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ABSTRACT We describe a new attosecond FROG algorithm
optimized for the characterization of sub-100 as pulses from
streaked electron spectra. We make improvements upon the
treatment of the attosecond streaking spectrogram, and show
that these are necessary in order to accurately characterize
shorter pulses with ever larger bandwidths. We investigate the
effects of the approximations that must be made in order to
apply the generalized projections scheme.

PACS 31.15.xg; 32.90.+a; 33.60.+q

1 Introduction

The ability to probe physical events on an unprece-
dented timescale, the attosecond scale, has brought with it
new challenges. Namely, the task of extracting information
beyond just the duration of physical processes is essential for
a deeper understanding of the physics of atoms and molecules,
and for the verification of theoretical predictions. The pho-
toionization by an attosecond light pulse, Auger decay, tun-
nelling ionization [1], shake-up, or a combination of these,
may result in the emission of electron wave packets within an
attosecond time interval. The attosecond streaking measure-
ment [2, 3] is a powerful technique which has proven to be
effective in extracting information about the temporal charac-
ter of attosecond electron emissions [4, 5].

Moreover, attosecond streaking has been shown to pro-
vide a complete characterization of attosecond light pulses [6]
by borrowing principles behind frequency-resolved optical
gating (FROG). The attosecond version of FROG, known
as FROG CRAB, has successfully been used to characterize
∼ 130 as pulses [7]. We developed a FROG retrieval algo-
rithm which is optimized for attosecond streaking, and pro-
vides a more reliable and accurate characterization of attosec-
ond pulses. We demonstrate that our method is crucial for pro-
cessing spectrograms recorded under realistic experimental
conditions, and is especially suitable for the characterization
of attosecond pulses approaching the single cycle limit. Fur-
thermore, we improve the treatment and investigate the effects
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of the approximations that must be made in order to apply the
attosecond FROG retrieval, and establish the parameter range
for which it can be used.

2 Basic principles

We consider a class of attosecond measurements
where an XUV pulse photoionizes atoms in the presence of
an infrared (IR) laser field [8, 9]. The energy distribution of
the outgoing electrons contains information about the XUV
pulse. Without the influence of the laser field, only the spec-
trum of the XUV pulse can be measured, not its temporal
profile. The interaction of the laser field with the emerging
electron wave packet encodes the time structure of the IR
and XUV fields into the photoelectron spectrum. This ap-
proach has been dubbed the “attosecond streak camera” [9],
where streaking is defined as the laser-dressed emission of
electron wave packets. The characterization of attosecond
pulses can be achieved by measuring streaked electron spec-
tra at different delays between the XUV pulse and a controlled
laser field, also referred to as a streaking field. Under the
single active electron approximation, the momentum-space
continuum wave function of electrons photoionized by XUV
pulses under the influence of a time-delayed infrared (IR)
streaking laser pulse can be expressed as [9–11]

Φ(p, τ) =
∞∫

−∞
EX(t)d(p + AL(t + τ))e−iϕ(p,t+τ)ei(p2/2−ΩX+W)t dt ,

(1)

ϕ(p, t) =
∞∫

t

(
pAL(t ′)+ 1

2
A2

L(t ′)
)

dt ′ . (2)

In these expressions, p is the final momentum of the electron
in the continuum, ΩX is the central XUV photon energy, W
is the ionization potential of the atom, τ is the delay between
the XUV and IR pulses, AL is the vector potential of the IR
pulse, d(p) is the dipole transition matrix element between
the initial ground state and continuum state with momentum
p, EX(t) represents the complex valued envelope of the XUV
pulse, and ϕ(p, t) is the quantum phase shift that the electron
acquires due to its interaction with the laser field, from the mo-
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ment of ionization until it reaches the detector. Expressions
(1) and (2) are given in atomic units, which are used through-
out this paper.

