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Abstract
The catalytic behaviours of pure K-OMS-2 and Ag-doped K-OMS-2 catalysts (5% Ag doping) synthesized using the hydro-
thermal method are the focus of investigation in this study. To characterize the catalytic performance of these synthesized 
catalysts, a combination of analytical techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy 
(FTIR), Raman spectroscopy, and Soot Temperature Programmed Reduction (Soot TPR), were employed. The analysis of 
the prepared samples via XRD revealed a nanocrystalline tetragonal structure, with crystal sizes measuring approximately 
22.4 nm. Further examination of the samples using Field Emission Scanning Electron Microscopy (FESEM) unveiled 
nanorods with dimensions of 213 nm in length and 32 nm in width for K-OMS-2. In comparison, Ag-doped K-OMS-2 
displayed nanorods with dimensions of 290 nm in length and 26 nm in width. Notably, the incorporation of Ag+ ions into 
the K-OMS-2 framework led to an increase in the intensities of the 771 and 527 cm−1 bands when compared to the pure 
K-OMS-2. This increase can be attributed to the replacement of K+ ions with Ag+ ions in the structure. Furthermore, the 
introduction of Ag+ ions into the K-OMS-2 framework significantly influenced its catalytic activity for soot oxidation, as 
evidenced by the augmentation of surface-adsorbed and lattice oxygen radicals, as observed in the results of Soot TPR. The 
doped sample exhibited substantially enhanced catalytic activity for soot oxidation, as indicated by its low T50 of 370 °C. In 
addition, the incorporation of the dopant was found to enhance the thermal stability of the catalyst.
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1  Introduction

Diesel engines have become the predominant choice for 
global commercial transportation, primarily due to their 
high thermal efficiency, substantial power output, and low 
fuel consumption. In addition, they play a pivotal role in 
agriculture, industrial applications, and energy production 
[1]. Diesel engines produce approximately 80 times more 
particulate matter than gasoline engines [2]. According 
to the World Health Organization (WHO), individuals in 
underdeveloped and developing countries are exposed to 
air pollution levels that surpass WHO’s recommended lim-
its [3]. Consequently, the pursuit of carbon neutrality has 
emerged as a worldwide imperative.

Diesel particulate filters (DPF) are the most efficient 
technique for controlling particulate matter emissions. 
Constant soot removal is crucial to prevent DPF clogging 
due to soot accumulation [4]. The usage of a catalyst for 
soot oxidation is a promising method to prevent filter clog-
ging. The efficiency of soot oxidation is greatly influenced 
by the degree of interaction between the soot and the cata-
lyst, making it necessary to consider the contact condi-
tions in this solid–solid interaction [5]. Furthermore, the 
resilience of the catalyst and its activity for soot oxidation 
in the exhaust environment is crucial, as it is subjected to 
temperature fluctuations and thermal degradation (due to 
the formation of localized hotspots), leading to a decline 
in catalyst activity [6]. Chemical deactivation poses a 
further threat to the catalyst’s long-term activity. While 
using noble metals as catalysts, such as Pt, has shown 
promising results in reducing the oxidation temperature 
and soot accumulation in DPF, scarcity and high costs of 
other platinum-group metals necessitate the exploration of 
alternative solutions [7].

Ceria-based catalysts [8, 9], noble metals [10–15], 
perovskites [16, 17], alkali-based catalysts [18, 19], and 
3 DOM [20] catalysts have been extensively researched, 
but there is still a need to explore more materials to meet 
regulatory standards. Among the metal oxides, manga-
nese-based oxides are promising candidates for various 
oxidative reactions (e.g., CO and VOCs) due to multiva-
lent oxidation states. Octahedral molecular sieves, a type 
of manganese oxide called K-OMS-2, form a 2 × 2 struc-
ture in their most stable state [21, 22]. This structure con-
sists of MnO6 octahedrons stacked to form a square-like 
tunnel structure with sides measuring 4.6 Å. The potas-
sium atom in the centre helps balance the charge and 
stabilize the structure. K-OMS-2 exhibits high mobility 
due to weak interactions with the framework. Various 
oxidation states of MnOx contribute to its excellent redox 
properties [23].

