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Abstract 
We demonstrated that the combination of poly(dimethylsiloxane) (PDMS) and a hybrid hydrogel based on chitosan/poly(vinyl 
alcohol)/genipin (CS/PVA/GEN)—with ratios 7:3 (SIPNs1), 5:5 (SIPNs2), and 3:7 (SIPNs3) (w/w)—were useful for obtain-
ing semi-interpenetrated polymeric networks (SIPNs). These SIPNs successfully combined the PDMS’s elasticity, the PVA’s 
swelling capability, and the excellent biological response of CS and GEN. Noticing these features are desirable in materials 
intended for biomedical applications such as wound healing and tissue engineering. Through evaluating the influence of 
PDMS and CS/PVA/GEN hybrid hydrogel ratios on the physico-chemical, mechanical, and the response of seeded cells, 
we found contact angles between 55◦ and 75◦ , while the swelling percentage was enhanced up to three times concerning 
blank PDMS. Besides, the elastic moduli presented values between 1 and 1.6 MPa. The fibroblasts seeded on the tested 
semi-interpenetrating polymeric networks were viable, and no cytotoxic effects were found. The cells presented fusiform 
shapes indicating an excellent attachment to the material’s surface. The highest cell densities were found for SIPNs1 and 
SIPNs2, suggesting that these compositions in a membrane shape could potentially be used in wound healing/dressing or 
as a scaffold for tissue engineering.
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1 Introduction

Chronic wounds are the main complication for those patients 
who suffer burns or patients with diabetics undergoing 
chronic pressure ulcers, among others [1–3]. The worldwide 
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statistics report that chronic wounds have become a sig-
nificant global health issue. This health issue represents 
an incidence range between 2 and 6% for developed coun-
tries; however, the same health issue has a higher impact 
for underdeveloped countries showing an incidence of more 
than twofold times for developed countries [1, 4]. According 
to the medical protocols reported in the literature, the first 
step in treating a wound is immediate coverage to prevent 
infection and promote healing [5–7]. Then classical wound 
treatments could be applied. Among them, autografts, allo-
grafts, or xenografts are found. Regarding the use of classi-
cal wound treatments, two main complications exist: first, a 
limited availability of native skin from donors, and second, 
some of these treatments could produce antigenicity or even 
the risk of rejection and severe infections. To deal with these 
issues, some new materials and synthetic polymers, such as 
skin substitutes and hydrogels, have been recently raised for 
tissue regeneration and skin wound treatments [7–10].

Skin substitutes are biomaterials that can act as perma-
nent skin replacements or temporary wound covers, accel-
erating their healing process [11]. Depending on their origin 
and components, they could be classified as synthetic or bio-
logical skin substitutes. Among the most used commercial 
skin substitutes, we found Integra, Biobrane, TransCyte, and 
Hyalomatrix. These brands present some advantages, such 
as their availability, size, and shape, to provide a physical 
barrier from bacteria [11–13]; reducing mortality and mor-
bidity from scarring. Albeit they also have disadvantages, 
e.g., their high costs ($3000–$13,000 per 100 squared cen-
timeter), the risk of disease transmission, immune rejection, 
infection due to fluid buildup or even multiple required sur-
geries [13–15]. Although there are many skin substitutes, 
neither fulfills all the features of an ideal skin substitute [9, 
14]. That is why hydrogels have recently attracted the atten-
tion of scientific and medical communities to develop more 
effective materials and treatments for wound healing.

Hydrogels are three-dimensional macromolecular net-
works joined together by covalent bonds, ionic forces, hydro-
gen bonds, hydrophobic interactions, polymer crystallites, 
physical entanglements of various polymer chains, or a com-
bination of them [10]. One of the main features of hydrogels 
is their absorption capability; thus, large amounts of liquid 
can be trapped within their structure. Two of the most widely 
polymers to form hydrogels are poly(vinyl alcohol) (PVA) 
and chitosan (CS). PVA is a nontoxic, synthetic polymer 
whose structure consists of a backbone of carbon atoms and 
pendant hydroxyl groups. Due to PVA’s biocompatibility 
and a high swelling degree, it has been used in tissue engi-
neering like cartilage replacements [16], bone scaffold [17], 
and drug delivery applications [18]. However, this polymer 
does not promote cell adhesion by itself. Therefore, combin-
ing it with a polysaccharide such as chitosan is usually done 
to overcome this drawback [19–21]. Chitosan is a natural 

polymer obtained by the deacetylation of chitin under alka-
line conditions. This natural polymer has advantages over 
others because it possesses anti-inflammatory, anti-fungal, 
anti-bacterial, anti-microbial, anti-coagulant, and hemo-
static properties [22–24]. This set of properties provides a 
micro-environment that is suitable to promote rapid wound 
healing [25–27]. Noticing that its structure is similar to the 
structure of glycosaminoglycans present in the extracellular 
cell matrix (ECM), which benefits the cell adhesion and the 
proliferation response of the seeded cells [28].

