
1 3

DOI 10.1007/s00340-016-6506-9
Appl. Phys. B (2016) 122:239

Temporal analysis of optical beams in biased photorefractive 
materials in the context of solitonic solutions: microscopic 
and macroscopic approach

Marek Wichtowski1   · Andrzej Ziółkowski1 

Received: 28 May 2016 / Accepted: 1 August 2016 / Published online: 29 August 2016 
© The Author(s) 2016. This article is published with open access at Springerlink.com

with wave mixing process in PR media considered record-
ing of a photorefractive grating resulting from the interfer-
ence of two plane waves. In the mid-1990’s theoretical pre-
dictions after soon confirmed experimentally revealed the 
possibility of generating photorefractive spatial solitons—
optical beams that propagate in PR media without spatial 
divergence. Solitary waves are formed when the intensity 
dependent changes in refractive index cause self-focusing 
nonlinearity (for bright solitons) or self-defocusing nonlin-
earity (for dark solitons) which exactly balances the beam 
diffraction. Relative ease of experiments and possibility of 
obtaining PR solitons at very low optical power caused led 
to extensive studies of such beams.

So far, four different types of solitons have been dis-
covered: quasi-steady-state solitons, screening solitons, 
photovoltaic solitons and screening–photovoltaic solitons. 
The greatest interest was focused on screening solitons 
1D—slab beams confined only in one transverse direc-
tion. This kind of self-trapping beams, which can exist in 
the steady state regime in biased non-photovoltaic pho-
torefractive crystals, was predicted in works [2, 3] and 
then observed in various PR materials. Photorefractive 
nonlinearity as a macroscopic phenomenon allows sup-
porting spatial solitons at very low optical power levels. 
This feature, however, is associated with a slow response 
time of PR materials. The first theoretical time-dependent 
analysis concerning self-focusing in PR media were per-
formed by Zozulya and Anderson [4, 5], Soon after, Fres-
sengeas et  al. [6] presented the explicit wave propagation 
equation including temporal behavior of spatial solitons. 
In all mentioned papers [2–6] the starting point was the 
K–V band transport model, where analogous simplifying 
assumptions were formulated to determine the refractive 
index variation. The solution given in [6] was regarded as 
able to describe screening and photovoltaic bright solitons 

Abstract  The validity of the commonly used time-depend-
ent wave equation describing the propagation of screening 
one-dimensional solitons in photorefractive materials is 
discussed. Concentrating attention on temporal develop-
ment of the space-charge field, we show that the widely 
used standard solution follows from a phenomenological 
description, which is consistent with the band transport 
model equations only in specific cases. The exact analyti-
cal solution for the localized optical beam is derived within 
the microscopic model under a low contrast approximation. 
The numerical modeling of photorefractive response to an 
arbitrary contrast is performed and compared with stand-
ard solutions. The range of applicability of the macroscopic 
approach for three basic classes of photorefractive crystals 
is discussed.

1  Introduction

It is generally accepted that the band transport model of 
Kukhtarev–Vinetskii (K–V) [1] gives the correct theoreti-
cal description of the photorefractive (PR) phenomena. The 
rate equations which make up the K–V model take into 
account the basic physical processes as photoexcitation, 
transport and trapping of free carriers. The K–V model has 
been employed primarily to describe PR response for two 
kinds of light intensity distributions: the sinusoidal light 
pattern and the single localized beam. Research connected 
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in generic PR media. To obtain a searched for solution, the 
time-dependent relation between the space-charge field and 
the intensity was first established. Inclusion of this relation-
ship in the paraxial wave equation allowed to carry out in 
a relatively simple manner the time-dependent analysis of 
behavior of an optical beam converging into a soliton state. 
This standard solution is rather controversial, but offer-
ing the neat and simple formula, the presented approach 
was widely accepted by other researchers and up to now 
has been the basis of one-dimensional PR solitons analy-
sis. Although the original solution had been developed to 
describe bright solitons, later it was generally agreed that it 
could also be applicable to analyze dark solitons. Approxi-
mations, which underlie the considered solution, make 
up the basis of numerous theoretical analyses of solitonic 
beams behavior including: analytical and numerical mod-
eling of evolution of bright and dark screening solitons 
[7–14], temporal formation of photovoltaic solitons [15, 
16], stability of dark screening solitons [17, 18], analyti-
cal approximation for the soliton profile [19, 20], concept 
of photovoltaic-screening solitons and dissipative solitons 
[21, 22]. Also, we can find these assumptions in chapters in 
books and general reviews [23–26].

The purpose of the present work is to indicate that the 
standard time-dependent wave propagation equation for 
bright and dark optical beams is highly problematic in 
some cases. Particular attention is paid to the correctness of 
describing the temporal development of the space-charge 
field in PR materials. It is shown that the solution obtained 
from the K–V equations under two widely applied approxi-
mations leads in fact to the macroscopic solution with lim-
ited range of applicability. It is notable that for the PR grat-
ing analysis an approach based on the microscopic model is 
used almost without exception, while for localized beams 
the phenomenological model is exploited. Two different 
models used for two various light patterns provide an inco-
herent description of the photorefractive material response.

Taking into account three main families of PR materi-
als, it turns out that the phenomenological approach yields 
a correct approximation only for bright beams in ferroelec-
tric crystals. It can also be applied conditionally for bright 
beams in sillenites and semiconductors. On the other hand, 
investigating dark beams we find significant discrepancies 
in comparison to the results from the microscopic model 
equations. In this case, the macroscopic solution fails for 
all PR crystals herein considered.

The paper is organized as follows. In the first part, after 
introducing the K–V equations and formulas for bright and 
dark beams, we repeat the basic steps leading to the stand-
ard solution of the temporal space-charge field formation, 
paying special attention to assumptions made to simplify 
the analysis. The characteristic response time for optical 
beam is compared with the well-known solution for the 

PR sinusoidal grating, and the exact analytical solution for 
localized optical beam under the low contrast approxima-
tion is presented. The numerical solutions of time evolu-
tion of the space-charge field are shown for bright and dark 
beams at arbitrary contrast value. Finally, in the light of 
experimental results given in the literature we try to explain 
why, up to now, the inconsistency between theory and data 
has not been reported. The standard spatial–temporal wave 
equation describing the propagation of screening one-
dimensional solitons in PR materials is discussed and final 
conclusions are formulated.