Studies report that K-OMS-2 can be tuned by substitut-
ing K or Mn ions with single or multiple valence state ions 
to improve catalytic efficiency and oxygen vacancies [24, 
25]. Ag-doped catalysts have been extensively researched 
for catalytic oxidation reactions (e.g., methanol, ethanol, 
toluene, CO, and formaldehyde) [26–29]. Yu et al. [30] 
investigated that adding Ag produced more surface oxy-
gen vacancies and lattice defects, contributing to excellent 
catalytic oxidation of methanol. Furthermore, Liu et al. 
[31] have reported that Ag can enhance the regeneration 
and generation of active oxygen species with enhanced 
mobility, thus exhibiting improved catalytic performance 
with long-term stability. To our knowledge, Ag-doped 
K-OMS-2 for soot oxidation has not been reported.

This study aims to demonstrate and explain the soot oxi-
dation activity of Ag/K-OMS-2. The hydrothermal synthesis 
method is employed to prepare K-OMS-2 and silver-doped 
K-OMS-2. Characterization methods such as XRD, FESEM, 
FTIR, Raman, and Soot TPR are utilized. A TGA instru-
ment is used to analyze soot catalytic activity. Calculation 
of the soot oxidation activation energy provides a better 
understanding of the catalytic performance of the synthe-
sized catalyst.

2 � Experimental section

2.1 � Materials

Potassium permanganate (99%) and manganese sulfate 
monohydrate (99%) from Sigma-Aldrich, silver nitrate 
(99%) and nitric acid (65%) from Merck are used as pro-
cured without any additional purifications.

2.2 � Preparation of K‑OMS‑2 catalyst

2.89 g of KMnO4 dissolved in 50 ml of double distilled 
water was added to a mixture containing 4.12 g of MnSO4 
and 1.5 ml nitric acid, with 15 ml double distilled water 
dropwise and stirred continuously at room temperature for 
fifteen minutes. This mixture was then transferred into an 
autoclave (100 ml) and heated in an air oven set at 100 °C 
for 24 h. The precipitate obtained was washed to neutralize 
its pH level up to 7 using distilled water before drying it in 
a hot air oven set at 80 °C. The dried sample is calcined at 
600 °C in a muffle furnace for 4 h.

For doping of 5% Ag into K-OMS-2, the following proce-
dure is followed: 2.89 g of KMnO4 in 50 ml double distilled 
water are added dropwise to a mixture containing 4.12 g 
MnSO4, an appropriate amount of Ag(NO3)2 and 1.5 ml 
HNO3 in 15 ml of double distilled water while stirring 



Improved catalytic performance of Ag‑doped K‑OMS‑2 for soot oxidation﻿	 Page 3 of 11  112

constantly at room temperature for 15 min. The mixture is 
put into a 100 ml autoclave and placed inside a hot air oven 
set at 100 °C for 24 h. The rest of the process was carried 
out in the same for the undoped sample.

XRD analysis was done using Rigaku Mini Flex 600 
to analyze the structure and phase purity of the samples. 
The wavelength of 1.54 Å was used, with angles ranging 
from 10° to 70°. Surface morphology was analyzed using 
FESEM (Carl Zeiss, Germany) with an accelerating voltage 
of 200 kV. An excitation wavelength of 785 nm was used 
to record the Raman spectra using a Compact Raman Spec-
trometer, Renishaw (UK). With a gas flow rate of 60 mL/min 
(soot TPR was performed in a nitrogen atmosphere). TGA 
instrument was loaded with the mixed sample (catalyst and 
soot), which was heated between 50 and 800 °C. It facilitates 
locating the oxygen radicals that are actively promoting soot 
oxidation.

2.3 � Soot catalytic activity

TGA instrument TA 50 Discovery was used to investigate 
catalytic soot oxidation. In a 10:1 ratio, the catalyst and soot 
were combined. The temperature was ramped from ambi-
ent to 700 °C while the gas flow rate (O2 flow) was set at 
60 mL/min.