Recently, some studies have been conducted on CS 
and PVA blends to understand the effect of chemical 
crosslinkers such as glutaraldehyde [29], epichlorohydrin 
[30], genipin [19, 20, 31]; however, still exists the need to 
enhance the physicochemical, mechanical, and biological 
responses of this hybrid hydrogel; particularly, towards 
wound healing and tissue engineering applications. In this 
sense, the genipin still is a good alternative as a crosslinker 
reagent because of its low cytotoxicity compared with 
other crosslinker reagents [19, 29, 30]. The mechanical 
response of CS/PVA/GEN could be tuned to obtain simi-
lar mechanical behavior to the human skin, remembering 
that it is an essential feature that must be found in a skin 
substitute [14, 32, 33]. To enhance the mechanical behav-
ior, another polymer might be added to the CS/PVA/GEN 
blend. In this sense, the poly(dimethylsiloxane) (PMDS) 
can be considered because of its mechanical behavior and 
biocompatibility [34, 35]. The PDMS is a synthetic poly-
mer that presents attributes such as non-immunogenicity, 
non-toxicity, good mechanical stability, and good gas per-
meability to be considered promising for skin substitutes; 
nevertheless, blank PDMS has poor cellular adhesion due 
to its hydrophobic behavior. During recent years, some 
efforts have been conducted to combine PDMS with PVA, 
e.g., Morales-Hurtado et al. reported the blend of PDMS 
with PVA crosslinked with glutaraldehyde [36] as a model 
to understand the human skin mechanical behavior; the 
main disadvantage of these kind of blends is focused on 
toxicity effects caused by glutaraldehyde [23, 37–39]. Fur-
ther, in 2019, Chen et al. [40] combined PDMS with car-
boxyl chitosan. They found that this material had similar 
mechanical properties to the forearm skin, particularly the 
elastic modulus. In 2021, Semi-interpenetrating polymeric 
networks based in PDMS/CS/PVA crosslinked with geni-
pin were successfully developed [1]. Here, the physico-
chemical and biological response of PDMS and CS/PVA/
GEN 7:3 ratio were explored [1]. It is the only report in the 
literature concerning the PDMS/CS/PVA/GEN blend, and 
it is clear that more exhaustive research must be conducted 
to get a deep understanding of these semi-interpenetrating 
polymer networks (SIPNs). Therefore, the main purpose of 
this work was to explore the effects of the PDMS and CS/
PVA/GEN ratios on their physicochemical, mechanical, 
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and biological responses to obtain semi-interpenetrating 
polymeric networks intended for wound dressing/healing 
and scaffolds for tissue engineering.

2  Materials and methods

2.1  Materials

The semi-interpenetrating polymeric networks were syn-
thesized using synthetic and natural polymers. As syn-
thetic polymers, poly(dimethylsiloxane) (PDMS Sylgard 
184 kit from Dow Corning, USA) and poly(vinyl alcohol) 
(PVA), with a 99% degree of hydrolysis and a typical aver-
age molecular weight (Mw) of 89,000–98,000 g/mol, were 
used. Chitosan (CS) with a 75–85% degree of deacetyla-
tion and a medium-molecular weight (190,000–310,000 g/
mol), was used as a natural polymer. Besides, analytical 
grade genipin (GEN) powder was utilized as a chemical 
crosslinking reagent. These chemicals were purchased 
from Sigma-Aldrich and used as received.

2.2  Semi‑interpenetrating polymeric networks 
(SIPNs) preparation

Here, we present the preparation details regarding the 
three different polymeric blends used in this work. Notice 
that in Table 1, we show the composition of the blends 
with their respective labels to identify them further in the 
text and figures quickly.

The SIPNs were obtained in a membrane shape using 
the solvent casting method. For this, the polymer blend 
PDMS/CS/PVA/GEN was prepared in three stages. The 
first one involves the CS/PVA/GEN solution preparation. 
The second stage is regarding the PDMS mixture consider-
ing a 10:1 weight ratio. The third and final stage concerns 
the combination procedure in the different ratios (7:3, 5:5, 
and 3:7 w/w). Notice that the first number corresponds to 
the PDMS ratio, and the second corresponds to the CS/
PVA/GEN blend ratio, as shown in Table 1).

2.2.1  Preparation of the CS/PVA/GEN solution

A 2.5% (w/v) chitosan solution was obtained by dissolving 
CS powder in a 1% (v/v) acetic acid solution. This solution 
was kept under magnetic stirring at room temperature for 
24 h until reaching a homogeneous solution. Then the PVA 
solution (10% (w/v)) was prepared by dissolving PVA pow-
der in deionized water under magnetic stirring at 80 °C for 
1 h. Afterward, it was cooled at room temperature for 1 h 
under magnetic stirring. CS and PVA polymeric solutions 
were mixed at a 3:1 volume ratio. This ratio promotes the 
miscibility and formation of a polymeric network. Therefore, 
solid intermolecular interactions are obtained, yielding CS/
PVA blends with excellent chemical and physical proper-
ties, as was reported in the literature [41–43]. The CS/PVA 
blend was magnetically stirred for 1 h at room temperature. 
Subsequently, a genipin solution of 0.42% (w/v) was slowly 
incorporated into CS/PVA mixture and continued in mag-
netic stirring for 1 more h.

2.2.2  Preparation of the PDMS/CS/PVA/GEN solution

Once the preparation of the CS/PVA/GEN polymeric blend 
was finished, the PDMS Sylgard 184 kit was used to mix 
parts A (elastomer base) and B (curing reagent) in a 10:1 
weight ratio. The elastomer base and its curing reagent were 
mechanically stirred for 5 min. Subsequently, the PDMS 
and CS/PVA/GEN were mixed with 7:3, 5:5, and 3:7 
weight ratios. Thus, we obtained the blends labeled SIPNs1, 
SIPNs2, and SIPNs3, respectively, as shown in Table 1.

2.3  Fabrication of the membranes

Once the blend of each SIPNs was prepared, they were 
centrifuged for 10 min at 5000 rpm to eliminate air bub-
bles trapped in the polymeric solutions. Then, each solu-
tion was poured into 3D PLA-printed squared frames fixed 
on a polypropylene mat with double-sided adhesive tape. 
Notice that the 3D printed frames were designed in a CAD 
environment and printed with a Flash Forge Creator Pro 3D 
printer. We use a printing speed of 60 mm s −1 , an extruder 
temperature of 200  °C, and a platform temperature of 50  
°C. The dimensions of the frames were 60 × 60 mm and 0.5 
mm in thickness. Once the blend was poured, it was spread 
using the "doctor blade method" to cover the frame entirely 
and uniformly. Then, each filled mold with the SIPNs was 
cured at 55  °C for 24 h to obtain the membranes. Finally, 
they were detached and stored in a desiccator until testing.

