 1)l2

+ [l1 + C�(n0 − 1)(� + 1)l3]T ,

(61)�0 = l0 + C�(n0 − 1)(� + 1)l2

(62)�1 = l1 + C�(n0 − 1)(� + 1)l3.
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and

l0, l1, l2 and l3 are obtained from a best fit of Eqs. (58) and 
(59) to measured data, as reported by Furuse et al. [20] for 
a single-crystal YAG (except the dn∕dT  coefficient at RT, 
the data of which were for ceramic YAG). Their values are 
listed in Table 2.

Note that the dn∕dT  data were obtained using a 633 nm 
He–Ne laser [20]; however, for a real understanding of the 
lens power, it would need to be evaluated with data meas-
ured at the laser wavelength. As reported by Sato and Taira 
[22] at RT, for example, at a wavelength of 1064 nm, the 
dn∕dT  value is 12.1 10−6∕K, ∼50% higher than the value 
at 633 nm.

The lens power in Fig.  16 at a heatsink temperature 
Tc > 125 K in the CT range should be taken with caution, 
since, in this case, the maximum temperature of the rod no 
longer belongs to the CT range and the fit parameters T0, k0 
and mCT are not strictly valid anymore (see Figs. 6 and 8).

6  Conclusion

In this paper, we have drawn on the fact that the thermal 
conductivity of laser gain media is dependent upon their 
temperature. Consequently, solving the heat conductance 
equation, using the Kirchhoff integral transform, analytical 
expressions were derived for a number of realistic pumping 
sources, typically used in end-pumped rod-laser configura-
tions. We compare the solutions obtained with exemplars 
from the literature and show that in the limit of a constant 
thermal conductivity, there is a natural convergence.

Through the power of having an analytical solution, we 
show that the temperature rise at the center of the laser rod 
has a dependence on the thermal impedance of the boundary 
layer, as is intuitively expected. In contrast with accepted 
expressions, these solutions predict an additional tempera-
ture rise associated with the thermal conductance param-
eter h. With this expression, guidance on the minimum 

(63)�0 = l0 + l2

(64)�1 = l1 + l3.

acceptable value for h for a set of design parameters can be 
obtained.

Finally, analytical expressions for the thermal-lens diop-
tric power are derived in the limit of perfect boundary con-
ditions. Intimately connected with the temperature depend-
ence of the thermal conductivity, in the limit of a constant 
k0, the expressions once again converge to their simplified 
analogues for Gaussian or top-hat pumping distributions.

It is evident that the solutions derived herein, for the typi-
cal parameters chosen, demonstrate a higher temperature rise 
than those obtained with temperature-independent thermal 
conductivity reported previously. Having analytical expres-
sions that can be used for a range of temperatures provide a 
powerful set of tools for designing future end-pumped laser 
systems. This will be especially relevant to laser systems 
operating at cryogenic temperatures.
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Table 2  Fit parameters for the linear model of the thermo-optic coef-
ficient

References: a [21], b [6], c [20] and d [22]

Range
l0

[
10−6

K

]
 

l1

[
10−8

K
2

]
 

l2

[
10−6

K

]
 

l3

[
10−8

K
2

]
 

CT −2.3a 3.8a 0.18b 2.1b

RT 3.4c 1.7c 4.2d 0.62d
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Fig. 16  Thermal-lens dioptric power in CT and RT ranges for Top-
hat, Gaussian, and super-Gaussian pumping distributions
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Appendices

Appendix A: Calculation of the temperature 
distribution in a top‑hat end‑pumped laser rod

In the case of top-hat pumping and considering the inner 
region of the laser rod, 0 ≤ r ≤ a, Eq. (6) becomes

where the subscript 1 indicates that we are focusing just on 
the inner region.

