Skip to main content
Log in

Mechanical properties of transition metal carbo-chalcogenide with formula of X\(_2\)Y\(_2\)C (X: Nb, Ta, V; X = S, Se): a DFT study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently Majed et al. reported the synthesis of a new family of 2D transition metal carbo-chalcogenides including Nb\(_2\)S\(_2\)C and Ta\(_2\)S\(_2\)C using electrochemical lithiation followed by sonication in water (Adv Mater 34:2200574, 2022). Motivated by the recent experimental report, we investigate the mechanical properties of X\(_2\)Y\(_2\)X (X = Nb, Ta, V, Y = S, Se) monolayers by using density functional theory. We show the advantages and disadvantages of these monolayers in competition with transition metal dichalcogenides (TMDs) and MXenes from a mechanical point of view. We show that sulfur-based compounds are more energetically stable than Se-based compounds. In comparison with TMD monolayers and MXenes, the TMCCs are more stable than TMDs. Our results reveal that all monolayers are metals similar to their MXene counterparts. Results demonstrate that TMCCs are stiffer than TMDs and have higher (lower) Young moduli in comparison with the TMDs (MXenes) monolayer counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.E. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666 (2004)

    ADS  Google Scholar 

  2. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7(11), 699 (2012)

    ADS  Google Scholar 

  3. A. Polman, M. Kociak, F.J. García de Abajo, Nat. Mater. 18(11), 1158 (2019)

    ADS  Google Scholar 

  4. J.K. Ellis, M.J. Lucero, G.E. Scuseria, Appl. Phys. Lett. 99, 261908 (2011)

    ADS  Google Scholar 

  5. K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi, Z.W. Seh, Nat. Synth. 1(8), 601 (2022)

    ADS  Google Scholar 

  6. J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Nat. Commun. 8(1), 13907 (2017)

    ADS  Google Scholar 

  7. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23(37), 4248 (2011)

    Google Scholar 

  8. R. Ma, Z. Chen, D. Zhao, X. Zhang, J. Zhuo, Y. Yin, X. Wang, G. Yang, F. Yi, J. Mater. Chem. A 9(19), 11501 (2021)

    Google Scholar 

  9. Q. Tang, Z. Zhou, P. Shen, J. Am. Chem. Soc. 134(40), 16909 (2012)

    Google Scholar 

  10. H. Pan, Sci. Rep. 6(1), 32531 (2016)

    ADS  Google Scholar 

  11. S. Kanda, T. Akita, M. Fujishima, H. Tada, J. Colloid Interface Sci. 354(2), 607 (2011)

    ADS  Google Scholar 

  12. M. Viršek, N. Novak, C. Filipič, P. Kump, M. Remškar, Z. Kutnjak, J. Appl. Phys. 112, 103710 (2012)

    ADS  Google Scholar 

  13. X. Pang, T. Wu, Y. Gu, D. Wang, X. Che, D. Sun, F. Huang, Chem. Commun. 56(63), 9036 (2020)

    Google Scholar 

  14. H. Boller, K. Hiebl, J. Alloy. Compd. 183, 438 (1992)

    Google Scholar 

  15. A. Majed, M. Kothakonda, F. Wang, E.N. Tseng, K. Prenger, X. Zhang, P.O. Persson, J. Wei, J. Sun, M. Naguib, Adv. Mater. 34(26), 2200574 (2022)