A record of streaked electron spectra, S̃(p, τ) = |Φ(p, τ)|2,
taken at different delays τ between the XUV and IR fields,
models a spectrogram acquired in a streaking measurement.
From such a measurement, it is possible to retrieve both the
electric field of the XUV pulses [3] and the laser pulse [2].
A powerful method to accomplish this retrieval is the FROG
algorithm [6]. However, further approximations must be made
to apply this approach.

A FROG spectrogram is constructed according to the pre-
scription

S̃(ω, τ) =
∣∣∣∣∣∣

∞∫

−∞
P(t)G(t + τ)eiωt dt

∣∣∣∣∣∣
2

, (3)

where P(t) and G(t) are complex valued functions represent-
ing the pulse and gate, and τ defines a delay between them.
In order to process an attosecond streaking spectrogram with
a generalized projections algorithm, there cannot be insep-
arable terms inside the integrand of (1) that depend both
on momentum and time. An inspection of (1) reveals two
such terms: d(p + AL(t)) and ϕ(p, t). We remove the momen-
tum dependence of these terms by making the substitution
p → p0, where p0 is the central momentum of the unstreaked
electrons. The effects of this central momentum approxima-
tion will be clarified later in the paper. In order to minimize the
error introduced by substituting p with p0 in the dipole transi-
tion matrix element, we first divide each measured spectrum
by |d(p)|2 before processing the spectrogram. As a result, the
modified attosecond streaking spectrogram fed to the recon-
struction algorithm is given by the following expression

Ŝ(p, τ) = |Φ(p, τ)|2
|d(p)|2 ≈

∣∣∣∣∣∣
∞∫

−∞
EX(t)G(t + τ)e

i
2 p2 t dt

∣∣∣∣∣∣
2

, (4)

G(t) = d(p0 + AL(t))

d(p0)
e
−i

∫ ∞
t

(
p0 AL(t′)+ 1

2 A2
L(t′)

)
dt′

. (5)

This ensures that the sequence of streaked electron spec-
tra forms a proper spectrogram as defined by (3), the XUV
pulse EX(t) being gated by a function G(t) that incorporates
the vector potential AL(t) of the laser pulse. Of particular note,
when the streaking field is absent, (5) shows that the gate func-
tion G(t) is unity and Ŝ(p, τ) is just the spectrum of the XUV
pulse. Thus, the retrieval of the XUV field amounts to charac-
terizing its spectral phase, since the field-free spectrum can be
measured independently.

3 Algorithm details

Having established that a record of streaked spec-
tra (4) taken at different delays constitutes a spectrogram as
defined by (3), such a spectrogram can be processed using al-
most exactly the same inversion tools that are used in FROG.
The basic loop of the generalized projections algorithm is
shown in Fig. 1. In a nutshell, a signal matrix S is computed
from a pair of discretized pulse and gate vectors (step 1). The

FIGURE 1 Generalized projections algorithms converge to the correct
pulse and gate by applying alternating constraints between the frequency
domain and the time domain. The frequency domain constraint consists of
replacing the current spectral intensity with the measured one (step 3), while
the minimization step (step 5) implements a time domain constraint, whereby
the signal matrix is forced to have the form given by (3). Operations that
are common to both the LSGPA and the PCGPA are highlighted in yellow,
whereas those specific to the PCGPA are in blue, and those specific to the
LSGPA are in orange

columns of this signal matrix correspond to the temporal pro-
file of the composite signal resulting from a particular delay
between the pulse and the gate. A complex spectrogram S̃ is
obtained by Fourier-transforming the columns of S (step 2).
A crucial part of the algorithm is the substitution of the modu-
lus of S̃ by the square root of the measured spectral intensity Ĩ
(step 3), thereby enforcing a frequency-domain constraint on
the spectrogram. The complex spectrogram S̃′ resulting from
this operation is then inverse-Fourier-transformed back into
the time domain as a signal matrix S′ (step 4). Last but not least
is the problem of finding the next pulse and gate pair that pro-
duce a signal matrix which most closely resembles S′ (step 5).
This last step can be viewed as a constraint in its own right,
in the sense that the retrieved spectrogram must have the form
given by (3).