Let dU1(r,z)

dr
= �1(r), which gives d

2U1(r,z)

dr2
=

d�1(r)

dr
. Multiply 

both sides by r and substitute 1 =
dr

dr
, giving

Therefore, Eq. (66) corresponds to

and performing an integration in both sides, one obtains

where A is a constant of integration, which must be found 
with a boundary condition. Dividing both sides by r, Eq. 
(68) becomes

and, with another integration, it returns

where B is another constant of integration. By the definition 
of U(r), Eq. (7)1

which gives

For the outer region of the rod, a < r ≤ b, Eq. (6) becomes

(65)1

r

dU1(r, z)

dr
+

d
2U1(r, z)

dr2
= − Q0e

−�z,

(66)dr

dr
�1(r) + r

d�1(r)

dr
= − Q0e

−�zr.

(67)
d

dr
[r�1(r)] = − Q0e

−�zr

(68)r�1(r) = −
Q0e

−�z

2
r2 + A,

(69)�1(r) =
dU1(r, z)

dr
= −

Q0e
−�z

2
r +

A

r

(70)U1(r, z) = −
Q0e

−�z

4
r2 + A ln(r) + B,

(71)
k0

Tm
0
(m + 1)

Tm+1
1

(r, z) = −
Q0e

−�,z

4
r2 + A ln(r) + B

(72)

T1(r, z) =

{[
−
Q0e

−�z

4
r2 + A ln(r) + B

]
Tm
0
(m + 1)

k0

} 1

m+1

.

and it gives a solution of the form

and then

Now, the boundary equations must be used to find the con-
stants of integration A, B, D, and E.

For reasons of symmetry, the amount of heat conducted 
per unit area (heat flux) in the r direction must be equal to 0 
at the rod center, that is

Substituting Eq. (5) into Eq. (76) and using the chain rule of 
differentiation, the first boundary condition (76) becomes:

and, by Eq. (69), it gives

At the external surface of the rod, r = b, the boundary condi-
tion is chosen instead to be [15]:

Substituting in Eqs. (74) and (75), it returns

Finally, the continuity of the temperature and its derivative 
at r = a is imposed, that is

which gives

and

(73)1

r

dU2(r, z)

dr
+

d
2U2(r, z)

dr2
= 0

(74)U2(r, z) = D ln(r) + E

(75)T2(r, z) =

{
[D ln(r) + E]

Tm
0
(m + 1)

k0

} 1

m+1

.

(76)− k(T)
dT1

dr

||||r=0 = 0.

(77)−
dU1

dr

||||r=0 = 0

(78)A = 0.

(79)−
dU2

dr

||||r=b = h
[
T2(r = b) − Tc

]

(80)D

bh
= Tc −

{
[D ln(b) + E]

Tm
0
(m + 1)

k0

} 1

m+1

.

(81)T1(r = a) = T2(r = a),

(82)−
Q0e

−�z

4
a2 + B = D ln(a) + E

(83)
dT1

dr

||||r=a =
dT2

dr

||||r=a,

1 For the sake of simplicity, we set the constant of integration C of 
Eq. (7) equal to zero. It is easy to see, for example by Eq. (81), that its 
value does not contribute to the calculation of the temperature distri-
bution.
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which gives

Equations (80), (82) and (84) can be solved to find B, D, 
and E, and substituting their values in Eqs. (72) and (75), 
one obtains

Appendix B: Analytical calculation of the thermal‑lens 
dioptric power in the case of top‑hat pumping

The integrals in Eq. (50) can be analytically solved with two 
changes of variable. Here, only the steps used to solve the 
first one are shown, since the other integral can be solved in 
exactly the same way.

We, therefore, consider

Introducing u = −�z (du = −�dz)

and using a new change of variable

(
dw = F0

[
1 + ln

(
b2

a2

)]
eudu

)
, one obtains

(84)
−

Q0e
−�za

2

[
Tm
0
(m + 1)

k0

(
−
Q0e

−�za2

4
+ B

)]− m

m+1

=
D

a

[
Tm
0
(m + 1)

k0
(D ln(a) + E)

]− m

m+1

.

(85)

T1(r, z) =

{
F0e

−�z

[
1 −

r2
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I1 = −
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[
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(
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)]
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c

so
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