Skip to main content
Log in

Investigating the pinhole effect on the mechanical properties of biphenylene

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Monolayer biphenylene, a planar material composed of a solitary layer of biphenylene molecules, has garnered considerable interest owing to its extraordinary electromechanical characteristics. Moreover, investigating biphenylene networks featuring pinhole defects has become increasingly prominent in materials science due to their distinctive properties. These pinhole defects whose size, shape, and distribution can be meticulously regulated can be created via various fabrication methods to generate customized electromechanical properties suitable for specific applications. Thus, research on biphenylene networks with pinhole defects constitutes a crucial area of exploration in materials science and nanotechnology, with the potential to propel advancements in numerous technological fields. Herein, the effect of defects and pinholes and strain rate on the directional properties of biphenylene nanosheets (BPN) was investigated using molecular dynamic and density function theory simulations. Furthermore, Young's modulus and ultimate stress were investigated as two main parameters expressing mechanical properties. The results show that the BPN has more strength in the zigzag direction than in the armchair direction. Moreover, the presence of several symmetrical pinholes compared to one pinhole with the same area leads to a more significant reduction in mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data supporting this study are included within the article.

References

  1. T. Jiang, R. Xiong, T. Huang, M. Li, Y. Zhang, H. Zhou, Diam. Relat. Mater. 130, 109409 (2022)

    Article  ADS  Google Scholar 

  2. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  3. S.J. Plimpton, A.P. Thompson, MRS Bull. 37, 513 (2012)

    Article  Google Scholar 

  4. H. O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications (William Andrew, 2012).

  5. S. Norouzi, M.M.S. Fakhrabadi, Appl. Phys. A 125, 321 (2019)

    Article  ADS  Google Scholar 

  6. S. Norouzi, M.M.S. Fakhrabadi, J. Phys. Chem. Solids 137, 109228 (2020)

    Article  Google Scholar 

  7. S. Norouzi, A. Kianfar, M.M.S. Fakhrabadi, Mech. Mater. 145, 103376 (2020)

    Article  Google Scholar 

  8. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.-E. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  9. Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, A.R. Oganov, Nano Lett. 15, 6182 (2015)

    Article  ADS  Google Scholar 

  10. S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, Proc. Natl. Acad. Sci. 112, 2372 (2015)

    Article  ADS  Google Scholar 

  11. B. Mortazavi, Z. Fan, L.F.C. Pereira, A. Harju, T. Rabczuk, Carbon 103, 318 (2016)

    Article  Google Scholar 

  12. E. Perim, R. Paupitz, P. Autreto, D. Galvao, J. Phys. Chem. C 118, 23670 (2014)

    Article  Google Scholar 

  13. Q. Fan, L. Yan, M.W. Tripp, O. Krejčí, S. Dimosthenous, S.R. Kachel, M. Chen, A.S. Foster, U. Koert, P. Liljeroth, Science 372, 852 (2021)

    Article  ADS  Google Scholar 

  14. Y. Luo, C. Ren, Y. Xu, J. Yu, S. Wang, M. Sun, Sci. Rep. 11, 19008 (2021)

    Article  ADS  Google Scholar 

  15. P.A. Denis, F. Iribarne, Comput. Theor. Chem. 1062, 30 (2015)

    Article  Google Scholar 

  16. O. Rahaman, B. Mortazavi, A. Dianat, G. Cuniberti, T. Rabczuk, FlatChem 1, 65 (2017)

    Article  Google Scholar 

  17. B. Mortazavi, A.V. Shapeev, FlatChem 32, 100347 (2022)

    Article  Google Scholar 

  18. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  19. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, C. N. Lau, Appl. Phys. Lett. 92 (2008)

  20. P. Ying, T. Liang, Y. Du, J. Zhang, X. Zeng, Z. Zhong, Int. J. Heat Mass Transf. 183, 122060 (2022)

    Article  Google Scholar 

  21. M.Z. Dehaghani, O. Farzadian, K.V. Kostas, F. Molaei, C. Spitas, A.H. Mashhadzadeh, Physica E 144, 115411 (2022)

    Article  Google Scholar 

  22. A.H. Mashhadzadeh, M.Z. Dehaghani, F. Molaie, S. Fooladapanjeh, O. Farzadian, C. Spitas, Comput. Mater. Sci. 214, 111761 (2022)

    Article  Google Scholar 

  23. G. Liu, T. Chen, X. Li, Z. Xu, X. Xiao, Appl. Surf. Sci. 599, 153993 (2022)

    Article  Google Scholar 

  24. H.K. Al-Jayyousi, M. Sajjad, K. Liao, N. Singh, Sci. Rep. 12, 4653 (2022)

    Article  ADS  Google Scholar 

  25. M. Miri, M. Fadaee, Int. J. Mech. Sci. 100, 237 (2015)

    Article  Google Scholar 

  26. S. Ajori, A. Eftekharfar, Diam. Relat. Mater. 124, 108956 (2022)

    Article  ADS  Google Scholar 

  27. B.Z.G. Haque, S.C. Chowdhury, J.W. Gillespie Jr., Carbon 102, 126 (2016)

    Article  Google Scholar 

  28. A.K. Srivastava, V.K. Pathak, R. Singh, M.K. Dikshit, Mater. Today Proc. 44, 4521 (2021)

    Article  Google Scholar 

  29. M. Dewapriya, R. Rajapakse, J. Appl. Mech. 81, 081010 (2014)

    Article  ADS  Google Scholar 

  30. M. Pereira, W. da Cunha, R. de Sousa, G.A. Nze, D. Galvão, L. Ribeiro, Nanoscale 14, 3200 (2022)

    Article  Google Scholar 

  31. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000)

    Article  ADS  Google Scholar 

  32. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  33. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  34. R. Fletcher, Practical methods of optimization (John Wiley & Sons, 2000).

  35. L. Toubal, M. Karama, B. Lorrain, Compos. Struct. 68, 31 (2005)

    Article  Google Scholar 

  36. M. Dewapriya, A.S. Phani, R. Rajapakse, Modell. Simul. Mater. Sci. Eng. 21, 065017 (2013)

    Article  ADS  Google Scholar 

  37. Y. Li, W. Luo, M. Li, B. Yang, X. Liu, Polymers 14, 1357 (2022)

    Article  Google Scholar 

Download references

Funding

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MS: conceptualization; data curation; formal analysis; investigation; software; MA: supervision; methodology; visualization; roles/writing; AA: visualization; roles/writing—original draft. MAH: writing—review and editing.

Corresponding author

Correspondence to Masoud Ajri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadian, M., Ajri, M., Azizi, A. et al. Investigating the pinhole effect on the mechanical properties of biphenylene. Appl. Phys. A 129, 826 (2023). https://doi.org/10.1007/s00339-023-07112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07112-z

Keywords

Navigation