Skip to main content

Advertisement

Log in

Mixed ternary metal (Co/Zn/Cu) MOF for electrochemical energy-storage electrodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Fabrication and designing advanced porous structures are effective methods to enhance the electrochemical performance of metal organic frameworks (MOFs) for supercapacitor applications. Here, we have developed ternary metal oxide MOFs prepared by a simple chemical bath deposition method. Firstly, a chemical bath deposition process was used to fabricate ZnxCo3−xO4 petal-like nano particles (NPs). So, their structural electrochemical properties were investigated to identify the influence of metal cation contents. Then ternary metal oxides MOFs are synthesized. These binder-free Cu–Zn1.5Co1.5O4 petal-like composite electrodes exhibit high specific capacitance. Its maximum reachable specific capacitance is 330 F/g at 1 A/g. The excellent electrochemical performance of the petal-like electrodes may be attributed to the intrinsic nature of ternary metal oxide MOFs and the porous petal-like morphologies that provide enough space for the storage and diffusion of the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper, its supplementary information files.

References

  1. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  Google Scholar 

  2. A. Yadav, B. Gerislioglu, A. Ahmadivand, A. Kaushik, G.J. Cheng, Z. Ouyang, Q. Wang, V.S. Yadav, Y.K. Mishra, Y. Wu, Y. Liu, S. RamaKrishna, Controlled self-assembly of plasmon-based photonic nanocrystals for high performance photonic technologies. Nano Today 37, 101072 (2021). https://doi.org/10.1016/j.nantod.2020.101072

    Article  Google Scholar 

  3. C. Li, X. Sun, Y. Yao, G. Hong, Recent advances of electrically conductive metal-organic frameworks in electrochemical applications. Mater. Today Nano 13, 100105 (2021). https://doi.org/10.1016/j.mtnano.2020.100105

    Article  Google Scholar 

  4. H. Ronduda, M. Zybert, A. Szczęsna-Chrzan, T. Trzeciak, A. Ostrowski, D. Szymański, W. Wieczorek, W. Raróg-Pilecka, M. Marcinek, On the sensitivity of the ni-rich layered cathode materials for li-ion batteries to the different calcination conditions. Nanomaterials 10, 1–21 (2020). https://doi.org/10.3390/nano10102018

    Article  Google Scholar 

  5. J. Zhang, G. Zhang, T. Zhou, S. Sun, Recent developments of planar micro-supercapacitors: fabrication, properties, and applications. Adv. Funct. Mater. 30, 1–21 (2020). https://doi.org/10.1002/adfm.201910000

    Article  Google Scholar 

  6. S. Clark, F.L. Bleken, S. Stier, E. Flores, C.W. Andersen, M. Marcinek, A. Szczesna-Chrzan, M. Gaberscek, M.R. Palacin, M. Uhrin, J. Friis, Toward a unified description of battery data. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202102702

    Article  Google Scholar 

  7. G.Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 62, 173–202 (2017). https://doi.org/10.1080/09506608.2016.1240914

    Article  ADS  Google Scholar 

  8. G.Z. Chen, Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog. Nat. Sci. Mater. Int. 23, 245–255 (2013). https://doi.org/10.1016/j.pnsc.2013.04.001

    Article  ADS  Google Scholar 

  9. J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: properties and applications. J. Energy Storage 17, 224–227 (2018). https://doi.org/10.1016/j.est.2018.03.012

    Article  Google Scholar 

  10. M. Qorbani, A. Esfandiar, H. Mehdipour, M. Chaigneau, A. Irajizad, A.Z. Moshfegh, Shedding light on pseudocapacitive active edges of single-layer graphene nanoribbons as high-capacitance supercapacitors. ACS Appl. Energy Mater. 2, 3665–3675 (2019). https://doi.org/10.1021/acsaem.9b00375

    Article  Google Scholar 

  11. J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009). https://doi.org/10.1038/nnano.2009.177

    Article  ADS  Google Scholar 

  12. J. Chmiola, P.L.T. Celine Largeot, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science (80-) 328, 480–483 (2010). https://doi.org/10.1126/science.1184126

    Article  ADS  Google Scholar 

  13. J. Xu, D. Su, W. Bao, Y. Zhao, X. Xie, G. Wang, Rose flower-like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage. J. Alloys Compd. 684, 691–698 (2016). https://doi.org/10.1016/j.jallcom.2016.05.252

    Article  Google Scholar 

  14. A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catal. Sci. Technol. 6, 5238–5261 (2016). https://doi.org/10.1039/c6cy00695g

    Article  Google Scholar 

  15. X. Liu, S. Akerboom, M. De Jong, I. Mutikainen, S. Tanase, A. Meijerink, E. Bouwman, Mixed-lanthanoid metal-organic framework for ratiometric cryogenic temperature Sensing. Inorg. Chem. 54, 11323–11329 (2015). https://doi.org/10.1021/acs.inorgchem.5b01924

    Article  Google Scholar 

  16. Y. Mao, G. Li, Y. Guo, Z. Li, C. Liang, X. Peng, Z. Lin, Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat. Commun. (2017). https://doi.org/10.1038/ncomms14628

    Article  Google Scholar 

  17. I. Hussain, S. Iqbal, T. Hussain, W.L. Cheung, S.A. Khan, J. Zhou, M. Ahmad, S.A. Khan, C. Lamiel, M. Imran, A. AlFantazi, K. Zhang, Zn–Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. Mater. Today Phys. 23, 1655 (2022). https://doi.org/10.1016/j.mtphys.2022.100655