    Google Scholar 

  16. J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, ACS Nano 4(11), 6557 (2010)

    Google Scholar 

  17. M.B. Tagani, Comput. Mater. Sci. 153, 126 (2018)

    Google Scholar 

  18. J. Wu, P. Cao, Z. Zhang, F. Ning, Ss. Zheng, J. He, Z. Zhang, Nano Lett. 18(2), 1543 (2018)

    ADS  Google Scholar 

  19. S.M. Mozvashi, M.A. Mohebpour, S.I. Vishkayi, M.B. Tagani, Sci. Rep. 11(1), 7547 (2021)

    ADS  Google Scholar 

  20. B. Fan, X. Yang, R. Zhang, Phys. Lett. A 374(27), 2781 (2010)

    ADS  Google Scholar 

  21. S. Mahdavifar, M.B. Tagani et al., Physica E 134, 114837 (2021)

    Google Scholar 

  22. Y.Y. Zhang, Q.X. Pei, Z.D. Sha, Y.W. Zhang, Phys. Lett. A 383(23), 2821 (2019)

    ADS  Google Scholar 

  23. M.A. Mohebpour, B. Mortazavi, T. Rabczuk, X. Zhuang, A.V. Shapeev, M.B. Tagani, Phys. Rev. B 105(13), 134108 (2022)

    ADS  Google Scholar 

  24. Z. Yang, J. Zhao, N. Wei, Appl. Phys. Lett. 107(2), 023107 (2015)

    ADS  Google Scholar 

  25. P. Aghdasi, S. Yousefi, R. Ansari, M. Bagheri Tagani, Appl. Phys. A 128(8), 716 (2022)

    ADS  Google Scholar 

  26. M. Yagmurcukardes, R.T. Senger, F.M. Peeters, H. Sahin, Phys. Rev. B 94(24), 245407 (2016)

    ADS  Google Scholar 

  27. M.B. Tagani, Phys. Rev. B 107(8), 085114 (2023)

    ADS  Google Scholar 

  28. Q. Peng, W. Ji, S. De, Comput. Mater. Sci. 56, 11 (2012)

    Google Scholar 

  29. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14(11), 2745 (2002)

    ADS  Google Scholar 

  30. S. Grimme, J. Comput. Chem. 27(15), 1787 (2006)

    Google Scholar 

  31. H. Boller, Solid State Phenom. 170, 122 (2011)

    Google Scholar 

  32. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund Jr., S.T. Pantelides, K.I. Bolotin, Nano Lett. 13(8), 3626 (2013)

    ADS  Google Scholar 

  33. H. Sun, P. Agrawal, C.V. Singh, Mater. Adv. 2(20), 6631 (2021)

    Google Scholar 

  34. H. Zhang, ACS Nano 9(10), 9451 (2015)

    Google Scholar 

  35. Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang, Physica B 406(11), 2254 (2011)

    ADS  Google Scholar 

  36. M. Zhou, X.W.D. Lou, Y. Xie, Nano Today 8(6), 598 (2013)

    Google Scholar 

  37. Z. Kahraman, M. Yagmurcukardes, H. Sahin, J. Mater. Res. 35(11), 1397 (2020)

    ADS  Google Scholar 

  38. Y. Guo, J. Dai, J. Zhao, C. Wu, D. Li, L. Zhang, W. Ning, M. Tian, X.C. Zeng, Y. Xie, Phys. Rev. Lett. 113(15), 157202 (2014)

    ADS  Google Scholar 

  39. Y. Wang, L. Zhou, M. Zhong, Y. Liu, S. Xiao, J. He, Nano Res. 15(4), 3675 (2022)

    ADS  Google Scholar 

  40. M. Salavati, T. Rabczuk, Comput. Mater. Sci. 160, 360 (2019)

    Google Scholar 

  41. X. Cai, Y. Xu, M. Liu, J. Yang, Surf. Coat. Technol. 382, 125148 (2020)

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Research Council of the University of Guilan for the partial support of this research.

Author information

Authors and Affiliations

Authors

Contributions

MRK performed the simulations and prepared the initial draft. MBT supervised the project and all authors finalized the article.

Corresponding author

Correspondence to Meysam Bagheri Tagani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 552 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Givi, M.R., Tagani, M.B. Mechanical properties of transition metal carbo-chalcogenide with formula of X\(_2\)Y\(_2\)C (X: Nb, Ta, V; X = S, Se): a DFT study. Appl. Phys. A 130, 14 (2024). https://doi.org/10.1007/s00339-023-07150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07150-7

Keywords

Navigation