3 � Results and discussion

3.1 � X‑ray diffraction (XRD)

Figure 1 depicts the XRD patterns of both K-OMS-2 and 
silver-doped K-OMS-2 samples. The diffraction peaks at 
2θ correspond to K-OMS-2. Notably, the XRD pattern of 
the silver-doped K-OMS-2 sample does not exhibit peaks 

Fig. 1   XRD pattern of all cata-
lysts and lattice structure of a 
K-OMS-2, b 5-Ag/K-OMS-2
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indicative of other forms of silver. This observation has been 
corroborated by FTIR analysis, which confirms the com-
plete integration of silver ions into the lattice framework 
(see Fig. 1b).

A reduction of the peak intensity is observed upon adding 
silver ions. This decrease in peak intensity can be attrib-
uted to the thorough incorporation of silver ions into the 
tunnel structure of K-OMS-2. However, it is essential to 
note that the XRD pattern also indicates the presence of the 
orthorhombic phase of α-Mn2O3, known as bixbyite. The 
formation of α-Mn2O3 has been previously explained in our 
earlier work [32]. Details regarding the lattice parameters 
are presented in Table 1.

3.2 � FESEM

Figure 2 illustrates the morphology of the synthesized sam-
ples. Both samples exhibit a rod-like structure. The average 
rod length and width for the pure and 5% Ag-doped sample 
were 290 nm and 32 nm, and 213 nm and 26 nm, respec-
tively. The elongation growth of the particles is partially 
inhibited, which can be attributed to the incorporation of 
Ag+ ions into the lattice of K-OMS-2 [33].

3.3 � FTIR

Figure  3 displays the FTIR spectra of K-OMS-2 and 
5-Ag/K-OMS-2. The obtained FTIR spectra exhibit slight 
variations from the reported peaks, which can be attributed 
to factors such as grain size effects, the synthesis process, 
and temperature influences [34]. The peaks observed in 
the range of 400–800 cm−1 are associated with the Mn–O 
vibrations of MnO6 octahedra. Importantly, no band indi-
cates the presence of silver oxide, confirming the complete 

Table 1   Crystallite and lattice parameters

Sample name a(Å) b(Å) c(Å) Volume (Å3) D (nm)

K-OMS-2 9.4 9.4 2.8 245.1 22.4
5-Ag/K-OMS-2 9.5 9.5 2.8 246.8 22

Fig. 2   FESEM of a K-OMS-2; b 5-Ag/K-OMS-2

Fig. 3   FTIR spectra of prepared samples
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integration of silver ions into the lattice framework [35]. 
Notably, the intensities of the 771 and 527 cm−1 bands are 
increased in 5-Ag/K-OMS-2 compared to K-OMS-2 [36]. 
This increase in intensity can be attributed to two factors: 
(i) the replacement of potassium ions with silver ions and 
(ii) the presence of Ag–O–Mn oxygen-bridged bonds [37]. 
These changes in the FTIR spectra provide clear evidence 
of the incorporation of silver ions into the tunnel struc-
ture of K-OMS-2[38]. In addition, the band observed at 
3731 cm−1 is associated with the stretching of -OH groups. 
The presence of -OH groups is of significance as they play 
a pivotal role in the oxidation process [39, 40].

3.4 � Raman spectroscopy

Atoms of manganese are nearly five times heavier than 
oxygen atoms. Consequently, it is expected that oxygen 
atom displacement primarily contributes to Mn–O vibra-
tions, indicative of a well-developed tetragonal structure 
with 2 × 2 tunnels in Mn–O vibrations [41]. Due to the 
edges connecting the MnO6 octahedra, the primary vibra-
tional interactions may occur either parallel or perpendicu-
lar to the O–Mn–O chains. The two most significant peaks 
for K-OMS-2 are observed at 577 and 638 cm−1 [42]. The 
movement of oxygen atoms concerning manganese atoms 
along the MnO6 octahedral chain is responsible for the 
peak at 577 cm−1 [43].

Meanwhile, the peak at 638 cm−1 is attributed to oxygen 
motion perpendicular to the chain, signifying the vibra-
tional frequency assigned to Mn–O stretching modes in 
tetrahedral sites, as confirmed by FTIR analysis. The pres-
ence of heavy cations within the tunnel structure affects the 
vibrational components, as evidenced by changes in peak 

intensity at 638 cm−1 [44]. The peaks observed at 189, 
378, and 280 cm−1 result from the translation movement 
of MnO6 octahedra, bending vibrations of Mn–O bonds, 
and K–O vibrations in the interlayer space, respectively.