2.4  Physical and chemical characterization

The purpose of physicochemical characterization centers 
on correlating the changes in the chemical and physical 

Table 1  Polymer blends’ labels show composition and materials 
ratios (w/w) for further reference within the text and figures

Sample name PDMS ratio CS/PVA/
GEN 
ratio

SIPNs1 7 3
SIPNs2 5 5
SIPNs3 3 7
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properties due to the different PDMS and CS/PVA/GEN 
weight ratios present in the SIPNs. Mainly, we focused on 
surface and volume hydrophilicity through contact angle 
measurements and swelling capacity, respectively; Fourier 
transform infrared (FT-IR) spectroscopy tracked the possible 
changes in the chemical structure of the SIPNs; atomic force 
microscopy (AFM) was used to measure the roughness of 
the SIPNs; the thermal stability of the SIPNs was measured 
by thermogravimetric analysis (TGA); while the mechanical 
behavior of the SIPNs—in membrane shape—was tested by 
uniaxial and biaxial tensile tests. Details of physicochemical 
assays will be further presented.

2.4.1  Surface and volume hydrophilicity

Contact angle measurements were performed in tripli-
cate to evaluate the surface hydrophilicity of SIPNs. In 
this case, the contact angles of water on the surface of the 
SIPNs were measured at room temperature using the sessile 
drop method. Hence, a drop of deionized water (5 μ L) was 
cautiously placed onto the surface of each sample. Then, 
images were recorded by a CCD camera and saved on a PC 
through a virtual instrument programmed in LabView. The 
images were analyzed to measure the contact angle between 
the drop edge and the material surface on both sides of the 
drop. These angles were measured by digital image analysis 
through Vision Assistant 2016 software and further aver-
aged. Hence, the contact angle average and their correspond-
ing standard deviation were obtained. Notice that the SIPNs 
were previously hydrated in deionized water.

The volume hydrophilicity was evaluated using the swell-
ing test in triplicate. Three circular samples of 12 mm in 
diameter from each SIPNs were cut. Thus, the SIPNs were 
weighed in a dry state and subsequently immersed in deion-
ized water at room temperature. The swelling ratio (%S) was 
calculated with the typical equation reported in the litera-
ture [19] and following the procedure previously reported by 
Benítez-Martínez et al. [1].

2.4.2  Chemical interaction of the SIPNs analyzed by FT‑IR 
spectroscopy

The chemical interaction of the SIPNs were studied using 
FT-IR ATR spectroscopy (attenuated total reflectance) con-
sidering the following parameters: wavenumber ranges from 
4000 to 400 cm−1 , resolution of 2 cm−1 , and 32 scans (Nico-
let 6700, Thermo Fisher Scientific, Waltham, MA, USA). 
The main vibration bands were identified and associated 
with the PDMS, CS, PVA, and GEN chemical groups. The 
FT-IR measurements were carried out in triplicate in cir-
cular samples of 12 mm of diameter and thickness ranging 
between 300 and 500 microns.

2.4.3  Surface morphology of the SIPNs is characterized 
by atomic force microscopy (AFM)

A Naio-AFM atomic force microscope (from Nanosurf 
Liestal, Switzerland) was used to observe the surface mor-
phology of the SIPNs. The images were registered using 
a commercial silicon probe ContAl-G with an aluminum 
reflective coating (BudgetSensors, Sofia, Bulgaria). The tip’s 
radius was 10 nm with a spring constant of 0.2 N m −1 , and it 
was used a resonance frequency of 13 kHz. The data acquisi-
tion and further analysis were performed with Naio Control 
Software 3.10 (Nanosurf, Liestal, Switzerland). These meas-
urements were done in triplicate, at room temperature, in air, 
with dry samples, and under static force operating mode. 
The samples with a size of 12 mm in diameter were added to 
an AFM metal specimen disc with double-sided conductive 
carbon adhesive tape and placed onto the sample stage for 
measurement. The scanning size was 5 × 5 microns for all 
measurements. In our case, the root mean square roughness 
(Sq) was calculated over the full scanned area.

2.4.4  Thermal stability and crystallinity of the SIPNs

The thermal stability and decomposition rate were carried 
out for the SIPNs by thermogravimetric analysis (TGA). A 
thermogravimetric balance Q5000 IR (from TA Instruments, 
New Castle, DE, USA) was used. These measurements were 
performed by triplicate, under a nitrogen atmosphere and a 
heating rate of 10  °C min−1 from room temperature to 700  
°C. The TGA data were analyzed using the TA Instruments 
Universal Analysis 2000 software (TA Instruments, New 
Castle, DE, USA).

The crystallinity of the SIPNs was determined by X-ray 
diffraction and by applying the cut and weight method [19, 
21, 44]. We used a diffractometer Bruker D8 Advanced 
(Billerica, MA, USA) operating at 45 kV with Ni-filtered 
CuK� 1 radiation ( � = 1.5406 Å). The diffraction patterns 
were recorded over the 2� range of 5–70  °C with a 0.4  °C 
min−1 scan rate.

2.5   Mechanical behavior of the SIPNs by uniaxial 
and biaxial tensile tests

2.5.1  Uniaxial tensile test

The uniaxial tensile test was carried out at room temperature 
in a hydrated fashion by triplicate. Thus, the membranes 
were previously hydrated until reaching equilibrium at 
swelling. The tensile specimens were cut according to the 
ASTM D1708 standard. Then the thicknesses and widths 
of the samples were measured using a micrometer (model 
MDC-1-SXF, Mitutoyo, Corp., Kawasaki, Japan) and a digi-
tal caliper (CD-6 CS, Mitutoyo, Mitutoyo, Corp., Kawasaki, 
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Japan), respectively. The previous measures were utilized to 
calculate the cross-section area for the uniaxial tensile test 
specimens. The uniaxial tensile test was conducted using 
a costume-designed device applying a strain rate of 0.16 
mm/s according to the ASTM D882 standard. Thus, the dis-
placement and the force data were acquired through National 
Instruments boards and a virtual instrument specially pro-
grammed in LabVIEW. From the registered data, the stress 
curves as a function of the elongation ratio were obtained 
for the SIPNs. The experimental data of these curves were 
fitted using a third-order Mooney–Rivlin model [45, 46]:

where � is the engineering stress, in Pa, � is the elongation 
ratio; C 10 , C 01 , and C 11 are coefficients that define the shape 
of the stress-elongation ratio curve. Thus, according to the 
literature, the elastic modulus could be calculated as the 
limit when � → 1 of the partial derivative of the stress with 
respect to the elongation ratio: E = lim�→1

��

��
 [47]. Hence, 

considering a third-order Mooney–Rivlin model, the elastic 
modulus of the SIPNs was calculated as E = 6(C01 + C10).