2 � Kukhtarev–Vinetskii model: bright and dark 
beams

For many PR materials, we can use the simple version 
of the K–V model with the single trap level and one type 
of charge carrier. Such model constitutes a compromise 
between the complexity of the PR effect and the simplicity 
of mathematical description. In this case one assumes two 
interband levels of impurities: one of photoactive donors 
with concentration ND, and one of shallow acceptors with 
concentration NA. In absence of light it is assumed that all 
acceptor sites are ionized, partially compensating donors, 
that is ND

+ = NA
−. Under the influence of illumination with 

the light distribution I(x) electrons are excited from non-
ionized donors ND

0  =  ND  −  ND
+ to the conduction band, 

where carriers are transported due to diffusion and drift 
and eventually are trapped mainly in darker regions. As a 
result, the space-charge distribution of donors and elec-
trons is created in a crystal which produces the nonuniform 
space-charge field Esc(x). For one-dimensional beams and 
neglected photovoltaic effect, these processes are repre-
sented by the set of material equations [6, 27, 28]:

In above equations symbols ∂t and ∇ stand for ∂
/

∂t and 
∂
/

∂x, respectively. Is is the power intensity of the opti-
cal beam (the signal beam), Ib =  Id +  IB, where Id is the 
so-called equivalent dark irradiance corresponding to the 
rate of electron thermal generation, IB is the background 
uniform illumination used to artificially increase Id, and 
S  =  s/hν is the photoionization cross-section s per pho-
ton energy hν. ND, ND

+, NA, n denote the concentration 

(1a)∂tN
+
D = S(Is + Ib)

(

ND − N+
D

)

− γN+
D n,

(1b)j = qµnE + qµUT∇n,

(1c)∂tρ = −∇j,

(1d)∇E = ρ/ε,

(1e)ρ = q
(

N+
D − N−

A − n
)

.
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of donors, ionized donors, acceptors and free electrons, 
respectively; γ is the recombination coefficient, μ–elec-
tron mobility, q–elementary charge, E is the total electric 
field inside a crystal, UT = kBT/q is the thermal potential 
(UT ~ 26 mV at room temperature), where kB is the Boltz-
mann’s constant, and T–the absolute temperature; j is the 
current density; ε = ε0εr, where ε0 and εr are the vacuum 
and relative low frequency dielectric constants, respec-
tively. If a constant voltage V is applied to the crystal of 
length L, Eqs.  (1a)–(1e) are supplemented by the bias 
condition

The total electric field E(x) in a crystal is the sum of the 
external electric field Ea and the spatially modulated space-
charge field Esc(x): E(x) = Ea + Esc(x). The change in the 
refractive index nm induced by the linear electro-optic 
effect is proportional to the electric field:

where reff denotes the effective electro-optic coefficient.
Further, we consider the one-dimensional light beam 

with the intensity distribution I(x) in the x-direction. In a 
general case of soliton beams investigations a total power 
intensity of light falling into a crystal is the sum of the sig-
nal beam intensity and the dark intensity Id together with 
the background intensity IB. In this work, the signal beam 
is assumed to be a Gaussian beam described by the distri-
bution of light intensity in the form:

where w is the half-width at a half maximum (HWHM).
For the bright beam, the signal intensity vanishes at infin-

ity, thus Is(x → ∞) = I∞ = 0, and total intensity is:

The dark beam is a dark dip in the background of constant 
intensity. For this case, we have Is(x → ∞) = I∞ = Im and 
the total intensity can be written as:

In order to uniformly describe bright and dark beams, it is 
convenient to introduce a parameter m, herein called the con-
trast beam parameter or alternatively, brightness/darkness 
coefficient. The parameter m is given by m = Im/Ib (m > 0) 
for the bright beam and m = I∞/(Ib + I∞), (0 < m ≤ 1) for 

(1f)V = −

L/2
∫

−L/2

dx · E = EaL.

(2)�nm(E) = −(1/2)n3m · reff · E,

(3)Is(x) = Im exp
(

− ln 2 · x2/w2
)

,

(4a)I(x) = Is(x)+ Ib = Ib

[

1+ m · exp
(

− ln 2 · x2/w2
)]

.

(4b)
I(x) = Is(x)+ Ib = (I∞ + Ib)

[

1− m · exp
(

− ln 2 · x2/w2
)]

.

the dark beam. Note that in the latter case, the coefficient 
m does not correspond to the grayness parameter defined in 
[14] as I(0)/I∞. In what follows, most calculations are car-
ried out to simulate the PR behavior of Bi12SiO20 (BSO)—
a non-photovoltaic sillenite crystal with fast PR effect and 
for strontium-barium niobate (SBN)—ferroelectric crystal 
often used in PR soliton experiments. Material parameters 
of BSO are quite well known, and for sillenites it is com-
mon to apply a high external voltage which allows investi-
gating the PR response in relatively wide range of applied 
fields. On the other hand, SBN has a very large dielectric 
constant; hence, screening solitons can be formed in a rather 
small field of the order of 1  kV/cm. The considered sin-
gle defect level model agrees quite well with experiments 
in BSO and SBN crystals. The values of relevant material 
parameters for BSO and SBN are gathered in Table 1.

3 � The space‑charge field equation

For typical PR materials the inequality ND ≫ N+
D , NA is 

fulfilled and if the light intensity is not too high the con-
centration of photoexcited electrons obeys the relation 
n ≪ N+

D ,N0
D,NA. As a result, N+

D  can be neglected with 
respect to ND in Eq. (1a) and electron density can be omit-
ted in comparison to (N+

D − NA) in Eq. (1e). To make equa-
tions more legible, we introduce the characteristic length 
XN =  εEa/(qNA) and two normalized quantities: the nor-
malized electric field and the function u(x) of relative light 
intensity, given, respectively, as:

Moreover, for the description of the temporal behavior of 
PR material two characteristic times are defined:

which stand for, respectively: the carrier recombi-
nation time and the dielectric relaxation time corre-
sponding to the background illumination. In Eq.  (5d) 
nb denotes the free-electron density n0 in regions with 
Itotal(x → ±∞) = I∞ + Ib.

First, we will derive the equation for the temporal space-
charge evolution without applying any additional approxi-
mations. On the basis of Eqs. (1d) and (1e) under the above 
assumptions regarding impurities and carrier densities we 
obtain relations:

(5a)e(x) = E(x)/Ea,

(5b)u(x) = [Is(x)+ Ib]/(I∞ + Ib).

(5c)τr = 1
/

(γNA),

(5d)τdie = ε
/

(qµnb)

(6a)N+
D = NA(1+ XN∇e),

(6b)ρ = ε · ∇E.
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Substituting Eqs. (6a) into (1a) leads to the expression for 
the electron density:

By introducing Eqs.  (1b) and (6b) into the continuity 
Eq. (1c) we arrive at the following equation:

Integration of Eq. (8) over the spatial variable x leads to the 
Ampere’s law:

The total current density Jtotal can be determined by exploit-
ing the appropriate boundary conditions for the light inten-
sity together with the condition given by Eq. (1f). The spa-
tial x-width of the typically focused optical beam (~10 µm) 
in slab-soliton experiments is much less than the width L 
of the crystal (a few mm). Hence, at a sufficient distance 
from the beam center (formally at x → ±∞) the electric 
field E∞ ≈ Ea = V/L, that is e∞ ≈ 1, and I∞ → constant. 
Together with the background illumination Ib, the resulting 
light intensity is thus given by Itotal(x → ±∞) = I∞ + Ib. 

(7a)n =
[SI(x)ND − NAXN∇(∂te)]τr

1+ XN∇e
,

(7b)n(x → ±∞) = nb =
S(Ib + I∞)NDτr

1+ XN∇e
.

(8)ε∇(∂te)+ qµ∇(ne)+
qµUT

Ea

∇2n = 0.

(9)ε · ∂te+ qµne+
qµUT

Ea

∇n = Jtotal(t).

