Skip to main content
Log in

CdSe thin films-based photodetector doped with Cu, In and Ga atoms: a comparative work

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work demonstrates a comparison of performance of Cu, In and Ga-doped CdSe thin films-based photodetectors. Structural, morphological, optical and electrical investigation of Cu, In and Ga-doped CdSe thin films prepared by close space sublimation on glass slides is also achieved. It is obtained that Cu, In and Ga-doped CdSe thin films have a good crystal quality with a hexagonal structure in the preferred orientation along (002) plane. Morphological examination shows that Cu-doped CdSe thin films grow in the porous microstructure while In and Ga-doped CdSe films possess compact and uniform morphology without any voids. Transparency of In and Ga-doped CdSe films are higher than that of Cu-doped CdSe throughout the entire spectrum. Band gap values of all the samples are determined to be almost 1.72 eV. Photoluminescence data indicate that Ga-doped CdSe thin films display a deep level band at the lowest peak intensity, which is the indication of less defected structure. All the samples exhibit n-type conductivity. Additionally, the maximum carrier density and the minimum resistivity are reached for In-doped CdSe thin films as 1.75 × 1016 cm−3 and 6.12 Ω cm, respectively. Rise time of 28 ms and fall time of 25 ms are obtained for Cu-doped CdSe thin films-based photodetector, which are the fastest photoresponse within all the devices. Furthermore, Cu-doped CdSe thin films-based device has a responsivity of 1.20 × 10–2 A/W and a detectivity of 1.20 × 109 Jones that makes Cu-doped CdSe thin films-based device as a strong candidate for high sensitive photodetector applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. P. Chauhan, A.B. Patel, S. Narayan, J. Prasad, C.K. Sumesh, G.K. Solanki, K.D. Patel, S.S. Soni, P.K. Jha, V.M. Pathak, V. Patel, J. Alloys Compd. 862, 158017 (2021). https://doi.org/10.1016/j.jallcom.2020.158016

    Article  Google Scholar 

  2. S. Sadeghi, S.K. Abkenar, C.W. Ow-Yang, S. Nizamoglu, Sci. Rep. 9, 10061 (2019). https://doi.org/10.1038/s41598-019-46581-2

    Article  ADS  Google Scholar 

  3. N.G. Patel, C.J. Panchal, K.K. Makhija, Cryst. Res. Technol. 29, 1013 (1994). https://doi.org/10.1002/crat.2170290717

    Article  Google Scholar 

  4. M.M. Rahman, M.R. Karim, H.F. Alharbi, B. Aldokhayel, T. Uzzaman, H. Zahir, Chem. Asian J. 16, 902 (2021). https://doi.org/10.1002/asia.202001369

    Article  Google Scholar 

  5. N.T. Shelke, S.C. Karle, B.R. Karche, J. Mater. Sci: Mater. Electron. 31, 15061 (2020). https://doi.org/10.1007/s10854-020-04069-0

    Article  Google Scholar 

  6. E. Bacaksiz, B.M. Basol, M. Altunbaş, S. Yılmaz, M. Tomakin, B. Abay, Stat. Sol. (b) 244, 497 (2007). https://doi.org/10.1002/pssb.200642207

    Article  ADS  Google Scholar 

  7. D. Kumar, C. Lal, D. Veer, D. Singh, P. Kumar, R.S. Katiyar, Phys. Scr. 98, 055930 (2023). https://doi.org/10.1088/1402-4896/accabc

    Article  ADS  Google Scholar 

  8. S.S. Kulkarni, U.P. Gawai, S.D. Kamble, D.P. Upasani, J.V. Sali, R. Venkatesh, D.S. Bhavsar, J. Mater. Sci: Mater. Electron. 52, 3352 (2023). https://doi.org/10.1007/s11664-023-10310-3

    Article  ADS  Google Scholar 

  9. H. Ilchuk, R. Petrus, A. Kashuba, I. Semkiv, E. Zmiiovska, Mol. Cryst. Liq. 699, 1 (2020). https://doi.org/10.1080/15421406.2020.1732532

    Article  Google Scholar 

  10. S. Kumar, S. Valanarasu, K.V. Gunavathy, S. Vinoth, K. Haunsbhavi, D. Alagarasan, K.D.A. Kumar, M. Ubaidullah, S.F. Shaikh, B. Pandit, Phys. Scr. 97, 055807 (2022). https://doi.org/10.1088/1402-4896/ac619c

    Article  ADS  Google Scholar 

  11. Y. Jiang, W.J. Zhang, J.S. Jie, X.M. Meng, X. Fan, S.-T. Lee, Adv. Funct. Mater. 17, 1795 (2007). https://doi.org/10.1002/adfm.200600351

    Article  Google Scholar 

  12. E. Shalev, E. Oksenberg, K. Rechav, R. Popovitz-Biro, E. Joselevich, ACS Nano 11, 213 (2017). https://doi.org/10.1021/acsnano.6b04469

    Article  Google Scholar 

  13. Q. An, X. Meng, K. Xiong, Y. Qiu, W. Lin, J. Alloys Compd. 726, 214 (2017). https://doi.org/10.1016/j.jallcom.2017.07.336

    Article  Google Scholar 

  14. A.M. Smirnov, A.D. Golinskaya, P.A. Kotin, S.G. Dorofeev, V.V. Palyulin, V.N. Mantsevich, V.S. Dneprovskii, J. Lumin. 213, 29 (2019). https://doi.org/10.1016/j.jlumin.2019.05.001