2.5.2  Biaxial tensile test by indentation

In the case of biaxial tensile tests, the membranes were 
hydrated as well as previously described. These mechanical 
assays were conducted by indentation in triplicate according 
to the methodology described by Garnica-Palafox et al. [48]. 
Thus, each membrane of 60 squared millimeters was firmly 
clamped between the plates of the sample holder of the 
biaxial mechanical tester, avoiding wrinkles or any damage 
on the surface of the mounted SIPNs. The hydrated SIPNs 
samples were indented in a controlled fashion at a constant 
rate of 0.16 mm/s at room temperature. The force (w) and 
displacement ( � ) data were recorded during the assay for 
further analysis. Notice that the elastic modulus of SIPNs 
was calculated according to the model reported by Garnica-
Palafox et al. [48]:

where (h) is the membrane thickness, (R) the indenter radius, 
(a) the sample holder radius, (w) the central applied load, 
( � ) corresponds to the central displacement, and E is the 
elastic modulus, thereby, the elastic modulus was deter-
mined as the slope of the linear section of the load–deflec-
tion curve 6w versus 27�
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2.6  In vitro viability and cytotoxicity behavior 
of the SIPNs

2.6.1  Cell culturing

Immortalized human fibroblasts, namely BJ cell line (ATTC 
CRL-2522), were defrosted by placing the cryovials in water 
at 37  °C for 2 min. Once the fibroblasts were defrosted, 
the medium was removed. Then, the cells were disaggre-
gated by pipetting and transferred to a Petri dish. Finally, 
the cells within the Petri dish were maintained in Dulbecco’s 
Modified Eagle’s Medium (DMEM) high glucose comple-
mented with 10% fetal bovine serum (FBS), GlutaMAX 1X, 
and Antibiotic-Antimycotic 1X at 37  °C, 5% de CO2 . The 
culture medium was replaced every 2 days until reaching 
confluence. All these reagents were purchased from Gibco 
(Thermo Fisher Scientific, Massachusetts, USA) and used 
as received.

2.6.2  Fabrication and preparation of samples for in vitro 
viability and cytotoxicity assays

Circular glass coverslips were coated with the SIPNs, fol-
lowing the same procedure of the membranes fabrication. 
This procedure assures good adhesion conditions between 
the SIPNs and the coverslips, avoiding free floating matri-
ces/tension-free environment that could affect the cells’ 
behavior [49]. Besides, it allows better-controlled condi-
tions for cell seeding and their subsequent observation by 
epifluorescence microscopy. The coatings consider thick-
nesses ranging from about a couple of hundred microns 
and diameters of 17 mm. Blank and coated coverslips were 
placed into 12-well cell culture plates to be sterilized. Then, 
they were washed five times with 1 ml of ethanol 70% v/v 
(previously sterilized with 0.22 μ m filter), and five times 
with Dulbecco’s Phosphate-Buffered Saline (DPBS) ster-
ile 1X (Sigma-Aldrich). Then, each sample was incubated 
with 25 μg/ml of fibronectin for 10 min. After this time, the 
fibronectin was removed, and the samples were washed with 
deionized water (previously sterilized with 0.22 μ m filter). 
Subsequently, the samples within the 12-well cell culture 
plates were dried at room temperature in sterile conditions 
for 40 min. Finally, they were sealed and stored overnight at 
4  °C until cell seeding.

2.6.3  Cell seeding

The cultured cells in the Petri dishes were suspended by 
trypsin and seeded onto the SIPNs and an uncoated glass 
coverslip as control. The cellular density was 5 × 104 cells 
per well. The uncoated and coated coverslips—with the 
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adhered cells—were cultured for 48 h at 37  °C and 5% of 
CO2 ; subsequently, the in vitro viability and cytotoxicity 
assays were performed.

2.6.4  In vitro viability and cytotoxicity assays

The viability and cytotoxicity responses of the adhered cells 
on the SIPNs were evaluated through a live/dead assay using 
calcein-AM/propidium iodide (PI). Each sample was washed 
with 1 ml of serum-free cell culture medium (DMEM high 
glucose, GlutaMAX 1X, and Antibiotic-Antimycotic 1X). 
Then, the samples were incubated with 1 μ M of calcein-
AM (Molecular Probes, ThermoFisher Scientific) and 5 μ M 
of propidium iodide (ThermoFisher Scientific) in 1 ml of 
medium without serum for 15 min at 37  °C; After 15 min, 
the medium was aspirated and replaced by 1 ml more. Imme-
diately, five images of each sample were captured in an epif-
luorescence microscope (Thunder, Leica, Wetzlar, Germany) 
using a 10X objective lens. All the images were saved and 
subsequently analyzed with Cell Profiler software. Thus, the 
cells were counted, and their main morphological features 
were evaluated as well. Notice the uncoated coverslips were 
used as control material for normal cell spreading, and these 
assays were done in triplicate.

3  Results and discussion

The semi-interpenetrating polymeric networks were suc-
cessfully synthesized using three different weight ratios of 
PDMS and CS/PVA/GEN polymer blends, as described in 
Table 1. These SIPNs were obtained in a square membrane 
shape of 60 mm by the side. The thicknesses of the mem-
branes were 453 ± 80, 376 ± 52, and 250 ± 30 microns for 
SIPNs1, SIPNs2, and SIPNs3, respectively (See Fig. 1a ). 
We found a volume change after evaporating the solvents: 
25% for SIPNs2 and 50% for SIPNs3 blends, compared 
with the SIPNs1 blend, which was 10%. Thus, SIPNs2 and 
SIPNs3 resulted in thinner membranes even using the same 
quantity of dissolution for their fabrication. A first visual 
inspection of all membranes revealed a whitish-light blue 
color—see inset in the lower right corner of Fig. 1b–d. The 
light blue color is mainly due to the crosslinking reaction 
between GEN and the primary amines of CS in the pres-
ence of oxygen [29, 50], while the whitish color is attribut-
able to the presence of the PDMS in the SIPNs. Notice that 
our SIPNs were integrated by combining three polymers, 
PDMS, CS, and PVA. The PDMS, and CS were crosslinked 
by separately with their respective chemical reagents. The 
linear chains of PVA remain entangled between the PDMS 
and CS-GEN polymeric networks, satisfying the definition 
of SIPNs reported in the literature [51–53]. The obtained 
membranes were carefully inspected and selected for further 

experiments. Hence, fabrication defects such as air bubbles, 
holes, and/or changes in thickness, among others, were 
avoided.