The procedure of applying alternating constraints between
the time and the frequency domain is known in the jargon of
image processing as a “generalized projection.” A particularly
elegant implementation of generalized projections – and the
one that was recently extended to attosecond streaking [6] for
the characterization of 130 as pulses [7] – is the PCGPA [12].
In this algorithm, an outer product matrix Oj,i = Pj Gi is first
computed from a pair of discretized pulse and gate vectors,
Pj = P(tj) and Gi = G(ti). The outer product matrix can then
be transformed into a signal matrix by performing a row-
shifting operation on it. Hence, the spectrogram can be di-
rectly related to the outer product between the pulse and gate.
This framework allows for an elegant scheme, involving the
power method, to extract the principal eigenvectors of OO†

and O†O, which are taken as the pulse and gate pair for the
subsequent iteration (step 5 in Fig. 1). Unfortunately, the row-
shifting operations assume periodic boundary conditions for
the gate. If the gate is compact in time, this assumption is en-
tirely justified. However, in the case of attosecond streaking
spectrograms, (4) clearly shows that the gate function G(t)
does not drop to zero and generally is not periodic over the de-
lay range of the spectrogram. Rather, the modulus of the gate
d(p0 + AL(t))/d(p0) tends to unity at extreme delays, where
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the laser pulse’s vector potential drops to zero. An attosec-
ond streaking spectrogram computed using the outer product
matrix formalism results in discontinuities between certain
elements in the signal matrix. These discontinuities create ar-
tifacts in the calculated spectrogram, and can even hamper
convergence if the spectrogram’s delay boundaries are not
periodic.

Furthermore, the PCGPA requires the spectrogram to be
rasterized on a rectangular grid with at least as many columns
as rows. In addition, the energy and delay resolutions of
the spectrogram must satisfy the sampling constraint δεδτ =
2π/N; where N, a power of two, is the number of spectral
points, and δε and δτ are respectively the energy and delay
steps expressed in mutually commensurate units. As most raw
experimental FROG spectrograms do not satisfy this sam-
pling relationship, the common practice is to interpolate the
measured spectrogram to produce a re-sampled version for the
algorithm to work on. For a typical streaking range of 70 eV,
this implies a delay step of δτ ∼ 60 as, which may be experi-
mentally impractical. To speed up the acquisition time and to
minimize the drift of experimental conditions, spectra are typ-
ically recorded at larger delay intervals. In order to satisfy the
aforementioned energy-time sampling constraint, attosecond
streaking spectrograms must therefore be interpolated along
the delay axis prior to being fed to the retrieval algorithm.

Interpolation along the delay axis is detrimental due to
the fact that the spectrogram may exhibit features that can
change rapidly with respect to the delay (notably the fringe
patterns resulting from the spectral interference of twin at-
tosecond pulses, which will be discussed later on). Most im-
portantly, the interpolation along the delay axis hinders the
accurate retrieval of ever shorter attosecond pulses. As shorter
attosecond pulses possess a broader bandwidth, they require
a larger energy range to record a spectrogram, which leads
to a finer time step (a consequence of the sampling require-
ment of the discrete Fourier transform). Since the PCGPA and
other FROG retrieval algorithms consider the delay step to
be the same as the time step, they require the spectrogram to

FIGURE 2 The signal matrix is constructed using the discretely sampled pulse and gate. In this example L = 3, and there are Nτ = 18 delay values between
the XUV and IR fields. The pulse is sampled with Nε = 16 points, and the gate is sampled with Ng = Nε + L(Nτ −1) = 67 points. The columns of the signal
matrix are the product of the pulse and gate points for each delay. The signal matrix is therefore constructed by translating the pulse over the gate, from the
most negative to the most positive delay. Since the gate is not assumed to satisfy periodic boundary conditions, it is necessarily represented over a larger tem-
poral range than that used in the spectrogram. If the XUV pulse is compact in time, the gate points located near the extremities never interact with a substantial
part of the pulse, and consequently become ill-defined

be more heavily interpolated along the delay axis for shorter
XUV pulses. Hence, current FROG algorithms inevitably lose
accuracy when retrieving shorter XUV pulses.