Figure 4 illustrates that the addition of silver ions to 
K-OMS-2 leads to an increase in peak intensity and a 
shift of Raman peaks to higher wavelengths [45]. This 
phenomenon can be attributed to the generation of oxy-
gen vacancies, which, in turn, results in the distortion of 
the lattice structure [46]. Particularly, the intensity of the 
peak associated with 638 cm−1 has significantly increased. 
This effect may be attributed to enhanced crystallinity and 
atom orientation in the doped samples. An increase in oxy-
gen vacancy defects would weaken the Mn–O bonds and 
enhance the activity of lattice oxygen species [47].

3.5 � Soot temperature programmed reduction (soot 
TPR)

Soot TPR studies are typically conducted using an inert 
gas flow, such as argon or nitrogen, to assess the reducing 
properties of the catalyst in an inert gas environment. These 
experiments help determine the involvement of various 
oxygen radicals in soot oxidation. The mobility of oxygen 
radicals depends on both the catalyst temperature and the 
reducibility of metal ions within it [48].

Surface oxygen radicals rapidly evolve at lower tempera-
tures (200–500 °C) since they are loosely bound to the cata-
lyst surface. In the mid-range temperatures (500–620 °C), 
lattice oxygen radicals migrate from the catalysts subsur-
face, but they exhibit lower reactivity compared to sur-
face-adsorbed oxygen radicals. At temperatures exceeding 
620 °C, bulk lattice oxygen radicals emerge [41]. However, 

Fig. 4   Raman spectra of all catalysts
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the bulk lattice oxygen radicals are inactive in soot oxida-
tion. Surface oxygen radicals are the predominant species in 
soot oxidation reactions [49].

Figure 5 shows two peaks corresponding to surface-
adsorbed and lattice oxygen radicals at 465 °C and 552 °C 
for K-OMS-2. The silver-doped sample exhibits four peaks 
from surface-adsorbed oxygen, lattice oxygen radicals, 
and bulk lattice oxygen radicals. Peak areas were calcu-
lated using Gaussian functions (see Fig. 4b), and the ratio 
of surface-adsorbed to lattice oxygen radicals is presented 
in Table 2. The incorporation of silver ions has led to an 
increase in the surface-adsorbed and lattice oxygen radicals. 

In addition to surface-adsorbed and lattice-adsorbed oxy-
gen species, bulk lattice oxygen radicals are also formed in 
the Ag-doped catalyst [50]. Since 5-Ag/K-OMS-2 contains 
more surface-adsorbed and lattice oxygen radicals than pure 
K-OMS-2, its soot oxidation activity must be higher.

3.6 � Soot catalytic activity

Figure 6 illustrates the catalytic activity of soot oxidation for 
the doped, undoped, and bare soot samples at three selected 
temperatures: the temperature at which the maximum rate 
of conversion temperature (Tmax), the temperature at which 
50% of the soot is converted (T50%), and the initiation tem-
perature (Ti). Generally, a lower T50% temperature indicates 
better catalytic activity for soot oxidation.

The samples with Ag doping exhibited lower soot oxida-
tion temperatures compared to pure K-OMS-2. The Ti, T50% 
and Tmax values are presented in Table 3. T50% of this work 
is compared with the literature and is tabulated in Table 2. 
From Fig. 6, Ti for K-OMS-2 and silver-doped K-OMS-2 
are 229 and 233 °C, whereas the Ti for bare soot was signifi-
cantly higher at 530 °C.