3.1  Surface topology

Figure 1b–d depicts representative images of the surface of 
the SIPNs measured by atomic force microscopy (AFM). 
From these images, the Root Mean Squared (RMS) rough-
ness (Sq) for each SIPNs were determined using Naio con-
trol software from Nanosurf. Our results show that the Sq 
average values for SIPNs1, SIPNs2, and SIPNs3 were 5.2 
± 0.5, 4.8 ± 0.2, and 10.6 ± 0.1 nm, respectively, as shown 
in Fig. 1a. The Sq average values for our SIPNs agreed 
concerning those roughness values for PDMS [54–56] and 
CS/PVA/GEN [31] reported in the literature by the other 
authors. Moreover, our results suggest that the surface topol-
ogy of the SIPNs smooths by increasing the proportion of 
CS/PVA/GEN to the blend until it reaches a 1:1 weight ratio 
with respect to the PDMS (Fig. 1b, c). If the CS/PVA/GEN 
ratio becomes greater than the PDMS ratio, the roughness 
will tend to increase, as observed in Fig. 1d. This might be 
due to the formation of fibrillar structures, which are associ-
ated with the folding of PVA polymeric chains [31] influenc-
ing the roughness of the SIPNs. Notice that the roughness 
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the synthesized membranes, b images of SIPNs1 obtained by AFM 
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optical microscopy, d images of SIPNs3 obtained by AFM and opti-
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might influence other physical properties of the SIPNs, such 
as contact angle, swelling response, and even crystallinity. 
Previous studies have demonstrated that random surface 
roughness reduction positively affects cell adhesion, spread-
ing, and proliferation of human skin fibroblasts [57–59], and 
human osteoblasts [60, 61].

3.2  Surface and volume hydrophilicity

Figure 2a presents the contact angle average values and their 
respective standard deviations that exhibited the SIPNs in 
contact with a drop of deionized water. These values were 
67.7° ± 2.1°, 66.5° ± 2.1°, and 65.3° ± 2.4° for SIPNs1, 
SIPNs2, and SIPNs3, respectively. According to Gupta et al. 
and Garnica-Palafox et al., contact angles between 55° and 
75° are suitable for the adhesion of human fibroblast [31, 
62].

Figure 2b shows the swelling kinetics of the SIPNs; 
here, the deionized water absorption percentage as a 
function of time is observed for each SIPNs. As it can be 
seen, after 16 days, the reached swelling ratios at equi-
librium were: 3.7 ± 0.1%, 15.3 ± 0.2%, and 15.7 ± 0.1% 
for SIPNs1, SIPNs2, and SIPNs3, respectively. Accord-
ing to the literature, PDMS presents a low swelling ratio 
below 1% [63]. However, by adding the CS/PVA/GEN 

to PDMS, we enhance its volume hydrophilicity almost 
4-fold, 15-fold, and 16-fold times for SIPNs1, SIPNs2, 
and SIPNs3, respectively. Regarding the velocity of the 
swelling behavior, we found the fastest swelling rate dur-
ing the first day; the values were 3.1 ± 0.3%, 5.9 ± 0.2%, 
and 11.0 ± 0.6% for SIPNs1, SIPNs2, and SIPNs3, respec-
tively; beyond this time, the swelling rate was slow until 
equilibrium was reached.

3.3  Chemical interaction of SIPNs

The chemical interaction between the polymeric chains 
in the SIPNs was analyzed by FT-IR spectroscopy. The 
FT-IR spectra of all the studied SIPNs membranes, in dry 
and wet conditions, are shown in Fig. 2c, d. Our FT-IR 
results revealed that increasing the CS/PVA/GEN propor-
tion in the SIPNs, produced a change of the transmittance 
percentage in the band at 3700–3000 cm−1 . It was expected 
because this band is related to the N–H/O–H stretching 
vibration modes of chitosan and PVA [19, 31, 48, 64] pre-
sented in the CS/PVA/GEN blend. These bands are also 
related to the inter- and intramolecular hydrogen bonds 
due to the interaction between CS and PVA [21, 65]. The 
next band was observed between 2960 and 2900 cm−1 ; it 
corresponds to the symmetric and asymmetric stretching 
vibrations of methyl groups C–H3 bonds in the PDMS. 
In addition, in this same band are located the vibrations 
of the C–H groups (2930 and 2900 cm−1 ), which are pre-
sent in both the chitosan and PVA components [1, 64]. 
The stretching vibration mode of the C=O bonds in the 
acetylated units of CS was detected between 1680 and 
1600 cm−1 . Likewise, between 1600 and 1500 cm−1 were 
observed the bending vibration mode of the N–H bonds 
and the stretching vibration mode of the C–N bonds 
belonging to the amine and amide II in CS. The formation 
of heterocyclic amines due to the reaction of CS and GEN 
by the opening of the GEN dihydropyran ring was detected 
at 1380 cm−1 [31]. The bands associated with Si–CH3 
bonds in the PDMS were detected at 1257 and 785 cm−1 
[66]. Finally, the band between 1100 and 1000 cm−1 cor-
responds to the stretching vibration of Si–O, Si–O–Si, and 
Si–O–C bonds, because of the presence of PDMS in the 
SIPNs [67].

