Skip to main content
Log in

Raman continuum generation at 1.0–1.3 μm in passively mode-locked fiber laser based on nonlinear polarization rotation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We experimentally demonstrate cascaded Raman scattering continuum generation at 1.0–1.3 μm with pulse energy of 47 nJ by utilizing a commercially available all-normal-dispersion single-mode fiber (SMF) with a low threshold pump power. We achieve passively mode-locked all-fiber lasing by nonlinear polarization rotation technique. Continuous Raman gain is obtained by the same SMF in every roundtrip because of the ring-cavity configuration, which makes it possible to achieve high-order Raman Stokes waves by a short fiber length. Limited by the pump power, the maximum output average power and peak power are 87.4 and 339 mW, but it has great potential to be improved. These make it an ideal continuum source for many applications, such as optical coherence tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Yin, B. Zhang, W. Yang, H. Chen, J. Hou, Over an octave cascaded Raman scattering in short highly germanium-doped silica fiber. Opt. Express 21, 15987–15997 (2013)

    Article  ADS  Google Scholar 

  2. P. Hsiung, Y. Chen, T. Ko, J. Fujimoto, C. de Matos, S. Popov, J. Taylor, V. Gapontsev, Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source. Opt. Express 12, 5287–5295 (2004)

    Article  ADS  Google Scholar 

  3. H. Lim, Y. Jiang, Y. Wang, Y. Huang, Z. Chen, F.W. Wise, Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm. Opt. Lett. 30, 1171–1173 (2005)

    Article  ADS  Google Scholar 

  4. H. Sayinc, K. Hausmann, U. Morgner, J. Neumann, D. Kracht, Picosecond all-fiber cascaded Raman shifter pumped by an amplified gain switched laser diode. Opt. Express 19, 25918–25924 (2011)

    Article  ADS  Google Scholar 

  5. J.W. Nicholson, A.K. Abeeluck, C. Headley, M.F. Yan, C.G. Jørgensen, Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers. Appl Phys B 77, 211–218 (2003)

    Article  ADS  Google Scholar 

  6. T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onishi, M. Shigematsu, Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber, in Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002(2002), pp. 66–68

  7. M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, Y. Ohishi, Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion. Opt. Express 19, 15389–15396 (2011)

    Article  ADS  Google Scholar 

  8. M. Kumar, C. Xia, X. Ma, V.V. Alexander, M.N. Islam, F.L. Terry, C.C. Aleksoff, A. Klooster, D. Davidson, Power adjustable visible supercontinuum generation using amplified nanosecond gains-witched laser diode. Opt. Express 16, 6194–6201 (2008)

    Article  ADS  Google Scholar 

  9. A.E. Bednyakova, S.A. Babin, D.S. Kharenko, E.V. Podivilov, M.P. Fedoruk, V.L. Kalashnikov, A. Apolonski, Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering. Opt. Express 21, 20556–20564 (2013)

    Article  ADS  Google Scholar 

  10. C. Aguergaray, A. Runge, M. Erkintalo, N.G.R. Broderick, Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability. Opt. Lett. 38, 2644–2646 (2013)

    Article  ADS  Google Scholar 

  11. D.S. Kharenko, E.V. Podivilov, A.A. Apolonski, S.A. Babin, 20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator. Opt. Lett. 37, 4104–4106 (2012)

    Article  ADS  Google Scholar 

  12. C. Chédot, C. Lecaplain, S. Idlahcen, G. Martel, A. Hideur, Mode-locked ytterbium-doped fiber lasers: new perspectives. Fiber Integrated Opt 27, 341–354 (2008)

    Article  ADS  Google Scholar 

  13. L.M. Zhao, D.Y. Tang, Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser. Appl Phys B 83, 553–557 (2006)

    Article  ADS  Google Scholar 

  14. G. Genty, S. Coen, J.M. Dudley, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)

    Article  ADS  Google Scholar 

  15. A. Chamorovskiy, A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, O.G. Okhotnikov, 1.38 μm mode-locked Raman fiber laser pumped by semiconductor disk laser. Opt. Express 18, 23872–23877 (2010)

    Article  ADS  Google Scholar 

  16. L.A. Vazquez-Zuniga, H.S. Kim, Y. Kwon, Y. Jeong, Adaptive broadband continuum source at 1200–1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber. Opt. Express 21, 7712–7725 (2013)

    Article  ADS  Google Scholar 

  17. L.F. Mollenauer, A.R. Grant, P.V. Mamyshev, Time-division multiplexing of pump wavelengths to achieve ultrabroadband, flat, backward-pumped Raman gain. Opt. Lett. 27, 592–594 (2002)

    Article  ADS  Google Scholar 

  18. T. Zhang, Z. Yang, W. Zhao, Y. Wang, P. Fang, C. Li, Dispersion measurement of Yb-doped fiber by a spectral interferometric technique. Chin Opt Lett 8, 262–265 (2010)

    Article  Google Scholar 

  19. E. Desurvire, A. Imamoglu, H.J. Shaw, Low-threshold synchronously pumped all-fiber ring Raman laser. J. Lightwave Technol. 5, 89–96 (1987)

    Article  ADS  Google Scholar 

  20. L.A. Vazquez-Zuniga, J. Yoonchan, Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear Fiber for Raman Gain enhancement. IEEE Photonics Technol. Lett. 24, 1549–1551 (2012)

    Article  ADS  Google Scholar 

  21. L.M. Zhao, D.Y. Tang, T.H. Cheng, H.Y. Tam, C. Lu, 120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser. Opt. Commun. 281, 157–161 (2008)

    Article  ADS  Google Scholar 

  22. A.K. Zaytsev, C.H. Lin, Y.J. You, F.H. Tsai, C.L. Wang, C.L. Pan, A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser. Laser Phys. Lett. 10, 45104 (2013)

    Article  Google Scholar 

  23. G.P. Agrawal, Nonlinear fiber optics, 5th edn. (Academic Press, Waltham, 2013)

    Google Scholar 

  24. X. Xiao, Y. Hua, B. Fu, C. Yang, Experimental investigation of the wavelength tunability in all-normal-dispersion ytterbium-doped mode-locked fiber lasers. Photonics J. IEEE 5, 1502807 (2013)

    Article  Google Scholar 

  25. L.J. Kong, X.S. Xiao, C.X. Yang, Tunable all-normal-dispersion Yb-doped mode-locked fiber lasers. Laser Phys. 20, 834–837 (2010)

    Article  ADS  Google Scholar 

  26. J.Y. Allain, M. Monerie, H. Poignant, T. Georges, High-efficiency ytterbium-doped fluoride fibre laser. J. Non-Cryst. Solids 161, 270–273 (1993)

    Article  ADS  Google Scholar 

  27. D.J. Richardson, J. Nilsson, W.A. Clarkson, High power fiber lasers: current status and future perspectives [Invited]. J Opt Soc Am B 27, B63–B92 (2010)

    Article  Google Scholar 

  28. R.H. Stolen, A.M. Johnson, The effect of pulse walkoff on stimulated Raman scattering in fibers. IEEE J. Quantum Electron. 22, 2154–2160 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Projects of Scientific Research Foundation of National University of Defense Technology (Grant NO. JC12-07-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Wang, X., Zhou, P. et al. Raman continuum generation at 1.0–1.3 μm in passively mode-locked fiber laser based on nonlinear polarization rotation. Appl. Phys. B 117, 305–309 (2014). https://doi.org/10.1007/s00340-014-5836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5836-8

Keywords

Navigation