Taking these assumptions into account and averaging spa-
tially both sides of Eq.  (9) over the crystal length L we 
obtain: �ne� ≈ nbe∞ ≈ nb, �∂te� = 0, �∇n� = 0. Hence, 
Jtotal = qµnb and including (5b) we finally get:

where the ratio n/nb according to Eqs.  (7a) and (7b) is 
equal:

Equation  (10) involving Eq.  (11) yields the looked for 
time-dependent equation for the total electric field E(x, t), 
hence the space-charge field Esc(x, t). Equation  (10) does 
not have in general an analytical solution and needs to be 
solved numerically. In the stationary state on the basis (10) 
and (11), we get equation [23–26, 32]:

Experiments with screening solitons require the application 
of external field of the order of kV/cm, so that the second 
term in Eq.  (12) associated with diffusion transport, for 
typical light beams with FWHM ~10  µm can be usually 
neglected. As a result, Eq. (12) reduces to:

(10)τdie · ∂te+
n

nb
e+

UT

Ea

∇

(

n

nb

)

= 1,

(11)
n(x)

nb
=

u(x)

1+ XN∇e
−

NAXN∇(∂te)

NDS(I∞ + Ib)(1+ XN∇e)
.

(12)e(x)
u(x)

1+ XN∇e
+

UT

Ea

∇

(

u(x)

1+ XN∇e

)

= 1.

(13)e(x)u(x) = 1+ XN∇e(x).

Table 1   Material properties of SBN, BSO and GaAs

Material properties Ferroelectric Sillenite Compound semiconductor

Crystal SBN:61 [29] BSO [30] GaAs:Cr [31]

Static dielectric constant εr 880 (ε33) 56 12.5

Electro-optic coefficient reff (pm/V) 235 (r33) 4.5 (r41) 1.4 (r41)

Photoionization cross-section per photon 
energy S (m2/J)

6.5×10−5 (λ = 0.5 µm) 1×10−5 (λ = 0.5 µm) 0.5 (λ = 1 µm)

Electron mobility µ (m2/V s) 3×10−6 1×10−5 0.6

Concentration of donors and acceptors  
ND, NA (m−3)

4×1024, 1×1022 1×1025

1×1022
2×1022

1×1021

Recombination coefficient γ (m3/s) 1×10−16 2.5×10−17 4×10−13

Electron recombination time τr (s) 5×10−7 5×10−6 2.5×10−9

Dielectric relaxation time  
(for light intensity 20 mW/cm2) τdie (s)

0.6 4×10−3 2.5×10−6

Mobility-lifetime product µτr (m
2/V) 1.5×10−12 4×10−11 1.5×10−9

Mobility and saturation electric field  
(grating period of 10 µm) Eµe, Eq (V)

1×106

6.5×105
4×104

5×106
1×103

2×106

Ed

/

Eq, Ea

/

Eq, (Ea = 106 V/m)
Ed

/

Eµe, Ea

/

Eµe(Ea = 106 V/m)

0.025, 1.5,
0.015, 0.95,

0.003, 0.2,
0.4, 25.0

0.007, 0.4,
15.3, 942

Validity of the macroscopic model  
for estimating the amplitude E1(∞)

Yes for low applied field ~1 kV/cm Yes Yes for low applied field ~1 kV/cm

Validity of the macroscopic model  
for estimating the time τsc = Re(τN)

Yes No No
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Equation (13) can be easily integrated numerically. In par-
ticular cases, for instance for a Gaussian beam the analyti-
cal solution can be provided [33].

4 � Approximations leading to the standard 
space‑charge field expressions

In works [4–6] two strong assumptions were adopted that 
allow to significant simplification of Eq.  (10) and obtain 
the analytical solution for the internal electric field E(x, t). 
These two assumptions: slowly varying of the space-charge 
profile and so-called adiabatic approximation will be dis-
cussed in more detail below.

4.1 � Slowly varying of the space‑charge field 
distribution

For typical optical beams with transverse size of the order 
of 10  µm, the power intensity distribution I(x) can be 
regarded as a slowly varying function; hence, the hypoth-
esis was derived [2–6] that the induced electric field profile 
in a crystal should be also described by a slowly varying 
function of x. This suggests that inequality

is satisfied and the term XN∇e can be disregarded in 
Eqs.  (11)–(13). In that case, Eq.  (11) simplifies to the 
form:

and the electric field distribution from Eq. (13) can be cal-
culated according to the relation:

The assumption given by Eq. (14) and resulting Eq. (16) is 
commonly applied in the theoretical analysis concerning 
screening solitons [2–26]. However, it should be stressed 
that this approximation has a severely limited range of 

(14)XN∇e << 1

(15)
n(x)

nb
= u(x)−

NAXN∇(∂te)

NDS(I∞ + Ib)
,

(16)e(x) ≃ 1
/

u(x).

applicability as regards dark beams. To prove this, note that 
Eq. (6a) reads:

As seen, the considered approximation (14) is equivalent 
to the assumption that depletion of ionized donor traps is 
always negligible over all regions of the light intensity dis-
tribution—in other words ND

+ ≈ NA. Now, let us take into 
account the black beam described by an arbitrary function 
u(x), where the term “black” indicates that its minimum 
intensity is zero at any point xp. According to Eq. (13) we 
obtain:

From (18) it can be seen immediately that for a beam 
with u(xp) = 0 (for the symmetric beam xp = 0) one gets 
ND
+(xp) = 0. Thus, in the center of a black beam we always 

have 100 % depletion of donor traps regardless of the shape 
of the function describing the profile u(x). When back-
ground illumination is added, the depletion will be smaller 
than 100  %, although the above analysis reveals that for 
dark beams the analysis should be carried out on the basis 
of Eq.  (13). Only for bright beams the approximation 
(16) is correct. The use of the discussed approximation to 
determine the stationary space-charge field distribution in 
the frame of K–V model can lead to large errors regard-
ing dark beams. To illustrate this conclusion, Fig. 1a, b pre-
sent profiles of the internal electric fields generated by dark 
and bright optical Gaussian beams with HWHM = 5 µm. 
Material parameters for cerium-doped strontium-barium-
niobate (SBN) crystal (Table 1) has been adopted under the 
assumption of an applied field Ea = 1 kV/cm. The differ-
ence between shapes of electric field profiles obtained from 
Eqs. (13) and (16) is apparent. Approximated conformity is 
obtained only for small values of the darkness coefficient, 
whereas for values of m close to unity we find the stark dis-
crepancy between the considered solutions.

We can set a different argument, that for dark beams 
the assumption (14) cannot be accepted as correct. Let 
us consider the function u(x) given by Eq.  (5b) defined 

(17)N+
D

/

NA = 1+ XN∇e.

(18)N+
D (x)

/

NA = e(x) · u(x).

Fig. 1   Distributions of internal 
field formed in SBN crystal by 
a dark beam at the bias field of 
1 kV/cm. Solid lines numerical 
solutions according to Eq. (13), 
dotted lines approximated 
solution according to Eq. (16). 
a Dark beam with the contrast 
parameter m = 0.95, b bright 
beam with m = 20 (in this case 
approximated and numerical 
solutions are virtually indistin-
guishable)
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for Gaussian bright and dark beams with HWHM  =  w 
described, respectively, by Eqs. (4a) and (4b) and, accord-
ing to (16) let us determine HWHM = WE of the electric 
field distribution e(x). The normalized half-width is equal 
to:

where the signs +, − refer to, respectively, bright beam 
(m > 0) and dark beam (0 < m ≤ 1). The graph of the func-
tion WE(m)/w is shown in Fig. 2.

For the bright beam, the width HWHM of the field dis-
tribution E(x) is greater than the HWHM of the optical 
beam and increases along with the coefficient m; hence, the 
slowly varying assumption of the function E(x) is justified. 
However, for the dark beam an increase in contrast coef-
ficient leads in the limit m → 1, to the formation of field 
distribution E(x) with the width HWHM → 0. In such case, 
the donor density ND

+ calculated from the Gauss law (1d) 
takes high negative values. This result as a non-physical 
should be rejected.