Figure 2d shows the FT-IR spectra of the SIPNs after 16 
days in swelling (i.e. at swelling equilibrium state). Here, 
we observed a significant change in the bands between 
3700–3000 cm−1 and 1700–1600 cm−1 for hydrated SIPNs, 
which is due to water’s affinity with the N–H/O–H groups 
present in PVA and CS [36, 68]. This result agrees with 
the swelling results and demonstrates that the presence of 
hydroxyl groups in the CS/PVA/GEN blend improves the 
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volume hydrophilicity of those SIPNs with a higher CS/
PVA/GEN volume.

3.4  Thermal stability, crystallinity, and mechanical 
behavior

Figure 3a depicts the thermal stability of all SIPNs through-
out the TGA representative curves and their derivative 
thermogravimetric analysis (DTGA). The DTGA indicates 
the degradation process occurs in three main stages. From 
room temperature to 230 °C, all SIPNs were stable. Here, 
just a minimum weight loss (0.5–1.0%) was observed due 
to water evaporation. Higher water evaporation was present 
in SIPNs3, which is consistent with its swelling ratio; more 
swelling ratio implies more water to be evaporated. The 
first degradation stage occurred between 240 and 380 °C. It 
is owing to the dehydration of the saccharide rings of chi-
tosan and the degradation of its acetylated and deacetylated 
units [26, 69]. In this stage, SIPNs1 and SIPNs2 registered 
a weight loss of 4.8 ± 0.14%, meanwhile, the weight loss 
of SIPNs3 was 8.19 ± 0.44%. The second stage of degrada-
tion was observed from 380 to 460 °C. Here, the SIPNs1 
and SIPNs2 presented a 5.39 ± 0.63% and 5.51 ± 0.05% 
of weight loss; meanwhile, the SIPNs3 was 6.52 ± 0.12%. 
This weight loss was mainly due to the degradation of the 
backbone of PVA [26, 69].

The third stage of degradation, located between 400 and 
600 °C, owing to the depolymerization of PDMS to produce 
cyclic oligomers [70, 71]. At this temperature range, the 
weight loss for SIPNs1, SIPNs2, and SIPNs3 were 61.1 ± 
2.6%, 55.9 ± 7.7%, and 66.7 ± 6.8%, respectively. Beyond 
600 °C residual weights of 28.3 ± 3.2%, 33.2 ± 7.7%, 
and 17.4 ± 7.3% were observed for SIPNs1, SIPNs2, and 
SIPNs3, respectively.

Our TGA results demonstrated that all SIPNs are ther-
mally stable from room temperature to 230 °C; therefore, 
sterilization treatments that involve a maximum temperature 

of 160 °C [72] could be applied to SIPNs, avoiding any ther-
mal degradation issue. Notice that sterilization treatments 
are essential for further uses of the SIPNs in biological/
medical applications.

Figure 3b shows the X-ray patterns of all SIPNs. As can 
be seen, our SIPNs have a semi-crystalline state. Hence, 
the peak at 11.5° corresponds to the tetragonal unit cell of 
the PDMS’ crystalline phase; this semi-crystalline nature 
of PDMS has been previously reported in the literature [34, 
73–76]. Besides, the characteristic peaks of chitosan were 
located at 20° and 21.7°. These peaks correspond, respec-
tively, to planes (200) and (201) of its orthorhombic crys-
talline phase [77–81]. Finally, the peaks of the monoclinic 
unit cell of the PVA’s crystalline phase were present at 12° 
(corresponding to the (100) plane), at 20° (related to the 
(101) plane), and at 23° (corresponding to the (200) plane) 
[19, 82]. Notice that the diffraction intensity of the PMDS 
hides the CS and PVA peaks. The percentage of crystallin-
ity of the SIPNs were 37 ± 4%, 51 ± 3%, and 59 ± 3% for 
the SIPNs1, SIPNs2, and SIPNs3, respectively. Here, it is 
observed that crystallinity increased 1.38- and 1.59-fold for 
SIPNs2 and SIPNs3, respectively, compared with SIPNs1. 
These results are consistent with the roughness results pre-
viously presented in Fig. 1. As mentioned before, the PVA 
tends to form fibrillar structures by folding polymer chains, 
increasing the roughness. Thus, the SIPNs with a higher 
amount of PVA presented greater surface roughness and, 
therefore, higher crystallinity.

Figure 4a depicts the mechanical responses of the SIPNs 
under uniaxial tensile loads. Notice that these assays were 
carried out with the SIPNs previously hydrated in deion-
ized water until equilibrium was reached. Their representa-
tive curves of stress as a function of the elongation ratio 
are shown here. As it can bee seen, the SIPNs exhibited a 
non-linear mechanical response, which is attributed to the 
rearrangement of the polymeric chains during the tensile 
test. Thus, the polymeric chains pass from an initial con-
figuration—where the chains are randomly entangled—to a 
deformed configuration, where the chains are aligned in the 
direction of the applied load. From these stress-elongation 
ratio curves, the elastic modulus of each SIPNs was cal-
culated through a three-parameters Mooney–Rivlin model 
using a non-linear fitting (continuous line), as it was previ-
ously described. The obtained values of the elastic moduli 
were 1.59 ± 0.11 MPa, 0.96 ± 0.05 MPa, and 1.01 ± 0.20 
MPa for SIPNs1, SIPNs2, and SIPNs3, respectively. From 
this result, we observed that a high content of PDMS within 
the SIPNs will aid in getting higher elastic moduli. Regard-
ing the elongation ratio, we found that the SIPNs1 reached 
an average maximum elongation ratio of 2.22 ± 0.14 with an 
associated ultimate tensile stress (UTS) of 1.98 ± 0.38 MPa; 
the SIPNs2 presented and average elongation ratio of 2.03 
± 0.22 and an average UTS of 0.69 ± 0.19 MPa; finally, in 
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the SIPNs3, we observed an average elongation ratio of 1.27 
± 0.07 and an average UTS of 0.23 ±0.06 MPa. Consider-
ing the average values of the elongation ratio and UTS of 
SIPNs1 as a reference, we found a variation for the elonga-
tion ratio of 1.09 and 1.74 times for SIPNs2 and SIPNs3, 
respectively. Regarding the UTS we also found a variation 
of 2.86 and 8.6 times for SIPNs2 and SIPNs3, with respect 
to the UTS value of SIPNs1. Thus, SIPNs2 and SIPNs3 sig-
nificantly reduce their mechanical response with respect to 
SIPNs1; it is due to the elasticity and strength that the con-
tent of PDMS provides to the SIPNs; thus, less content of 
PDMS lowers the mechanical response.