Our implementation of generalized projections retains the
robustness of other FROG retrieval algorithms, but obviates
the need to interpolate the spectrogram along the delay axis,
nor does it assume periodic boundary conditions for the gate.
We begin by defining the elements of the signal matrix as

Sj,i = Pj Gj+L(i−1) , i = 1...Nτ , j = 1...Nε , (6)

where Nε and Nτ are respectively the number of energy and
delay points in the spectrogram, and L is the number of time
samples per delay step. This version of the signal matrix is il-
lustrated in Fig. 2 The inclusion of the parameter L results in
a much weaker sampling relation between energy and delay,
δεδτ = 2πL/Nε, and it greatly relaxes the constraint on the
grid format of the spectrogram. Interpolation of the spectro-
gram along the delay axis can be avoided provided that two
conditions are met:
– The spectrogram must be recorded with a uniform delay

step because the signal matrix defined by (6) assumes that
the number of time samples separating each spectrum is
the same. However, the LSGPA can be straightforwardly
adapted to incorporate variable delay steps by considering
a parameter L that depends on the delay.

– The XUV field must not be confined to a time interval
shorter than the delay step. Otherwise, the pulse overlaps
with disconnected sections of the gate at each delay, and
different arbitrary phases can be added to each of these
sections without changing the spectrogram. In this case,
there exists an infinite number of pulse-gate solutions to
the spectrogram.

If these conditions are met, then interpolation along the de-
lay axis can be avoided. The only remaining preprocessing
consists of interpolation along the energy axis to ensure that
L is an integer (i.e., an integer number of time samples must
fit into the delay step) and that the number of energy points
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Nε is a power of two, a prerequisite for the radix-2 FFT. By
avoiding interpolating the spectrogram along the delay axis,
the LSGPA does not suffer from a loss of accuracy when
retrieving shorter pulses, and is therefore more suitable for
accurately time-resolving attosecond processes.

By defining the signal matrix according to (6), an appro-
priate scheme must be used to find the best pulse and gate
pair for the next iteration. Other FROG algorithms use vari-
ous types of optimization strategies for performing this task.
These include the downhill simplex scheme [13], and the
power method for executing the singular-value decomposition
in the case of the PCGPA [12]. Another standard approach we
found to be particularly suitable for our definition of the sig-
nal matrix relies on the least-squares method: in order to find
the next pulse P and gate G that can best reproduce the sig-
nal matrix S following the application of the spectral intensity
constraint, we define a figure of merit

M =
Nτ∑
i=1

Nε∑
j=1

∣∣Pj Gj+L(i−1) − Sj,i

∣∣2
. (7)

By parameterizing the pulse and gate points either in terms of
their real and imaginary parts, or by their moduli and phases,
the least-squares method can be carried out, leading to the fol-
lowing set of equations:

Pj =
∑

m Sj,m G∗
j+L(m−1)∑

m

∣∣Gj+L(m−1)

∣∣2 , (8)

Gk =
∑

n Sk−L(n−1),n P∗
k−L(n−1)∑

n

∣∣Pk−L(n−1)

∣∣2 , (9)

with

j = 1...Nε, k = 1...Nε + L(Nτ −1) ,

m = Max
(

1,

⌈
R− j +1

L

⌉
+1

)

...Min
(

Nτ ,

⌈
R− j

L

⌉
+ Nτ

)
,

n = Max
(

1,

⌈
k − Nε

L

⌉
+1

)
...Min

(
Nτ ,

⌈
k

L

⌉)
.

Although this system of nonlinear equations can be solved it-
eratively, we found that a single iteration is sufficient: a good
approximate solution can be found by feeding the current gate
into (8) and then using the updated pulse in (9) to obtain the
new gate. This produces a pulse and gate pair that roughly
minimizes the merit function M given by (7).