4.2 � “Adiabatic” approximation

In the analysis of photorefractive process dynamics we can 
distinguish two fundamental time scales determined by the 
carrier recombination time (τr) and the dielectric relaxa-
tion time (τdie)—see Eqs. 5c and 5d. For PR materials in 
typical CW-experiments the inequality holds: τr  ≪  τdie. 
Referring to this property, in many works [6, 9–11, 15, 34] 
authors assume that time evolution of carriers can be com-
pletely neglected, thus putting ∂ND

+/∂t = 0 in Eq. (1a) is 
justified. Following [23] we call this substitution the “adi-
abatic” approximation, although as will be shown later 

(19)WE(m)
/

w =

√

ln(2± m)
/

ln 2,

it is an incorrect name. Insertion of this assumption into 
Eq. (11) in connection with the condition (14) yields

Considering a case when the light is abruptly switched on 
at time t = 0, i.e., u(x, t) = u(x)θ(t), where θ(t) is the Heav-
iside’s step function, Eq. (20) means that the carrier distri-
bution attains the steady state immediately and during the 
space-charge field formation the carrier distribution does 
not change in time. In this event Eq. (10) takes the form:

This is a simple differential equation which has the follow-
ing solution [6, 9, 16, 34, 35] 

According to Eq. (22), the space-charge distribution varies 
monotonously to the stationary state without any oscilla-
tions with the response time:

For bright beams, the response time decreases with the 
increasing brightness parameter, contrary to dark beams for 
which the response time grows with the grayness parameter. 
Thus, Eq.  (23) yields the prediction that for bright beams 
the time formation of the space-charge field is below the 
dielectric relaxation time, whereas for dark beams the time 
τsc can considerably exceed the time τdie. In the second case, 
the problem appears in the point xp in which u(xp) goes to 
zero. Then, according to Eq.  (23) τsc(xp) → ∞ and from 
Eq. (22), we obtain in the limit t → ∞ the nonphysical sin-
gular solution e(xp,∞) → ∞. Note, that the solution (22) 
was originally formulated for an analysis of bright PR soli-
tons. However, later this formalism was adapted by some 
researches to study dark solitons [12–15, 17, 18]. In the fol-
lowing, the expressions (16) and (22) will be referred to as 
the standard solutions. It is notable that none of the above 
considered assumptions is used in the theoretical analysis of 
photorefractive grating formation. Thus, two different ways 
of describing PR response are applied. To show main dif-
ferences in these two approaches, we will recall briefly the 
derivation of the standard temporal grating solution.

5 � Linearized solutions for harmonic grating

Consider a sinusoidal light pattern which is switched on at 
time t = 0:

(20)n(x, t) = u(x, t)nb.

(21)τdie∂te+ u(x)e+
(

UT

/

Ea

)

∇u(x) = 1.

(22)

e(x, t) = exp

(

−
u(x) · t

τdie

)

+
1

u(x)
(

1−
UT

Ea

∇u(x)

)[

1− exp

(

−
u(x) · t

τdie

)]

.

(23)τsc(x) =
τdie

u(x)
= τdie

I∞ + Ib

Is(x)+ Ib
.

Fig. 2   Normalized half-width of the electric field distribution 
induced in the material illuminated by the bright and dark beams 
as the function of the contrast coefficient m. The plots are based on 
Eq. (16)
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where I0 is the average intensity, θ(t) is the temporal Heavi-
side’s step function, K = 2π

/

� is a grating constant for 
the spatial period Λ, m is the modulation index (fringe 
contrast). The solutions of the K–V equations in the linear 
regime assuming the light-driven function in the form (24) 
is well known. For a small modulation depth m the photore-
fractive rate Eqs. (1a)–(1f) are solved by applying the per-
turbation approach in the parameter m to the first order. The 
zero-order solutions, i.e., under homogenous illumination, 
accordingly for the ionized donor and carrier density, are

where the steady state amplitude of photoexcited electrons 
is n0(∞) = SI0NDτr. The first-order equations can be writ-
ten in the matrix form:

where n1, N1
+ designate amplitudes of electron and 

ion harmonic distributions, whereas elements of the 
square matrix represent characteristic transition rates 
(s−1): ΓRe  =  τr

−1  =  γNA—the carrier recombina-
tion rate, ΓIe  =  γn0(∞)—the ion recombination rate, 
Γdie  =  τ−1

die  =  qμn0(∞)/ε—the dielectric relaxation rate, 
Γtote = ΓRe + µKEd − i·µKEa and ΓPh = mSI0ND—the pho-
togeneration rate. The set of Eq. (26) can be easily solved 
by Laplace transformation. Having solutions of (26), 
we can calculate the space-charge field amplitude from 
Gauss’s law: E1 ≈ (q/iεK)N1

+. Eigenvalues s1, s2 of the tran-
sition rates matrix

determine time constants describing the temporal behavior 
by the relation τj = −sj

−1, j =  1, 2. Taking into account, 
the amplitude of electron density under the initial condition 
n1(0) = 0, we achieve the complete solution:

For PR materials, the inequality Re(1/τ1)  ≫  Re(1/τ2) is 
generally valid; therefore, the second term in Eq. (28) can 
be neglected in comparison with the third one, so that the 
equation can be cast in the simplified form:

(24)I(x, t) = I0θ(t)[1+ m cos(Kx)],

(25a)N+
D0 = NA;

(25b)n0(t) = n0(∞)
[

1− exp(−t
/

τr)
]

,

(26)

d

dt

(

n1
N+
1

)

=

(

−Γtote −ΓIe + Γdie

−ΓRe −ΓIe

)(

n1
N+
1

)

+ mSI0ND

(

1

1

)

,

(27)

(

s1
s2

)

=

(

−Γtote

−Γ −1
tote[ΓtoteΓIe + ΓRe(Γdie − ΓIe)]

)

(28)n1(t) = n1(∞)+ B1 exp
(

−t
/

τ1
)

+ B2 exp
(

−t
/

τ2
)

.

(29)n1(t) ≈ n1(∞)+ B2 exp
(

−t
/

τ2
)

.

Omission in the solution of the root s1 is equivalent to put-
ting dn1/dt = 0 in Eq. (26). This assumption, called the adi-
abatic approximation, allows to transform Eq.  (26) into a 
single differential equation:

where the steady state fundamental amplitude of the space-
charge field E1(∞) and the grating formation time τN = τ2 
are given by expressions:

The transient solution for the grating amplitude of the 
space-charge field describes the exponential function:

The formulas (31a) and (31b) are written in terms 
of characteristic electric fields defined as fol-
lows: Ed  =  UTK  =  (kBT/q)K—the diffusion field, 
Eµe =  (µτrK)−1—the drift field, Eq = qNA/(εK)—the trap-
limited field. The dielectric relaxation time τdie is calcu-
lated for the average free carrier density n0 = SI0NDτr under 
uniform illumination with intensity I0. It can be seen from 
Eq.  (31b) that in the presence of an external electric field 
Ea the time constant τN becomes a complex quantity. The 
real component defines time constant τsc of the space-
charge formation, while the imaginary component defines 
frequency ωsc of damped oscillations associated with the 
recording process:

The real part of Eq.  (32) yields the full solution of the 
space-charge field distribution [28]:

Equation  (34) represents a superposition of the stationary 
harmonic distribution and the exponentially damped dis-
tribution which moves at a speed ωsc/K. Unlike the local 
solution (22), Eq. (34) shows that the evolution of the dis-
tribution of Esc is dynamically non-local in respect to the 
intensity pattern during the grating formation process. The 
expression (34) is fully in accordance with the rigorous 
numerical solution.

