Skip to main content
Log in

Monolithic multicomponent integrated circuit with an arc-shape waveguide on Si substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The determination to develop high-speed, efficient and versatile micro/nano photonic systems has inspired vast studies on photonic circuits. We demonstrate here a near-ultraviolet (NUV) monolithic multicomponent integrated circuit on Si substrate, including two non-suspended multiple quantum wells diodes (MQW-diodes) and an arc-shape waveguide. The two MQW-diodes which are fabricated by the same process can function as emitter and detector, respectively, and their roles can be switched with each other, because the InGaN/GaN multiple quantum wells, which are employed in the emitter to produce near-ultraviolet light, are also utilized by the detector for photodetection. The arc-shape waveguide which serves as a communication channel between the emitter and the detector can change the light propagation direction by 90°. Due to light confinement structure of the wafer, silicon removal and back GaN etching is avoided, which makes the devices more robust, as well as simplifying the processing flow. Two MQW-diodes can communicate with each other at 100 Mbps via the arc-shape waveguide, and the light signals of 200 Mbps from the emitter can also be detected by a commercial photodiode module via free space, which forms a three-dimensional NUV light communication system. This work paves the way toward comprehensive photonic integration for wide variety of potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. D. Thomson, A. Zilkie, J.E. Bowers, T. Komljenovic, G.T. Reed, L. Vivien, D.M. Morini, E. Cassan, L. Virot, J.M. Fédéli, J. Opt. 18, 073003 (2016)

    Article  ADS  Google Scholar 

  2. R. Soref, IEEE, J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006)

    Article  Google Scholar 

  3. J. Leuthold, C. Koos, W. Freude, Nat. Photonics 4, 535–544 (2010)

    Article  ADS  Google Scholar 

  4. M. Smit, K. Williams, D.T.J. Van, APL Photonics 4, 050901 (2019)

    Article  ADS  Google Scholar 

  5. K.A. Williams, E.A.J.M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, X.J.M. Leijtens, J.J.G.M. van der Tol, M.K. Smit, Photonics Res. 3, B60–B68 (2015)

    Article  Google Scholar 

  6. Z. Yan, Y. Han, L.Y. Lin, Y. Xue, C. Ma, W.K. Ng, K.S. Wong, K.M. Lau, Light: Sci. Appl. 10, 1–10 (2021)

    Google Scholar 

  7. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett. 48, 353–355 (1986)

    Article  ADS  Google Scholar 

  8. I. Akasaki, H. Amano, MRS Online Proc. Libr. (OPL) 242 (1992)

  9. S. Nakamura, T.M.T. Mukai, M.S.M. Senoh, Jpn. J. Appl. Phys. 30, L1998 (1991)

    Article  ADS  Google Scholar 

  10. S. Nakamura, T.M.T. Mukai, M.S.M. Senoh, Jpn. J. Appl. Phys. 31, 2883 (1992)

    Article  ADS  Google Scholar 

  11. M.D. Brubaker, P.T. Blanchard, J.B. Schlager, A.W. Sanders, A. Roshko, S.M. Duff, J.M. Gray, V.M. Bright, N.A. Sanford, K.A. Bertness, Nano Lett. 13, 374–377 (2013)

    Article  ADS  Google Scholar 

  12. J.F.C. Carreira, E. Xie, R. Bian, C. Chen, J.J.D. McKendry, B. Guilhabert, H. Haas, E. Gu, M.D. Dawson, Opt. Express 27, A1517–A1528 (2019)

    Article  ADS  Google Scholar 

  13. O. Weidemann, P.K. Kandaswamy, E. Monroy, G. Jegert, M. Stutzmann, M. Eickhoff, Appl. Phys. Lett. 94, 113108 (2009)

    Article  ADS  Google Scholar 

  14. S.T. Jagsch, N.V. Triviño, F. Lohof, G. Callsen, S. Kalinowski, I.M. Rousseau, R. Barzel, J.F. Carlin, F. Jahnke, R. Butté, C. Gies, A. Hoffmann, N. Grandjean, S. Reitzenstein, Nat. Commun. 9, 1–7 (2018)

    Article  Google Scholar 

  15. W. Cai, J.L. Yuan, S.Y. Ni, Z. Shi, W.D. Zhou, Y.H. Liu, Y.J. Wang, H. Amano, Appl. Phys. Express 12, 032004 (2019)

    Article  ADS  Google Scholar 

  16. R.A. Khadar, C. Liu, R. Soleimanzadeh, E. Matioli, IEEE Electron Device Lett. 40, 443–446 (2019)

    Article  ADS  Google Scholar 

  17. R. Tanaka, S. Takashima, K. Ueno, H. Matsuyama, M. Edo, Jpn. J. Appl. Phys. 59, SGGD02 (2020)

  18. R.Z. Zhang, J.P. Kozak, M. Xiao, J.C. Liu, Y.H. Zhang, T. Power, Electr. 35, 13409–13419 (2020)

    Google Scholar 

  19. L. Arivazhagan, D. Nirmal, D. Godfrey, J. Ajayan, P. Prajoon, A. S. Augustine Fletcher, A. A. A. Jone, J. S. R. Kumar, AEU-Int. J. Electron. C. 108, 189–194 (2019)