Although Ti for the Ag-doped sample is slightly higher 
than the undoped sample, T50% and Tmax are lower than the 
undoped. This observation can be explained as the silver-
doped samples exhibited higher surface- and lattice-adsorbed 
oxygen radicals, which is observed in soot TPR results. The 
direct contact between soot and the catalyst enhances the 
exchange of surface-adsorbed oxygen radicals, which accounts 
for the lower T50% and Tmax observed in the Ag-doped sample. 
Surface-adsorbed oxygen radicals are generated by absorb-
ing oxygen through crystal defects. These species are highly 
reactive and readily desorb at lower temperatures compared 

Fig. 5   Soot TPR analysis

Table 2   T50 of various mixed oxides

Catalysts T50 (°C)

La0.9K0.1Co0.9Ni0.1O3 [52] 435
MnCo2O4 [54] 504
3%Co/Ce–Sn [58] 456
K3Ce97 [55] 437
CuCr2O4 571
CuMn2O4 [59] 565
3DOM LaCo0.5Fe0.5O3 [56] 397
MnOx − CeO2 − Al2O3 [64, 64] 437
Au/CeO2 554
Au/Fe2O3 463
Au/Co3O4 416
Au/NiO [61] 514
Pd/ CeO2 [62] 378
Pd/TiO2 [63] 393
K-OMS-2 [this work] 395
Ag/K-OMS-2 [this work] 370
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to lattice and bulk oxygen radicals. The redox properties of 
the metal ions in the catalyst facilitate the transfer of oxygen 
radicals from the lattice to the catalysts surface. In contrast, 

bulk oxygen radicals become active oxygen radicals only at 
much higher temperatures [50, 51].

3.7 � Activation energy for soot catalytic oxidation

Activation energy is a critical parameter for assessing the 
type of reaction process occurring in a system. Figure 7 
presents the Osawa method’s kinetic results [57]. The acti-
vation energy was calculated using Eq. 1; the values are 
summarized in Table 4. The activation energy of Ag-doped 

Fig. 6   Soot conversion of all 
prepared catalyst

Table 3   Active oxygen radicals and soot conversion parameters

Sample name Ti (°C) T50% (°C) Tmax (°C) O
−

(O−+O2−)

K-OMS-2 229 ± 2 395 ± 3 431 ± 5 0.62
5-Ag/K-OMS-2 233 ± 3 370 ± 4 412 ± 6 0.69

Fig. 7   Kinetics of catalytic reaction at T50% conversion
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K-OMS-2 is significantly lower compared to that of K-OMS-
2, implying that soot undergoes oxidation more readily when 
the activation energy is reduced [53] (Table 4):

where ß is the heating rates, E is the activation energy, R is 
the gas constant, T is the measuring temperature.

3.8 � Thermal aging

Thermal ageing studies measure catalysts prolonged stabil-
ity and effectiveness within practical operational settings. 
Through subjecting catalysts to elevated temperatures over 
an extended duration, any changes in their catalytic activ-
ity, selectivity, and durability can be monitored [58]. The 
thermal stability of the catalyst is shown in Fig. 8. The aged 
samples showed similar activity compared to that of fresh 

(1)Log �[� + 0.476E∕RT] = K,

catalysts. The T50% of Ag-doped K-OMS-2 had an increase 
of about ~ 21 °C compared to the fresh catalyst, and no sig-
nificant changes in the crystal structure were seen in the 
XRD graph.

4 � Conclusion

In summary, we successfully synthesized K-OMS-2 and 
Ag-doped K-OMS-2 through hydrothermal methods. XRD 
analysis revealed that the prepared samples exhibited a 
tetragonal phase. FESEM images displayed a nanorod-like 
morphology, with Ag-doped K-OMS-2 samples showing 
smaller-sized nanorods. This size reduction can be attributed 
to the inhibitory effect of Ag+ ions on nanoparticle growth. 
Raman and FTIR results indicated the absence of additional 
phases, such as silver oxides, confirming the full integra-
tion of Ag+ ions into the framework. The Soot Tempera-
ture Programmed Reduction (TPR) results showed that the 
Ag-doped sample exhibited higher surface-adsorbed oxy-
gen and lattice oxygen radicals, which translates to superior 
catalytic activity (T50% = 370 °C). Furthermore, as calculated 
using the Ozawa method, the activation energy was lower 
for the Ag-doped sample, a crucial factor contributing to its 
enhanced catalytic activity.

Table 4   Activation energy calculated through the Osawa method

Sample name Activation 
energy (KJ/mol)

T50% heating rates (°C/min)

5 10 15 20

K-OMS-2 294 380 395 413 427
Ag/K-OMS-2 151.2 358 370 402 425

Fig. 8   Thermal stability and XRD pattern of the catalyst and aged samples
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