Now if the pulse is compact in the time domain, then Fig. 2
demonstrates that elements of the gate vector located at ex-
treme time values never overlap with significant parts of the
pulse. Since the signal matrix only provides reliable informa-
tion about gate samples that overlap with sufficiently intense
portions of the pulse, information about these extreme gate
points is virtually absent from the signal matrix, and therefore
the spectrogram. These values of the gate are rendered unreli-
able, and should be ignored when calculating the pulse, which
is obtained from the gate according to (8). The number of un-
reliable points on either side of the gate, expressed with the

FIGURE 3 The example above shows a gate retrieved after a single iter-
ation of the LSGPA, from the synthetic spectrogram of Fig. 4a. The initial
pulse fed to the algorithm was the exact one used to construct the synthetic
spectrogram, whereas the initial gate was an approximate one. After one it-
eration of the algorithm, the gate obtained through (9) exhibits oscillations
with a period equal to four time samples. This is consistent with the delay
step used for the spectrogram, which also consisted of four time samples
(L = 4). These oscillations must be removed before applying (8), otherwise
an unphysical pulse will result from the least-squares minimization step

parameter R appearing in the range of the index m, depends on
the duration of the XUV pulse. As the XUV pulse duration de-
creases, R approaches Nε/2. Therefore, we found that setting
R = Nε/2 works well, since it assumes the case of extremely
short XUV pulses and still allows for the retrieval of longer
ones.

According to (8) and (9), each gate point is calculated by
using only a subset of pulse points, and each pulse point is ob-
tained from the same subset of gate points. All in all, L subsets
of the pulse and gate are obtained independently from one an-
other following this minimization step. Each of these subsets
are actually downsampled versions of the full pulse and gate,
with a downsampling factor equal to L. The full pulse and
gate obtained through (8) and (9) are made up of a weave of
their downsampled versions, and for L > 1 this weave creates
artifacts showing up as slight oscillations in the temporal pro-
files of the full pulse and gate, with a period equal to the delay
step (cf. Fig. 3). Fortunately, the gate’s phase and modulus os-
cillate at (approximately) the laser frequency, which is much
smaller than the delay sampling rate. Given that the gate is ac-
curately sampled at the delay step, the artificial oscillations
can be suppressed by averaging its modulus and phase over L
adjacent points, and using a cubic spline to accurately interpo-
late through all the gate samples. If these artifacts are removed
before executing the least-squares minimization step, then the
next pulse is calculated from a more physical gate, and this al-
lows the algorithm to properly converge to a pulse and gate
without these artificial oscillations. In this manner, the inter-
polation of the spectrogram along the delay axis during the
preprocessing stage has been replaced by the dynamic inter-
polation of the gate at every iteration, a substantially more
accurate operation.

4 Inversion of spectrograms

In this section we will establish the reliability of
our algorithm by simulating attosecond streaking spectro-
grams with realistic experimental parameters. Attosecond
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pulses are currently produced either by spectral filtering the
XUV radiation [14], or by means of polarization gating [7].
Although these techniques are capable of isolating most of
the power contained in a single attosecond pulse, they are not
able to completely suppress the energy contained in the satel-
lites, which are coherent and generated at every half-cycle of
the laser field. An atom that is photoionized by such XUV
pulses will release electron wave packets with a similar tem-
poral structure: they will consist of a strong attosecond pulse
accompanied by one or more weaker satellites mutually sepa-
rated by half optical cycles of the laser field. If the ionization
occurs in the presence of an IR streaking field, the spectral
shifts of the resulting electron wave packets are offset by half
a laser period: when the main electron wave packet is acceler-
ated by the IR field, the adjacent satellites are decelerated.