For the case of biaxial stress experiments, the non-linear 
response of the force vs. displacement data (see inset 
Fig. 4b) were processed using the model and methodology 
proposed by Garnica-Palafox et al. [48]. From the indenta-
tion data, the load–deflection curve was obtained using Eq. 2 
and considering a∕R = 5 . It yield us to obtain 6w as a func-
tion of 0.376

(

�

R

)3

hR curves, for each SIPNs, as shown in 
Fig. 4b. According to the model reported by Garnica-Palafox 
et al. [48], the slope of the linear section of this curve repre-
sents the elastic modulus of the SIPNs. As a result, we found 
average values of elastic moduli of 1.69 ± 0.07 MPa, 0.86 ± 
0.06 MPa, and 0.85 ± 0.17 MPa for SIPNs1, SIPNs2, and 
SIPNs3, respectively. Figure 4c shows an elastic moduli 

comparison between SIPNs under two different states of 
stress: uniaxial and biaxial tensions; the solid bars corre-
spond to those obtained by the uniaxial tensile, while the 
bars with a line pattern correspond to the biaxial tensile test. 
Here, it could be observed that the elastic moduli of the 
SIPNs under uniaxial and biaxial states of stress were similar 
regarding their respective polymeric composition. However, 
we found that the SIPNs2 and SIPNs3 exhibited almost two 
times lower elastic moduli than SIPNs1. Figure 4d can 
explain this result; it shows the influence of the SIPNs com-
position on their swelling behavior and its correlation with 
the elastic modulus. Hence, increasing the CS/PVA/GEN 
ratio produced an increment in the swelling capability but 
decreased the elastic modulus of the hydrated SIPNs. It must 
remain that the mechanical assays were conducted with 
hydrated membranes swollen at an equilibrium state. Hence, 
the water within the polymeric network can cause a pre-
stress condition in the polymeric chains, limiting its elonga-
tion and mechanical strength. Therefore, the amount of water 
present in the polymer network directly affects the mechani-
cal response of the polymeric chains [10, 83]. We found that 
the elasticity and strength were affected by the reduction of 
the PDMS; nonetheless, the surface and volume hydrophilic-
ity behaviors of those SIPNs with less content of PDMS 
resulted in an attractive alternative for biological 
applications.

3.5  In vitro viability and cytotoxicity assays

Figure 5a–d depicts cell culture results on the SIPNs’ surface 
after 48 h. Here, the live and dead cells are shown in green 
and red colors, respectively. Our in-vitro viability and cyto-
toxicity results demonstrated a predomination of living cells 
on the SIPNs’ surfaces; therefore, any possible cytotoxicity 
effect is discarded. Now considering our performed image 
analysis, just a few dead cells were identified on the SIPNs 
or on the glass coverslips that were used as control material; 
therefore, we obtained cell viability of around 96%. Notice 
that in all cases, the cells cultured on the SIPNs exhibited 
predominant polygonal and fusiform shapes. The main 
difference between them was their size and number. The 
human fibroblasts cultured on SIPNs3 were smaller in size 
and fewer in number compared with SIPNs1 and SIPNs2. 
In accordance with previous studies, the polygonal and fusi-
form shape of cells indicates a favorable cell adhesion state 
and proliferation of them [31, 84, 85].

Figure 5e–h shows the cell counting results and their cor-
responding statistical distribution for the maximum length of 
the longitudinal cells’ axis (known as maximum Feret diam-
eter). These results correspond to the image analyses per-
formed after 48 h of cell culture. In Fig. 5e, we observed that 
cells cultured on the control material presented a Feret diam-
eter distribution centered at 74.18 μ m, while the SIPNs1, 
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SIPNs2, and SIPNs3 presented Feret diameter distributions 
centered at 66.38 μ m, 76.1 μ m, and 64.61 μ m respectively 
(See Fig. 5f–h ). According to the literature, human fibro-
blasts vary in size from 10 to 100 microns [86]; thus, based 
on this range of size, our SIPNs offer suitable conditions 
for this type of cell. Moreover, according to recent studies, 
cells with larger sizes correlate with better substrate adhe-
sion and better collagen production, which is one of the main 
components of the extracellular matrix and is necessary for 
wound repairing [87–91].

As noted in the previous distribution charts (Fig. 5e–h ), 
they show a positive skew; thus, the median and interquartile 
interval for the Feret diameter and cell density will be used 
to get a fair interpretation of the data. Figure 5i, j depicts 
further statistical analyses involving the cell morphology 
and the cellular density observed on the SIPNs. Figure 5i 
shows the Feret diameter distribution of SIPNs, including 
their median values (white line) and the interquartile range 
(IQR) in gray bars. The median Feret diameter values were 
87.9 μ m, 82.21 μ m, 90.87 μ m, and 80.15 � m and its IQR 
were 113.08–69.87 μ m, 107.04–62.59 μ m, 122.14–70.76 
μ m, and 107.36–61.48 μ m for the control, SIPNs1, SIPNs2, 
and SIPNs3; respectively. Finally, Fig. 5j exhibits cell den-
sity distribution for control and each SIPNs. The white lines 
represent the median values of cell density. Thus, the median 

values of the number of cells per square millimeter was 
142.26, 160.41, 162.75, and 109.47 cells/mm2 , and its IQR 
were 160.41–137.58 cells/mm2 , 173.88–153.39 cells/mm2 m, 
1172.12−158.07 cells/mm2 , and 126.46–102.45 cells/mm2 
for control, SIPNs1, SIPNs2, and SIPNs3, respectively.