(30)τN
dE1(t)

dt
+ E1(t) = E1(∞),

(31a)E1(∞) = −im
Ed − iEa

1+ Ed

/

Eq − iEa

/

Eq

,

(31b)τN = τdie
1+ Ed

/

Eµe − iEa

/

Eµe

1+ Ed

/

Eq − iEa

/

Eq

.

(32)E1(t) = E1(∞)
[

1− exp(−t
/

τN )
]

.

(33a)1
/

τsc = Re
(

1
/

τN
)

,

(33b)ωsc = Im
(

1
/

τN
)

.

(34)
Esc(x, t) = Re

[

E1(t)e
iKx

]

= |E1|[cos(Kx + φ1)

− exp (−t/τsc) cos(Kx − ωsct + φ1)
]
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6 � Macroscopic approach and its applicability

According to Eq.  (31b) the grating build-up time con-
stant is a function of the applied field, the gradient of 
light intensity distribution (through the grating constant 
K) and microscopic parameters as the recombination time 
τr and the acceptor density NA. In contrast, the character-
istic time given by Eq.  (23) does not exhibit any of these 
dependences. This feature can be explained by noting that 
the formula (22) comes in fact from the macroscopic (phe-
nomenological) approach. In other words, at any point we 
do not need to refer to the microscopic Eqs. (1a) and (1b) 
of the full K–V model. In the frame of the macroscopic 
scheme, the key assumption is setting that photoconduc-
tivity is locally proportional to the light intensity pattern 
σ(x) = C·[Is(x) + Ib], where C is the parameter of propor-
tionality. The above equality can be expressed as

where σb  =  C·(I∞  +  Ib) is the photoconductivity suffi-
ciently far from the beam.

Taking into account macroscopic Eqs. (1c) and (1d), we 
obtain the equation:

Writing the dependence for the current density in the 
form: j = σE + UT∇σ and taking advantage of Eq.  (36) 
after integration over the spatial variable x we arrive at the 
equation:

By defining the dielectric relaxation time as τdie  =  ε/σb 
Eq. (37) takes the form of Eq. (21). Note, that in the above 
scheme only two macroscopic parameters are exploited: 
the dielectric constant ε and the diffusion voltage UT. If we 
apply the analogous macroscopic approach to find the lin-
ear solution for a PR grating one obtains the equation

which is the counterpart to Eqs. (21) and (30), and has the 
solution:

Comparison of (39)–(30) together with (31) enables us to 
establish conditions for the correctness of the phenomeno-
logical description [36]. As regards, the amplitude E1(∞), 
Eq.  (39) gives the same result as Eq.  (30), if inequalities 
Ed

/

Eq ≪ 1 and Ea

/

Eq ≪ 1 are fulfilled. Considering 
the characteristic response time τN, the phenomenologi-
cal approach can be applied if the conditions Ed

/

Eq ≪ 1 
and Ea

/

Eq ≪ 1 hold true, as well as Ed

/

Eµe ≪ 1 and 

(35)σ(x) = σb u(x),

(36)ε∇(∂tE)+∇j = 0.

(37)ε · ∂tE + σbu(x)E + UTσb∇u(x) = j0 ≃ σbEa.

(38)τdie
dE1

dt
+ E1 = −im(Ed − iEa),

(39)E1(t) = −im(Ed − iEa)
[

1− exp
(

−t
/

τdie
)]

.

Ea

/

Eµe ≪ 1. In Table 1 are listed the material parameter 
values for crystals which are representative of the three 
most common classes of PR material family: strontium-
barium niobate (SBN) for ferroelectrics, Bi12SiO20 (BSO) 
for cubic crystals (sillenites) and GaAs:Cr for compound 
semiconductors. As follows from the calculated ratios of 
characteristic electric fields given in Table 1, we can draw 
the conclusion that within the small signal approximation 
the macroscopic approach may be successfully applied 
only to ferroelectric crystals.

It should be stressed, that limitations of validity of the 
macroscopic model presented here as regards the linear 
harmonic grating solution have a more general character. In 
fact, considering a large contrast of the light distribution, 
disagreement between the microscopic and macroscopic 
model is even higher particularly in relation to the descrip-
tion of PR response dynamics.

7 � Adiabatic approximation in physics 
of photorefractive effect

The assumption that carrier distribution does not undergo 
time evolution by setting ∂tND

+ = 0 in Eq. (1a) leads to radi-
cal simplification of the K–V model equations. Thus, the 
free carrier density is determined from the relation (20). 
This assumption needs to be considered in more detail. 
From the standpoint of mathematics, this statement is of 
course not consistent with the continuity Eq.  (1c). In this 
event, Eq. (6a) implies ∂tE = 0. Note, that such approxima-
tion should not be called “adiabatic.” Generally, in physics 
the adiabatic process conveys two meanings. The term adia-
batic process mostly occurs in the context of thermodynam-
ics. The other meaning of such process refers to sufficiently 
slow changes of the external conditions in a dynamic sys-
tem [37, 38]. In this case there are two characteristic times: 
the “external” time (Text) corresponding to rate of external 
parameter changing and the “internal” time (Tint) describ-
ing the speed of the process considered. An adiabatic pro-
cess is one for which Text ≫  Tint. In photorefractive phe-
nomena, photogeneration and recombination proceed in a 
much shorter time scale than the process of building spatial 
charge in traps; hence, this process can be treated as adia-
batic. As a consequence, after appearing of an external light 
pattern, the photoexcited carrier distribution attains in the 
recombination time scale the quasi-equilibrium state with 
respect to the light intensity and space-charge in traps and 
follows temporal changes in these distributions with a very 
small delay. The adiabatic approximation in the analysis 
of the PR effect relies on completely neglecting that delay. 
This assumption breaks down for short light pulses compa-
rable or shorter than the carrier recombination time.
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It should be stressed that the adiabatic approxima-
tion does not mean that the distribution of free carriers 
instantly reaches a steady state but evolves from an initial 
state n(x, t =  0) to a steady state, remaining in equilib-
rium with the ionized donor distribution. It is a direct con-
sequence of the fact that the transport of carriers causes 
a spatial charge separation. To illustrate this, let us recall 
the analysis of elementary hologram record presented in 
Sect. 5, assuming BSO parameters values as per Table 1. 
According to adiabatic approximation, instead of the 
complete solution (28), we apply Eq.  (29) written in the 
form:

where E1(t) is given by Eq.  (22). Figure 3 compares the 
solutions obtained from the complete Eq. (28) and simpli-
fied Eq. (40).

Figure 3 presents the time evolution of the free carrier 
density amplitude according to Eq.  (28), involving two 
time constants. It is notable that contrary to the prediction 
of the expression (22) for the localized beam, the time in 
which the steady state is attained is of the order of hun-
dreds of dielectric times. The use of adiabatic approxima-
tion neglects a short period of temporal evolution immedi-
ately after the light is switched on, which formally changes 
the initial condition from n1(t = 0) = 0 to n1(t = 0) ≠ 0, so 
that the plot n1(t) in Fig. 4 begins from the initial value

(40)n1(t) =
mSI0ND + iµn0KE1(t)

γNA − iµK(Ea + iEd)

(41)n1(0) =
mSI0NDτr

√

(1+ µKτrEd)
2 + (µKτrEa)

2
.