When two or more coherent attosecond pulses ionize
atoms, the interference between the electron wave packets

FIGURE 4 In order to compare the LSGPA to the PCGPA, an attosecond streaking spectrogram was calculated using a double pulse structure. The spectro-
gram in (a) was chosen to fall outside the PCGPA’s parameter space. Namely, the delay range was chosen to be smaller than the duration of the IR streaking,
so that periodic boundary conditions would not apply along the delay axis (and therefore to the gate). Additionally, a large enough delay step was used in
order to confuse the fringe pattern, rendering the interpolation along the delay axis especially nefarious

causes the appearance of spectral fringes. The streaking field
influences this interference, and thus the position of the spec-
tral fringes changes with the delay between the XUV and IR
fields. Consequently, these spectral fringes contain import-
ant information about the relative timing, intensity and phase
between the wave packets, and therefore must be properly
recorded. The fringe pattern in the spectrogram is easily af-
fected by any type of defect in the acquisition process. First
and foremost, a sufficient spectral resolution is necessary in
order to resolve these fringes, which are spaced by the en-
ergy of two laser photons of the generating field. In the case
of a 750 nm streaking pulse, this implies an energy resolution
better than ∼ 1.6 eV, which is easily achievable with current
time-of-flight spectrometers.

Figure 4a shows a spectrogram resulting from a train of
two XUV pulses separated by half an optical cycle of the
streaking field. In this example, spectra were calculated at de-
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lay intervals of 100 as, with an energy resolution of 0.64 eV.
For simplicity, the original spectrogram fed to both algorithms
was calculated using the central momentum approximation.
The streaking field was modeled using a chirped Gaussian
pulse with a FWHM duration of 4.0 fs, a peak intensity of
2.4 ×1013 W/cm2, a central carrier wavelength centered at
750 nm, and a constant GDD of 2 fs2. The XUV field con-
sisted of a sequence of two attosecond pulses separated by
a half-cycle of the IR field (1.25 fs) with a 3 : 2 peak inten-
sity ratio. The most intense XUV pulse had a duration of
85 as, while the weaker one had a duration of 76.5 as, and both
pulses were chirped as shown in Fig. 4d. The LSGPA retrieval
was performed on a 256 ×65 grid, while the PCGPA required
the spectrogram to be interpolated along the delay axis up to
a size of 256 ×256, in order to satisfy its time-energy sam-
pling constraint.

The checkerboard patterns of the spectrogram in Fig. 4a,
which is the actual spectrogram given to the PCGPA (an in-
terpolated version of the original one), testify that the delay
step used in this example was not fine enough to resolve the
smooth variation of the fringe pattern along the delay axis.
As a result, the spectra resulting from the interpolation along
the delay axis are not physical, as they are not the correct
spectra that should appear at these delay values. The large
number of unphysical spectra (three interpolated spectra for
each known spectrum) precludes an accurate retrieval by the
PCGPA because the interpolated spectrogram no longer con-
forms to definition (3), in that it can no longer be expressed
in terms of a single pulse and gate pair. Surprisingly, the re-
trieved XUV pulses nonetheless exhibit the correct qualitative
behavior, as evidenced by Fig. 4d; while Fig. 4e shows that the
vector potential was also recovered relatively well, although
its amplitude was underestimated. The spectrogram retrieved
by the PCGPA (Fig. 4c) indicates that the weaker pulse’s spec-
tral components were not properly accounted for by the algo-
rithm: they show up as artifacts in the retrieved spectrogram.
Furthermore, these spectral components have also enticed the
PCGPA to overestimate the main pulse’s bandwidth, and un-
derestimate its duration by ∼ 20%.

Since the LSGPA used only the known spectra, it was not
fazed by interpolation errors, and was able to correctly char-
acterize both XUV pulses and the streaking field. Figure 4b
is the full spectrogram retrieved by the LSGPA, i.e., it is the
spectrogram constructed from the retrieved pulse and gate as-
suming a delay step equal to one time sample (L = 1). It shows
the proper behavior of the fringe pattern, which is what would
have been displayed in the original spectrogram if a finer de-
lay step, of precisely 25 as, were used. The LSGPA-retrieved
spectrogram shows that the spectral position of the fringes
changes rapidly at certain delays, and the 100 as delay step
was clearly not fine enough to capture them. Nonetheless, the
delay-dependent structure of the spectrogram is not an issue
provided that no interpolation is performed along this axis.
Figure 4d shows that the 65 spectra contained enough infor-
mation to recover the XUV pulses. Their retrieved temporal
structures agree quantitatively with the original ones, yield-
ing FWHM durations of 85 and 76 as for the stronger and
weaker pulses, respectively. The 3 : 2 intensity ratio, as well
as the relative phase between the two pulses were also cor-
rectly retrieved. Figure 4e shows that the vector potential was