The cell density results for SIPNs1 and SIPNs2 were 13% 
and 14% higher than the control sample. The increase sug-
gests a better fibroblast affinity for SIPNs1 and SIPNs2 than 
SIPNs3 or the control material. It can be observed from live/
dead assay images from SIPNs1 and SIPNs2s that the fibro-
blasts covered almost all the surfaces. The cell sizes were 
more extensive than those cells seeded in the control mate-
rial. Therefore, it indicates that SIPNs1 and SIPNs2 had bet-
ter cell spreading and adhesion features than SIPNs3 or even 
the control material. Thus, based on our results, the SIPNs1 
and SIPNs2 presented the best cell spreading and cell sizes; 
therefore, they possess great potential to be used in scaffolds 
for tissue engineering or wound healing applications.

3.6  Discussion

According to the literature, rigidity, volume hydrophilic-
ity, chemical composition, and roughness can influence the 
cells’ seeded behavior [57–59, 92] on a substrate. Therefore, 
a comparison between these results was carried out, and it is 
presented below for our SIPNs; see Fig. 6.
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Figure 6a shows the relationship between the elastic 
modulus and the crystallinity percentage of our SIPNs. We 
found that the elastic modulus did not decrease as the crys-
tallinity percentage did, increasing the CS/PVA/GEN ratio. 
This result is counterintuitive because polymers with higher 
crystallinities must offer higher elastic moduli when the 
polymers are tested in dry conditions. This counterintuitive 
result can be explained as follows: increasing the CS/PVA/
GEN content will increase the quantity of free PVA chains 
within the polymeric network; these PVA chains will tend 
to fold, raising crystalline regions. Thus, the roughness and 
crystallinity percentage will also tend to increase; addition-
ally, those SIPNs with higher content of PVA will present 
more swelling capacity, shown in Fig. 6b. Hence, samples 
with higher swelling capacity will trap more water into their 
polymer network, but their rigidity will decrease if they are 
mechanically tested under hydrated conditions, as observed 
in their mechanical response. (see Fig. 6a, b and Fig. 4d) 
We found that the swelling capability increased 4.1 times 
for SIPNs2 and 4.2 times for SIPNs3 concerning SIPNs1. In 
the case of crystallinity, the SIPNs2 and SIPNs3 showed an 
increment of 1.38 times and 1.59 times, respectively, con-
cerning SPINs1. Regarding the mentioned values of crys-
tallinity, it was expected a higher swelling capacity of the 
SIPNs3; however, it was in the same range as the SIPNs2. It 
suggests that the PDMS polymer network might be limiting 
the expansion of PVA chains during the swelling process 
and, therefore, also limiting water absorption.

Figure 6c shows the relationship between the availability 
of CS N–H/OH functional groups and the cell density as a 
function of SIPNs composition. The availability of CS func-
tional groups was calculated as the area under the curve for 
bands 1700–1800 cm1 . These bands correspond to amides 
I and amines/amides II (see Fig. 6c inset). These functional 
groups of CS are important because are similar to those that 
the glycosaminoglycans present in the extracellular matrix 
of the skin [28] and tend to enhance the viability of seeded 
cells. Figure  6c depicts an increment of CS functional 
groups as the CS/PVA/GEN ratio also increases; however, 
the cell density response presents an opposite behavior. It 
means that another parameter has an influence on the bio-
logical response. We found that the other parameter was the 
roughness of the SIPNs.

Figure 6d shows the dependence between surface rough-
ness and the number of cells per square millimeter depend-
ing on the material composition. This figure demonstrates 
that as the CS/PVA/GEN ratio increases, the roughness 
also increases, whereas cell density decreases. Thus, higher 
random roughness on the surface of the SIPNs will imply 
a lower cell density response of the SIPNs. According to 
previous studies, the random surface roughness of the mate-
rial might affect cell adhesion. Notice that our results were 
in accordance with the trend reported for other or similar 

materials by different authors [57–61]. They reported simi-
lar values of roughness for which cultured human fibroblast 
showed good viability and adhesion features [57–59]. There-
fore, we conclude that SIPNs1 and SIPNs2 can be consid-
ered potential materials for further developing scaffolds in 
tissue engineering or wound healing applications.

4  Conclusions

We demonstrated that semi-interpenetrating polymeric net-
works, varying the weight ratios of poly(dimethylsiloxane) 
and chitosan/poly(vinyl alcohol)/genipin, can be success-
fully obtained by using the solvent casting method. From 
AFM results, it was found that the SIPNs surface’s rough-
ness was increased twofold for PDMS/CS/PVA/GEN 3:7 
weight ratio with respect to the PDMS/CS/PVA/GEN 7:3 
weight ratio, suggesting that roughness values will be domi-
nated for the polymer with higher concentration in the blend. 
The surface hydrophilicity results yield contact angles rang-
ing between 55° and 75° which are values that will provide a 
proper human fibroblast adhesion for our SIPNs. Regarding 
the volume hydrophilicity, evaluated through the swelling 
capability, we found that volume hydrophilicity increased 
for those SIPNs with higher CS/PVA/GEN ratio content. It 
occurred due to the water affinity of free OH and NH2 groups 
of CS and PVA, which are in the SIPNs. Thus higher avail-
ability of free N–H/OH and NH2 groups will imply higher 
volume hydrophilicity, as the FT-IR and swelling results 
demonstrated it. Besides, the thermal and mechanical sta-
bility were tested. In this sense, The TGA results indicate 
that our SIPNs will be thermally stable until 230 °C. This 
temperature is adequate if a thermal sterilization process 
is needed. Uniaxial and biaxial tensile assays were useful 
in evaluating the mechanical response of the SIPNs. Their 
elastic moduli were in the same order of magnitude, which 
was between 1 and 1.6 MPa. Thus, according to the cell 
density results, the rigidity of the SIPNs had no significant 
effect on the seeded fibroblast cells for SIPN1 and SIPN2. 
In contrast, the combinations of free N–H/OH groups of CS 
and PVA and the roughness for SIPN1 and SIPN2 signifi-
cantly affected their cell spreading and cell density response. 
Thus, considering the physicochemical properties and bio-
logical behavior of the tested SIPNs, we found that SIPN1 
and SIPN2 were the more suitable polymeric blends that 
could be potentially used for skin substitutes, wound healing/
dressing, or as a scaffold for tissue engineering.
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