    Article  Google Scholar 

  18. W. Guo, W. Sun, Y. Wang, Multi-layer CuO @ NiO hollow spheres : microwave- assisted metal-organic-framework derivation and highly reversible structure-matched stepwise lithium storage graphical abstract. ACS Nano (2015). https://doi.org/10.1021/acsnano.5b05610

    Article  Google Scholar 

  19. M. Eskandari, N. Shahbazi, A.V. Marcos, R. Malekfar, P. Taboada, Facile MOF-derived NiCo2O4/r-GO nanocomposites for electrochemical energy storage applications. J. Mol. Liq. 348, 118428 (2022). https://doi.org/10.1016/j.molliq.2021.118428

    Article  Google Scholar 

  20. T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 14, 2522–2527 (2014). https://doi.org/10.1021/nl500255v

    Article  ADS  Google Scholar 

  21. X. Liu, C. Shi, C. Zhai, M. Cheng, Q. Liu, G. Wang, Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl. Mater. Interfaces. 8, 4585–4591 (2016). https://doi.org/10.1021/acsami.5b10781

    Article  Google Scholar 

  22. H. Zhang, W. Zhao, M. Zou, Y. Wang, Y. Chen, L. Xu, 3D, mutually embedded MOF @ carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800013

    Article  Google Scholar 

  23. Z. Nazari, M.A. Taher, H. Fazelirad, A Zn based metal organic framework nanocomposite: Synthesis, characterization and application for preconcentration of cadmium prior to its determination by FAAS. RSC Adv. 7, 44890–44895 (2017). https://doi.org/10.1039/c7ra08354h

    Article  ADS  Google Scholar 

  24. K. Tao, Y. Yang, C. Yang, Q. Ma, L. Han, Construction of NiCo2O4 nanosheet-decorated leaf-like Co3O4 nanoarrays from metal-organic framework for high-performance hybrid supercapacitors. Dalt. Trans. 48, 14156–14163 (2019). https://doi.org/10.1039/c9dt02907a

    Article  Google Scholar 

  25. B. Liu, J.Z. Li, X.F. Gong, Y.L. Zhang, Q.Y. Zhou, J.J. Cai, Z.G. Liu, X.L. Sui, Z.B. Wang, Facile synthesis of flower-like dual-metal (Co/Zn) MOF-derived 3D porous Co@Co-NPC as reversible oxygen electrocatalyst for rechargeable zinc-air batteries. Ionics (Kiel) 26, 1913–1922 (2020). https://doi.org/10.1007/s11581-019-03364-z

    Article  Google Scholar 

  26. P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, Design and synthesis of Ni-MOF/CNTs composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A. (2015). https://doi.org/10.1039/C5TA02461G

    Article  Google Scholar 

  27. A. Fathi, M. Eskandari, P.T. Antelo, E. Saievar-Iranizad, ZIF-derived Cu doped Co3O4/RGO composites for asymmetric supercapacitors. Solid State Sci. 132, 106967 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106967

    Article  Google Scholar 

  28. D. Li, Y. Gong, Y. Zhang, C. Luo, W. Li, Q. Fu, C. Pan, Facile synthesis of carbon nanosphere/NiCo2O4 core-shell sub-microspheres for high performance supercapacitor. Sci. Rep. (2015). https://doi.org/10.1038/srep12903

    Article  Google Scholar 

  29. Q. Guan, J. Cheng, B. Wang, W. Ni, G. Gu, X. Li, L. Huang, G. Yang, F. Nie, Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl. Mater. Interfaces. 6, 7626–7632 (2014). https://doi.org/10.1021/am5009369

    Article  Google Scholar 

  30. M. Eskandari, C.A. García, D. Buceta, R. Malekfar, P. Taboada, NiCo2O4/MWCNT/PANI coral-like nanostructured composite for electrochemical energy-storage applications. J. Electroanal. Chem. (2019). https://doi.org/10.1016/j.jelechem.2019.113481

    Article  Google Scholar 

  31. M. Eskandari, R. Malekfar, D. Buceta, P. Taboada, NiCo2O4-based nanostructured composites for high-performance pseudocapacitor electrodes. Colloids Surf. A Physicochem. Eng. Asp. 584, 124039 (2020). https://doi.org/10.1016/j.colsurfa.2019.124039

    Article  Google Scholar 

  32. M. Rajkumar, C.T. Hsu, T.H. Wu, M.G. Chen, C.C. Hu, Advanced materials for aqueous supercapacitors in the asymmetric design. Prog. Nat. Sci. Mater. Int. 25, 527–544 (2015). https://doi.org/10.1016/j.pnsc.2015.11.012

    Article  Google Scholar 

  33. S. Sharifi, A. Yazdani, K. Rahimi, Effect of Co2+ content on supercapacitance properties of hydrothermally synthesized Ni1-xCoxFe2O4 nanoparticles. Mater. Sci. Semicond. Process. 108, 104902 (2020). https://doi.org/10.1016/j.mssp.2019.104902

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaiel Saievar-Iranizad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1259 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, A., Eskandari, M., Taboada, P. et al. Mixed ternary metal (Co/Zn/Cu) MOF for electrochemical energy-storage electrodes. Appl. Phys. A 129, 387 (2023). https://doi.org/10.1007/s00339-023-06660-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06660-8

Keywords

Navigation