Note that the value n1(0) may be much lower than the steady 
state value n1(∞) (in Fig.  4 the ratio n1(∞)/n1(0)  ≈  25 
times). From that moment on the solutions of (28) and (40) 
become practically indistinguishable.

Considering the intensity distribution of light in the 
form of localized optical beam, adopting of the adiaba-
tic approximation in the K–V model implies that the car-
rier density distribution is determined by relation (7a). As 
a result, the derivative dn/dt does not exist in the continu-
ity Eq. (1c), which is equivalent to the assumption that dn/
dt = 0. For this reason (7a) is an equivalent of Eq. (40) for 
the grating. Following from Eq.  (7a) one can see that if 
XN∇e ≪ 1, as for bright beams, then n(x, t) evolves in time 
in the same way as the field Esc time derivative. For dark 
beams with high grayness coefficient, for which we cannot 
neglect the term XN∇e in the denominator, the change in 
time n(x, t) takes place differently from that for the bright 
beam. The related conclusion is that the assumption in (1a): 
∂tND

+ = 0 leading to the solution (22) does not fit the adi-
abatic approximation definition, and should not be termed 
as such. This approximation is for macroscopic descrip-
tion. The solution of equation system (10) and (11) in the 
general case can only be achieved numerically. However, 
we can obtain the exact linear solution, for small values of 
beam contrast coefficient. Optical beams used for creating 
soliton states are usually characterized by large contrast, 
i.e., for dark beams m → 1, for bright beams m ≫ 1. How-
ever, the linear solution is useful for at least two reasons. 
Firstly, like for the harmonic grating, it allows comparing 
the exact solution with the approximated macroscopic solu-
tion. Secondly, it estimates the time of space-charge forma-
tion time in the material, which is particularly useful for 
dark beams, allowing determining the minimum response 
time.

8 � Linearized solution for the localized optical 
beam

The linear solution of the K–V model describing the PR 
response dynamics for localized optical beam can be 
obtained as a superposition of solutions from the theory of 
harmonic grating given in Sect. 5. We commence by multi-
plying the function I(x) describing the optical beam power 
distribution, creating a periodic function in the form:

where p = 0, ±1, ±2, … and X denotes the space period of 
the function Ĩ(x), where X should be significantly greater 
than the full beam width (X ≫  FWHM). This condition 
follows from the fact that during the temporal evolution 

(42)
Ĩ(x) =

∑

p

I(x + pX),

Fig. 3   Exact solution (28) starts from the initial condition n1(0) = 0, 
whereas the solution (40) in the adiabatic approximation—from the 
value indicated by the dashed line; from this moment both plots 
become practically indistinguishable. Material parameters assumed 
for BSO
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changes in space-charge distribution in the vicinity of the 
function I(x + pX) should not affect charge formation at the 
next function I(x + pX ± X). The periodic function Ĩ(x) can 
be expanded in a Fourier series with a period of X:

where Ĩn =
(

2
/

X
) ∫ X/2

−X/2
I(x) cos(nKx)dx, K  =  2π/X, 

n = 0, 1, 2, …
It is assumed that the beam profile I(x) is symmetrical 

relative to point x = 0; therefore, we use the expansion only 
according to the cosine function. For the sake of calcula-
tions, the truncated Fourier series is used, where the mini-
mum number of components should be chosen so as to 
ensure convergence of the series.

In the linear approximation, each harmonic light pat-
tern with a modulation index mn =  m·Ĩn leads to the for-
mation of independent grating of the space-charge field 
E
(n)
sc (x, t). Solutions for component field distributions 

E
(n)
sc (x, t) are given by Eq.  (34), where the substitution 

K →  Kn =  n(2π/X) is made. Taking the superposition of 
harmonic components described by Eqs. (31) and (32), we 
obtain the PR material response to optical beam illumina-
tion as the expression for time-dependent complex ampli-
tude of the field Esc(t):

where τ (n)N  is estimated from Eq. (31b).
Calculating the module of the amplitude (44):

we find out temporal changes of a minimum (bright beam) 
or maximum (dark beam) value of the field Esc in the spa-
tial distribution. In the linear approximation the temporal 
evolution runs in the same way as in the case of illumina-
tion by bright or dark beam. The complete solution, includ-
ing the variable x, showing how the space-charge field dis-
tribution changes in time:

(43)Ĩ(x) =
1

2
Ĩ0 +

∑

n=1

Ĩn cos(nKx),

(44)

Ebeam
sc (t) =

∑

n

E(n)
sc Ĩn

[

1− exp
(

−t/τ
(n)
N

)]

=
∑

n

F(n, t),

(45)

∣

∣

∣
Ebeam
sc (t)

∣

∣

∣
≃

∑

n

∣

∣

∣
E(n)
sc

∣

∣

∣
Ĩn

[

1− exp
(

−t
/

τ (n)sc

)

cos
(

ω(n)t
)]

(46)

Ebeam
sc (x, t) = Re

[

∑

n

F(n, t) exp(inKx)

]

=
∑

n

∣

∣

∣
E(n)
sc

∣

∣

∣
Ĩn

[

cos(nKx)− exp
(

−t/τ (n)sc

)

cos
(

nKx − ω(n)t
)]

where τ(n)
sc and ω(n) are calculated according to the formu-

las (33a), (33b) with the replacement of K by nK = n·2π/X. 
Writing the relations (33) in the explicit form we get:

where R(n)
ab  denote ratios of the respective characteris-

tic fields defined in Sect.  5: Rdµ =  Ed/Eµe, Raµ =  Ea/Eµe, 
Rdq = Ed/Eq, Raq = Ea/Eq.

Let us underline that the solution (46) is fully consist-
ent with the numerical solution of the K–V model equa-
tions. Fig. 4 presents a temporal change in the field ampli-
tude while a steady state is being reached, calculated by 
Eq. (45), and a profile of space-charge field distribution at 
three selected instants according to Eq.  (46). Parameters 
of two different PR materials were taken for calculations 
(Table 1): SBN and BSO. For comparison, Fig. 4a, c also 
include the approximate solution from Eq.  (22). For the 
BSO transient state changes occur in the field Esc(x, t) pro-
file, along with a space non-locality and oscillations. For 
SBN, the field changes monotonically without any oscilla-
tions and locally, relative to the light intensity distribution. 
In this case, the macroscopic approach gives a very good 
approximation of the microscopic solution. If in Eq.  (45) 
the terms cos(ω(n)t) describing oscillations is omitted, a 
monotonic change of field amplitude is obtained. For thus 
defined function, we can estimate the characteristic time 
τavg of reaching the steady state by defining this time as a 
weighted average of harmonic gratings response times:

Thus we can write:

The relation (49) is represented in Fig. 5a as a dotted line. 
The time τavg is for sillenites and semiconductors as GaAs 
much longer than the dielectric relaxation time. From the 
practical viewpoint, it is useful to determine a different 
characteristic time τ1avg, which defines the initial rate of 

(47a)τ (n)sc = τdie

(

1+ R
(n)
dµ

)2

+
(

R(n)
aµ

)2

(

1+ R
(n)
dq

)(

1+ R
(n)
dµ

)

+ R
(n)
aµR

(n)
aq

,

(47b)ω(n) =
1

τdie

(

1+ R
(n)
dq

)

R(n)
aµ −

(

1+ R
(n)
dµ

)

R(n)
aq

(

1+ R
(n)
dµ

)2

+

(

R
(n)
aµ

)2
,

(48)τavg =
∑

n

Ĩnτ
(n)
sc

/

∑

n

Ĩn.