  20. R.M. Chu, Y. Cao, M. Chen, R. Li, D. Zehnder, IEEE Electron Device Lett. 37, 269–271 (2016)

    Article  ADS  Google Scholar 

  21. H.S. Wasisto, J.D. Prades, J. Gülink, A. Waag, Appl. Phys. Rev. 6, 041315 (2019)

    Article  Google Scholar 

  22. D.Y. Guo, Y.L. Su, H.Z. Shi, P.G. Li, N. Zhao, J.H. Ye, S.L. Wang, A.P. Liu, Z.W. Chen, C.R. Li, W.H. Tang, ACS Nano 12, 12827–12835 (2018)

    Article  Google Scholar 

  23. A. Dubey, R. Mishra, Y.H. Hsieh, C.W. Cheng, B.H. Wu, L.J. Chen, S.J. Gwo, T.J. Yen, Adv. Sci. 7, 2002274 (2020)

    Article  Google Scholar 

  24. Y.S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S.P. DenBaars, S. Nakamura, E.L. Hu, Appl. Phys. Lett. 87, 243101 (2005)

    Article  ADS  Google Scholar 

  25. G. Muziol, H. Turski, M. Siekacz, S. Grzanka, P. Perlin, C. Skierbiszewski, Appl. Phys. Express 9, 092103 (2016)

    Article  ADS  Google Scholar 

  26. M. Kneissl, J. Rass, III-Nitride ultraviolet emitters (Springer, Berlin, 2016), pp.4–9

    Book  Google Scholar 

  27. D. Jena, R. Page, J. Casamento, P. Dang, J. Singhal, Z. X. Zhang, J. Wright, G. Khalsa, Y. J. Cho, H. G. Xing, Jpn. J. Appl. Phys. 58, SC0801 (2019)

  28. Y.A. Goldberg, Semicond. Sci. Technol. 14, R41 (1999)

    Article  ADS  Google Scholar 

  29. Y. Peng, R. L. Liang, Y. Mou, J. N. Dai, M. X. Chen, X. B. Luo, J. Electron. Packaging. 141, (2019)

  30. W. Cai, Y.C. Yang, X.M. Gao, J.L. Yuan, W. Yuan, H.B. Zhu, Y.J. Wang, Opt. Express 24, 6004–6010 (2016)

    Article  ADS  Google Scholar 

  31. J.L. Yuan, W. Cai, X.M. Gao, G.X. Zhu, D. Bai, H.B. Zhu, Y.J. Wang, Appl. Phys. Express 9, 032202 (2016)

    Article  ADS  Google Scholar 

  32. M.X. Feng, Z.C. Li, J. Wang, R. Zhou, Q. Sun, X.J. Sun, D.B. Li, H.W. Gao, Y. Zhou, S.M. Zhang, D.Y. Li, L.Q. Zhang, J.P. Liu, H.B. Wang, M. Ikeda, X.H. Zheng, H. Yang, ACS Photonics 5, 699–704 (2018)

    Article  Google Scholar 

  33. F.H. Zhang, Z. Shi, X.M. Gao, C. Qin, S. Zhang, Y. Jiang, F. Wu, Y.J. Wang, Opt. Lett. 43, 1874–1877 (2018)

    Article  ADS  Google Scholar 

  34. J.B. Yan, J.L. Yuan, Y. Jiang, H.B. Zhu, H.W. Choi, Y.J. Wang, Appl. Phys. Express 15, 032003 (2022)

    Article  ADS  Google Scholar 

  35. S.M. Islim, R.X. Ferreira, X.Y. He, E.Y. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R.V. Penty, I.H. White, A.E. Kelly, E. Gu, H. Haas, M.D. Dawson, Photonics Res. 5, A35–A43 (2017)

    Article  Google Scholar 

  36. Z.X. Wei, L. Zhang, L. Wang, C.J. Chen, Z.M. Wang, K.C. Chen, M.C. Wu, Y.H. Dong, L. Wang, Y. Luo, H.Y. Fu, Opt. Express 28, 18332–18342 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by China Postdoctoral Science Foundation [Grant Number 2020M681683]; and Innovation Research Foundation of NJIT [Grant Number ZKJ202004].

Author information

Authors and Affiliations

Authors

Contributions

Wei Cai conceived of the study and designed the study. Eryuan Guo and Yukuan Dai collected the data. Wei Cai and Liangbao Jiao analyzed the data and were involved in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Jiao, L., Guo, E. et al. Monolithic multicomponent integrated circuit with an arc-shape waveguide on Si substrate. Appl. Phys. A 129, 378 (2023). https://doi.org/10.1007/s00339-023-06665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06665-3

Keywords

Navigation