also properly characterized, both in its amplitude and its ab-
solute phase. Moreover, the vector potential was recovered
over a larger time interval than that from the PCGPA. By its
very construction, the PCGPA assumes the gate function to be
defined strictly within the same temporal window as the spec-
trogram. However, due to the finite duration of the XUV field,
the spectra located near minimal and maximal delays contain
information about the gate outside of the delay range.

The retrieval shown in Fig. 4 has been performed on a syn-
thetic spectrogram constructed according to (4), ignoring the
dipole transition matrix element and using the central momen-
tum approximation. Since the retrieval algorithm uses these
same approximations to calculate the spectrogram at every it-
eration, it is not surprising that it converges to XUV and IR
fields that are essentially the same as the original ones. In
order to investigate the effects of the approximations, we gave
the LSGPA a spectrogram calculated using the more accu-
rate expression (1), using the independently calculated dipole
transition matrix element of neon.1 For this test we again
chose the temporal structure of the XUV field to be composed
of two attosecond pulses separated by a half-cycle of the IR
field. The most intense pulse had a duration of 90 as, whereas
the weaker one was more extended in time, with a complicated
temporal intensity profile modulated on the attosecond time
scale. The two XUV pulses had a central energy exceeding the
ionization potential of neon by 100 eV, and were given phases
with higher-order terms. The spectrogram was recorded with
a delay step of 100 as, and an energy resolution of 0.3 eV.
The IR field was modeled using a bandwidth-limited Gaus-
sian pulse with a FWHM duration of 3.5 fs, a peak intensity of
∼ 7.5 ×1012 W/cm2, and a 750 nm central wavelength.

The approximations had a minimal effect on the retrieved
XUV pulses (Fig. 5d) and the retrieved IR field (Fig. 5e). Par-
ticularly, the FWHM duration of the most intense XUV pulse
is underestimated by ∼ 10%. In contrast, the relative absolute
phase between the two pulses is off by as much as ∼ 90◦.

The small distortions in the retrieved XUV pulses and
the large discrepancy in the relative phase between them are
intimately linked to the errors made by using the central mo-
mentum approximation (p → p0). The difference between the
exact phase (2) and the approximate one can be expressed as

∆ϕ(p, t) = ϕ(p, t)−ϕ(p0, t) = (p − p0)

∞∫

t

AL(t ′)dt ′ . (10)

For the approximation to be valid, ∆ϕ(p, t) must vary mini-
mally during the interaction with the XUV field. This condi-
tion can be written as

ε(p) = max
t

|∆ϕ(p, t)| � π (11)

for all momenta p where the electron flux is significantly in-
tense. For a single isolated attosecond XUV pulse with a dura-
tion ∆tX , the IR vector potential is approximately linear over

1 The dipole transition matrix element from the ground state of neon
was calculated in the Hartree–Fock (HF) approximation. The continuum
states were modeled as a linear combination of the s and d waves form-
ing a frozen-core HF solution propagating in the direction of observation
(courtesy of Y. Komninos).
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FIGURE 5 To investigate the effect of the approximations, the LSGPA was applied on a spectrogram computed without the central momentum approxi-
mation, and using the known dipole transition matrix element of neon. Before being processed with the LSGPA, the spectrogram was divided by the dipole
transition matrix element of neon, according to (4). These approximations have induced slight distortions on the retrieved XUV pulse and IR vector potential,
and have prevented the algorithm from retrieving the correct relative phase between the two XUV pulses

the duration of the pulse, so that the error can be estimated as

ε1(p) =

∣∣∣∣∣∣∣
(p − p0)

t0+∆tX /2∫

t0−∆tX /2

AL(t)dt

∣∣∣∣∣∣∣
≈ ∆tX |(p − p0)AL(t0)| ,

(12)

where the XUV pulse is assumed to be centered at a moment
t0. For the simulation presented in Fig. 5, the maximum value
of the vector potential is Amax = 0.25 a.u., and (12) yields an
error of ε1 ≤ 0.4 rad in the energy window between 80 and
130 eV. This small value explains why each of the XUV pulses
was accurately retrieved.