(49)

∣

∣

∣
Ẽbeam
sc (t)

∣

∣

∣
≃

∑

n

∣

∣

∣
E(n)
sc

∣

∣

∣
Ĩn

[

1− exp
(

−t
/

τ (n)sc

)]

≈

(

∑

n

∣

∣

∣
E(n)
sc

∣

∣

∣
Ĩn

)

[

1− exp
(

−t
/

τavg
)]

.

.
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an electric field rise to the value corresponding to a steady 
state. Postulating the exponential relation:

to determine the time τ1avg we adopted the criterion of mean 
square root error minimization between the function (50) 
and relation (45), i.e., 

〈

[|Ebeam
sc (t)| − Fsc(t)]

2
〉

time
= min. 

Seeking the minimum relative to the time τ1avg we 
calculate:

After rejecting the small terms one finds that the looked for 
time is given approximately by the relation:

It should be noted that the times τavg and τ1avg are inversely 
proportional to the mean light intensity, similarly to the 
relation (23). The function (50) is plotted in Fig. 4a, using 
the formula (52). In the considered case for BSO we get 
τ1avg ≈ 4τdie.

For bright and dark beams with low contrast, the mac-
roscopic approach generally is not correct for sillenites. 

(50)Fsc(t) =

(

∑

n

∣

∣

∣
E(n)
sc

∣

∣

∣
Ĩn

)

[

1− exp
(

−t
/

τ1avg
)]

(51)
∂

∂τ1avg

〈

[|Ebeam
sc (t)| − Fsc(t)]

2
〉

time
= 0.

(52)τ1avg =
1

2

∑

n

Ĩn

∣

∣

∣
τ
(n)
N

∣

∣

∣

/

∑

n

Ĩn

Analogous conclusion one obtains for semiconductors. Fig-
ure 4a (BSO) shows that the difference between the charac-
teristic times τavg and τ1avg may be very significant. Knowl-
edge of the time τ1avg needed to reach the quasi-equilibrium 
state is particularly useful for dark beams, because it esti-
mates the minimum formation time of the space-charge field.

In soliton-related experiments the contrast coefficient 
for dark solitons typically reaches m ~ 1, while for bright 
solitons m ≫  1. The calculation of PR material response 
dynamics based on the K–V model in such cases requires 
the numerical approach.

9 � Numerical solutions for bright and dark beams

To model the temporal evolution of the space-charge field 
under the arbitrary beam contrast coefficient, we performed 
the numerical calculations according to the full K–V equa-
tions. The numerical algorithm was based on the implicit, 
finite difference method which follows partially the scheme 
proposed in [39]. The outcome was next compared to mac-
roscopic solutions. Figure  5a, b show the time-dependent 
development of the internal electric field for a dark beam 
with a high darkness coefficient, adopting material param-
eter values for BSO and SBN crystals. The corresponding 
plots are displayed in Fig. 5c, d, but these reflect the case of 
a bright beam.

Fig. 4   Time evolution of the 
electric field amplitude as a 
response of 1D Gaussian beam 
with a small contrast beam 
parameter m = 0.1—Fig. 5a 
(BSO) and Fig. 5c (SBN)—on 
the basis of Eq. (46). Transition 
states of the internal field profile 
for three different times—
Fig. 5b, d. The external fields 
Ea = 10 and 3 kV/cm were 
adopted, respectively, for BSO 
and SBN crystal. The phenom-
enological solution given by 
Eq. (22) and the microscopic 
solution obtained from (45) are 
compared. Time is normalized 
to the dielectric relaxation time



M. Wichtowski, A. Ziółkowski

1 3

239  Page 12 of 15

Figure  5a, b reveal very large discrepancies between 
microscopic and macroscopic solutions in both sillenite 
and ferroelectric material. Two features are worth noting. 
First, for dark beams the electric field reaches the steady 
state without oscillations. For BSO the microscopic solu-
tion predicts much greater time to reach the steady state 
than it stems from the macroscopic model. The opposite 
behavior takes place in the case of SBN, where the diver-
gence between microscopic and macroscopic solutions 
is also evident. Moreover, in both cases the phenomeno-
logical description predicts much greater magnitude of the 
internal electric field amplitude. Figure 5c, d show, for the 
BSO crystal, the time-dependent changes of electric field 
amplitude in the center of the light distribution with differ-
ent values of the contrast coefficient. It is conspicuous that 
the photorefractive response for a bright beam is clearly 
different from the response for a dark beam. The electric 
field evolves toward the stationary state in an oscillatory 
way, however for higher values of the coefficient m oscil-
lations disappear and the duration of the transition state is 
shortened. Furthermore, the time needed to attain the maxi-
mal screening of the external field, denoted in Fig. 5c, d by 
Tm, tends to the value given by formula (23). Concluding, 
at a sufficiently high value of m, the analytical expression 
(22) can be regarded as a plausible approximation as far as 
bright beams are concerned.

In reference to the K–V model equations, the observed 
in Fig. 5 large differences in the macroscopic and numerical 

description of material response dynamics result from the 
fact that in Eq. (7a) and the second term in the numerator 
may become comparable to the first term; hence, it can-
not be omitted. We can derive the approximate criterion of 
applicability of the macroscopic approximation for bright 
beams. To estimate the order of magnitude of ∂(∇e)

/

∂t in 
Eq.  7a, it can be assumed that the field in a crystal with 
spatial variation of FWHM magnitude reaches a value 
Emax ~ Ea in the time of τdie order. With such assumptions, 
the second term in the numerator in Eq. (7a) can be written 
as follows:

Taking into account Eqs. (5d) and (7b) the dielectric relaxa-
tion time may be expressed as:

Putting (54) into (53) and comparing with the first term of 
the numerator in (7b), and assuming it is much greater than 
the second term, we obtain:

where the function u(x) is given by the relation (5b). This 
is the looked for criterion of macroscopic model applica-
bility for the bright beam. For instance, assuming for the 
BSO crystal the field Ea =  10 kV/cm, FWHM =  10 µm, 

(53)NAXN

∂(∇e)

∂t
=

ε

q

∂(∇E)

∂t
∼

ε

q

1

τdie

Ea

FWHM

(54)τdie =
ε

qS(I0 + I∞)NDµτr

(55)u(x) >> µτrEa

/

FWHM,

Fig. 5   Time-dependent evolu-
tion of the normalized electric 
field amplitude under illumina-
tion of BSO and SBN crystals 
by a Gaussian beam. Numerical 
solutions solid lines, macro-
scopic solution from Eq. (22) 
dotted lines. Time is normalized 
to the dielectric relaxation time. 
Note very different values of 
field amplitudes predicted by 
macroscopic and microscopic 
models; hence, only half mag-
nitude of the electric field with 
m = 0.95 for phenomenological 
solution is plotted in a, b
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and as per Table 1 the product of mobility and recombina-
tion time µτr = 4 × 10−11 (m2/V) we find that the expres-
sion on the right-hand side of Eq.  (55) is of the order of 
unity. Therefore, for the bright beam, if the optical power 
of the beam is much higher than the background intensity, 
we have u(x) ≫ 1 and the phenomenological model yields 
a good approximation. In case of ferroelectric materials, a 
small value of the product µτr makes Eq. (22) remain valid, 
even for a small coefficient of beam contrast.