    Article  Google Scholar 

  15. H. Luo, C. Tuinenga, E.B. Guidez, C. Lewis, J. Shipman, S. Roy, C.M. Aikens, V. Chikan, J. Phys. Chem. C 119, 10749 (2015). https://doi.org/10.1021/acs.jpcc.5b01963

    Article  Google Scholar 

  16. S.N. Moger, M.G. Mahesha, Micro Nanostruct. 168, 207335 (2022). https://doi.org/10.1016/j.micrna.2022.207335

    Article  Google Scholar 

  17. Z. Hu, X. Zhang, C. Xie, C. Wu, X. Zhang, L. Bian, Y. Wu, L. Wang, Y. Zhang, J. Jie, Nanoscale 3, 4798 (2011). https://doi.org/10.1039/c1nr10619h

    Article  ADS  Google Scholar 

  18. J. Qiu, Y. Liu, Z. Cai, Q. Phan, Z. Shi, Mater. Adv. 3, 1079 (2022). https://doi.org/10.1039/d1ma00760b

    Article  Google Scholar 

  19. K. Sharma, Poonam, G.S.S. Saini, S.K. Tripathi, J. Mater. Sci: Mater. Electron. 29, 9596 (2018). https://doi.org/10.1007/s10854-018-8995-2

    Article  Google Scholar 

  20. V.S. Raut, C.D. Lokhande, V.V. Killedar, J Mater Sci: Mater Electron 28, 3140 (2017). https://doi.org/10.1007/s10854-016-5902-6

    Article  Google Scholar 

  21. H.G. Chasta, D. Suthar, A. Thakur, M.D. Kannan, M.S. Dhaka, Mater. Res. Bull. 152, 111845 (2022). https://doi.org/10.1016/j.materresbull.2022.111845

    Article  Google Scholar 

  22. V.S. Raut, C.D. Lokhande, H.D. Shelke, V.V. Killedar, J. Mater. Sci.: Mater. Electron. 33, 13782 (2022). https://doi.org/10.1007/s10854-022-08310-w

    Article  Google Scholar 

  23. W.J. Aziz, Mater. Res. Bull. 42, 148 (2019). https://doi.org/10.1007/s12034-019-1830-4

    Article  Google Scholar 

  24. S.B. Singh, M.V. Limaye, N.P. Lalla, S.K. Kulkarni, J. Lumin. 128, 1909 (2008). https://doi.org/10.1016/j.jlumin.2008.05.022

    Article  Google Scholar 

  25. M.G.S.A. Basheer, K.S. Rajni, V.S. Vidhya, V. Swaminathan, A. Thayumanavan, K.R. Murali, M. Jayachandran, Cryst. Res. Technol. 46, 261 (2011). https://doi.org/10.1002/crat.201000546

    Article  Google Scholar 

  26. S. Kumar, T.T. John, Mater. Chem. Phys. 286, 126222 (2022). https://doi.org/10.1016/j.matchemphys.2022.126222

    Article  Google Scholar 

  27. A.A. Hussain, B. Sharma, T. Barman, A.R. Pal, A.C.S. Appl, Mater. Interfaces 8, 4258 (2016). https://doi.org/10.1021/acsami.6b00249

    Article  Google Scholar 

  28. X. Li, Q. Tan, X. Feng, Q. Wang, Y. Liu, Nanoscale Res. Lett. 13, 171 (2018). https://doi.org/10.1186/s11671-018-2590-6

    Article  ADS  Google Scholar 

  29. T. Takahashi, P. Nichols, K. Takei, A.C. Ford, A. Jamshidi, M.C. Wu, C.Z. Ning, A. Javey, Nanotechnology 23, 045201 (2012). https://doi.org/10.1088/0957-4484/23/4/045201

    Article  ADS  Google Scholar 

  30. G. Li, Y. Jiang, Y. Zhang, X. Lan, T. Zhai, G.-C. Yi, J. Mater. Chem. C 2, 8252 (2014). https://doi.org/10.1039/C4TC01503G

    Article  Google Scholar 

  31. L. Zhang, H. Yu, W. Cao, Y. Dong, C. Zou, Y. Yang, S. Huang, N. Dai, D.-M. Zhu, Appl. Surf. Sci. 307, 608 (2014). https://doi.org/10.1016/j.apsusc.2014.04.085

    Article  Google Scholar 

  32. C.P. Veeramalai, P. Kollu, G. Lin, X. Zhang, C. Li, Nanotechnology 32, 315204 (2021). https://doi.org/10.1088/1361-6528/abf87a

    Article  Google Scholar 

  33. L. Du, Y. Lei, Mater. Lett. 106, 100 (2013). https://doi.org/10.1016/j.matlet.2013.04.107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Materials preparation, fabrication of devices and electrical characterization were performed by İP, TK and EB. The other characterizations were carried out by MT. The interpretations of results were realized by SY and EB. The manuscript was written by SY. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Yılmaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, S., Polat, İ., Tomakin, M. et al. CdSe thin films-based photodetector doped with Cu, In and Ga atoms: a comparative work. Appl. Phys. A 129, 569 (2023). https://doi.org/10.1007/s00339-023-06860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06860-2

Keywords

Navigation