The algorithm failed to recover the relative phase between
the main pulse and its satellite because ∆ϕ(p, t) varied sig-
nificantly over the time scale separating them. In this case, the
accumulated error is

ε2(p) ≤ 2TL

π
|p − p0|Amax , (13)

where TL is the period of laser oscillations. For the parameters
used to produce Fig. 5, this error is ε2 ≤ 3.15 radians, which is
comparable to π.

The central momentum approximation also had an effect
on the retrieved gate modulus, via the dipole transition matrix
element. Figure 5c compares the modulus of the gate directly
retrieved by the LSGPA (turquoise triangles) with its theoret-
ical value (black line) |G(t)| = d(p + AL(t))/d(p) ≈ d(p0 +
AL(t))/d(p0), using the original vector potential and the inde-
pendently calculated dipole transition matrix element (cour-
tesy of Y. Komninos). Although the exact gate modulus is both
a function of momentum and time, by its very construction the
algorithm retrieves a gate represented with a one-dimensional
vector. The discrepancies between the retrieved gate mod-
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ulus and its approximate theoretical (using the substitution
p → p0) are a result of neglecting this momentum depen-
dence. Nevertheless, the agreement between the two curves
in Fig. 5c is evidence that the central momentum approxima-
tion applied to the dipole transition matrix element is valid.
The error due to the central momentum approximation can be
estimated as

d(p + AL(t))

d(p)
− d(p0 + AL(t))

d(p0)
≈

−
(

d′(p0)

d(p0)

)2

(p − p0)AL(t) . (14)

Similarly to the phase error (12), this discrepancy is maximal
at extrema of the vector potential. While at the zero crossings,
where streaking broadens rather than shifts electron spectra,
(4) and (5) do not suffer from the central momentum approxi-
mation. This quality can potentially be used to further improve
the accuracy of FROG retrieval.

5 Conclusion

Constant improvements in technology will allow
for temporally resolving physical phenomena on scales ap-
proaching the atomic unit of time (∼ 24 as). Such experiments
will involve the generation of XUV and electron wave pack-
ets at higher energies and shorter durations. Since our algo-
rithm avoids interpolating the attosecond streaking spectro-
gram along the delay axis, it is better suited for the accurate
characterization of ever shorter pulses, as long as the spectro-
gram is recorded within a certain range of physical parame-
ters. Although the retrieved relative phase between the XUV
pulses remains inconclusive, the attosecond FROG algorithm
can correctly characterize the internal structure of the indi-
vidual attosecond pulses and that of the IR vector potential,
provided that the time-bandwidth product (12) is not too large.
Fortunately, this requirement can be easily satisfied under re-
alistic experimental conditions, thereby making the FROG
technique a powerful and reliable tool for time-resolved meas-
urements of attosecond physical processes.
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10 M. Kitzler, N. Milos̆ević, A. Scrinzi, F. Krausz, T. Brabec, Phys. Rev.
Lett. 88, 173 904 (2002)

11 M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum,
Phys. Rev. Lett. 49, 2117 (1994)

12 D.J. Kane, IEEE J. Quantum Electron. QE-35, 421 (1999)
13 R. Trebino, K.W. Delong, D.N. Fittinghoff, J.N. Sweetster, M.A. Krum-

bügel, B.A. Richman, Rev. Sci. Instrum. 68, 3277 (1997)
14 M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim,

D. Kim, F. Krausz, U. Kleineberg, New J. Phys. 9, 243 (2007)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