10 � The soliton wave propagation equation 
and experiments

In theoretical works dealing with an analysis of PR screen-
ing solitons 1D, the description of beam propagation is 
based on the paraxial envelope wave equation in the form 
[2, 3, 6–18]:

where φ = φ(x, z, t) designates the normalized slowly vary-
ing complex amplitude of the beam intensity Is  =  Ib·|φ|2 
which is allowed to diffract along the x-direction and propa-
gates along the z-axis. The plus sign corresponds to a self-
focusing nonlinearity and bright beam trapping, while the 
minus sign corresponds to a self-defocusing nonlinearity 
and possibility to obtain a dark soliton. In linear electro-
optic crystals the variation of Δnm induced by propagating 
optical beam is proportional to the electric field E(x, z, t) 
according to Eq.  (2). In the standard approach this inter-
nal field is calculated on the basis of Eq. (22). Taking into 
account that Is = Ib·|φ|2, neglecting diffusion due to strongly 
biased PR crystals, and inserting expression (22) into 
Eq. (56), the general form of the dynamic wave equation is 
derived [6, 8–12, 15, 34]:

where A = (1/2)k0n
3
mreffEa and u(φ) = (1+ |φ|2)/

(1+ I∞/Ib). Equation (57) is taken in the literature to ana-
lyze bright solitons and dark solitons and constitutes the 
basis of many numerical investigations [6, 8–11, 12, 15, 
34]. However, in the context of herein presented arguments 
employing Eq.  (57) we should bear in mind the limited 
range of applicability of the phenomenological approxi-
mation as regards the determination of the nonlinear term 
Δnm(E). As shown, the macroscopic approach yields a cor-
rect quantitative description in the case of bright beams with 
high contrast coefficients. However, to study dark solitons 

(56)i
∂φ

∂z
+

1

2k0ne

∂2φ

∂x2
± k0�nm(E)φ = 0

(57)

i

∂φ

∂z
+

1

2k0nm

∂2φ

∂x2
∓ Aφ

[

1

u(φ)

[

1− exp (−u(φ)t/τdie)
]

± exp (−u(φ)t/τdie)

]

= 0,

we should not use this approximation. This raises the ques-
tion why, despite numerous experiments with dark solitons, 
until now any discrepancies between experimental results 
and theory based on Eq.  (57) have not been reported. The 
main reason lies in the specificity of experiments with PR 
solitons. The vast majority of experiments have dealt with 
screening solitons in a steady state, typically in ferroelec-
trics (SBN, LiNbO3) and in sillenites (BSO, BTO), both 
in the geometry with bulk PR crystals and in planar wave-
guides [11, 16, 40–46].

As it was indicated, for dark solitons, the macroscopic 
approach gives the space-charge field solution to a high 
degree inconsistent with the K–V model. However, one can 
show that solutions for dark beams obtained from the wave 
Eq. (57) (in a stationary state) reveal an property which can 
be called the “quasi-degeneration” of solitonic solutions. 
Although the nonlinear term Δnm(E) in Eq.  (56) deter-
mined from the macroscopic model is considerably differ-
ent from the microscopic solution, it turns out that intensity 
profiles of dark solitons exhibit in both cases a high simi-
larity. In particular, half-widths of profiles are nearly identi-
cal [33].

Here, two points are important to note. The complete 
beam shape is not determined in the experiments, but the 
most relevant measured parameter is the intensity FWHM 
of a beam, which serves to plot the soliton existence 
curve—a basic tool for comparing experimental results 
with predictions of theoretical models. Furthermore, the 
characteristic feature of photorefractive experiments is the 
presence of relatively large temporal fluctuations in the out-
put optical signal [47]. For these reasons, small differences 
in soliton profiles are difficult to notice. Taking this into 
account, the more reliable test of correctness of the theo-
retical model should be the investigation of the temporal 
development of PR screening solitons. Such experiments 
carried out for bright solitons with a large contrast coeffi-
cient confirmed the validity of the approximated descrip-
tion based on Eq. (22). As it was remarked above, the disa-
greements between experiment and theory can be expected 
only for bright beams with a low value of the brightness 
parameter.

According to conclusions in Sect.  6, the conclusive 
experiment verifying the correctness of Eq.  (57) is the 
examination of the transition state for dark beams by 
measuring the time of reaching the steady solitonic state. 
According to our knowledge, results of such experiment 
have not been published to date. In experiments with dark 
photovoltaic and screening solitons, temporal changes of 
a beam width at the crystal output were studied, but the 
direct measurements of soliton formation time have not 
been reported. In the light of the above considerations, the 
result of such experiment should be negative for the phe-
nomenological model.
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In closing, the most important conclusion is that the case 
of dark screening solitons should not be analyzed in an analo-
gous manner as bright solitons, particularly in relation to the 
dynamical behavior analysis. The dark beam is a more com-
plex issue than the bright one, and the analysis of the dark 
solitons propagation in PR media should be carried out by 
combining BPM methods with a numerical technique used 
for determining the light-induced space-charge field [48].

11 � Summary

It is generally adopted that the theory for photorefractive 
(1 + 1)D screening solitons, known for over two decades, 
is well established and satisfactorily confirmed by numer-
ous experiments. In the present article, we dispute partially 
the above statement taking a critical look at commonly 
used simplifying assumptions underlying the description of 
the nonlinear term in the wave propagation equation.

Using the K–V model, we took a closer look at the 
dynamics of PR material response to the illumination of 
the crystal by spatially localized optical beams, bright and 
dark. Two main assumptions adopted in theoretical works: 
slowly varying of beam profile and “adiabatic” approxima-
tion were discussed. These assumptions lead to an approxi-
mate solution describing the dynamics of space-charge field 
formation. To assess the applicability of these approxima-
tions we have presented an exact analytical time-dependent 
solution for the optical beam in the linearized approxima-
tion and a numerical solution for high contrast beams. In 
the context of these considerations, we may formulate the 
following conclusions.

(1) The commonly used analytical solution derived from 
the K–V model for the determination of refractive index 
change distribution is a solution based on the macroscopic 
approach that has a limited applicability. It constitutes a sat-
isfactory approximation for the description of bright soliton 
formation in sillenites and semiconductors, and very good 
approximation for ferroelectrics. (2) The macroscopic solu-
tion reveals high disagreement compared with the micro-
scopic solution for dark beams. Therefore, examining dark 
solitons in each of the three types of PR crystals herein con-
sidered the microscopic model should be used, especially in 
the transition state analysis. (3) The standard form of enve-
lope wave equation is formally incorrect for dark solitons 
because the slowly varying assumption of the optical beam 
profile does not imply a similar property for the space-
charge field profile. However, the use of such form of equa-
tion does not lead to major errors in an analysis of soliton 
beams in a stationary state. (4) Numerical simulations of the 
time-dependent state of dark soliton beams should not be 
based on Eq.  (57) which employs the “adiabatic” approxi-
mation. (5) As the conclusive test verifying the validity of 

the macroscopic model in dark beam analysis it is suggested 
the direct measurement of the black soliton formation time.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.
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