Skip to main content

Advertisement

Log in

Deposition and characterization of the Ag nanoparticles on absorbable surgical sutures at the cryogenic temperatures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Surgical sutures are one of the most widely used medical devices for wound closure. In the meantime, the suture surface and area may be exposed to many microorganisms, and surgical site infections may develop in these environments. Today, giving antimicrobial properties to polymeric sutures has been one of the methods used to prevent these infections. In this study, the absorbable polymeric-based suture (Pegelak®) was homogeneously coated with nano-sized silver particles by the vacuum deposition at the cryogenic temperatures (< 300 K) instead of the commonly used vacuum deposition at high substrate temperatures, and its physical and antibacterial properties were investigated. It was determined from the morphological and tensile strength analysis that some deformations occurred in the Ag-coated suture at 300 K; however, the coating of the suture at 200 K did not significantly affect the morphological and mechanical properties of the suture. According to photocurrent measurement, the plasmon resonance effect of the Ag-nanoparticles-coated suture at 200 K was observed around 450–525 nm. The illumination of the Ag-coated suture at 200 K with light in the plasmon resonance wavelength region increased the Ag+ release from 3.67 × 10−3 ppm to 6.65 × 10−3 ppm. In the microbiological analysis, it was observed that Ag-coated sutures obtained at both 200 K and 300 K showed antibacterial activity against all tested bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. S.P. Victor, S. Selvam, C.P. Sharma, A.C.S. Biomater, Sci. Eng. 5, 3 (2019)

    Google Scholar 

  2. M. Tummalapalli, S. Anjum, S. Kumari, B. Gupta, Polym. Rev. 56, 607 (2016)

    Google Scholar 

  3. L. Mahesh, V.R. Kumar, A. Jain, S. Shukla, J.M. Aragoneses, J.M.M. González, M. Fernández-Domínguez, J.L. Calvo-Guirado, Materials (Basel). 12, 1 (2019)

    Google Scholar 

  4. F. Cruz, F. Leite, G. Cruz, S. Cruz, J. Reis, M. Pierce, M. Cruz, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116, e103 (2013)

    Google Scholar 

  5. P. Shubha, M.L. Gowda, K. Namratha, S. Shyamsunder, H.B. Manjunatha, K. Byrappa, Mater. Chem. Phys. 231, 21 (2019)

    Google Scholar 

  6. B. Joseph, A. George, S. Gopi, N. Kalarikkal, and S. Thomas, Int. J. Pharm. 524, 454 (2017)

    Google Scholar 

  7. K.J. Woo, C.K. Hye, W.K. Ki, S. Shin, H.K. So, H.P. Yong, Appl. Environ. Microbiol. 74, 2171 (2008)

    ADS  Google Scholar 

  8. C. Huang, T. Zhang, Y. Li, M. Lyu, M. Suo, L. Xia, L. Liu, B. Tang, Q. Zhang, Chem. Eng. J. 446, 136381 (2022)

    Google Scholar 

  9. H.-B. Wang, H.-D. Zhang, Y.-H. Zhang, H. Chen, L.-L. Xu, K.-J. Huang, Y.-M. Liu, J. Electrochem. Soc. 162, B173 (2015)

    Google Scholar 

  10. C. Huang, B. Chen, M. Chen, W. Jiang, W. Liu, Life 11, 1 (2021)

    Google Scholar 

  11. P. Singh, S. Pandit, V.R.S.S. Mokkapati, A. Garg, V. Ravikumar, I. Mijakovic, Int. J. Mol. Sci. 19(7), 1979 (2018)

    Google Scholar 

  12. K. Jadhav, S. Deore, D. Dhamecha, R. Hr, S. Jagwani, S. Jalalpure, R. Bohara, A.C.S. Biomater, Sci. Eng. 4, 892 (2018)

    Google Scholar 

  13. P. Manivasagan, J. Venkatesan, K. Sivakumar, S.K. Kim, Crit. Rev. Microbiol. 42, 209 (2016)

    Google Scholar 

  14. Z. Hashemi, M. Mohammadyan, S. Naderi, M. Fakhar, P. Biparva, J. Akhtari, M.A. Ebrahimzadeh, Mater. Today Commun. 27, 102264 (2021)

    Google Scholar 

  15. A.L. Urzedo, M.C. Gonçalves, M.H.M. Nascimento, C.B. Lombello, G. Nakazato, A.B. Seabra, A.C.S. Biomater, Sci. Eng. 6, 2117 (2020)

    Google Scholar 

  16. X. Deng, M. Qasim, A. Ali, J. Biomed. Mater. Res. Part A 109, 2065 (2021)

    Google Scholar 

  17. A.R. Franco, E.M. Fernandes, M.T. Rodrigues, F.J. Rodrigues, M.E. Gomes, I.B. Leonor, D.L. Kaplan, R.L. Reis, Acta Biomater. 99, 236 (2019)

    Google Scholar 

  18. X. Liu, P. Gao, J. Du, X. Zhao, K.K.Y. Wong, J. Pediatr. Surg. 52, 2083 (2017)

    Google Scholar 

  19. J. Reinbold, A.K. Uhde, I.M. Ller, T. Weindl, J. Regen Geis-Gerstorfer, C. Schlensak, H.P. Wendel, S. Krajewski, Molecules 22(9), 1570 (2017)

    Google Scholar 

  20. A.S. Richard, R.S. Verma, Mater. Sci. Eng. C 128, 112334 (2021)

    Google Scholar 

  21. R.A.H.W. Chua, S.K. Lim, C.F. Chee, S.P. Chin, L.V. Kiew, K.S. Sim, S.T. Tay, Eur. Rev. Med. Pharmacol. Sci. 26, 828 (2022)

    Google Scholar 

  22. V.K. Sharma, R.A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 145, 83 (2009)

    Google Scholar 

  23. V. Vorobyova, G. Vasyliev, D. Uschapovskiy, K. Lyudmyla, M. Skiba, J. Microbiol. Methods 193, 106384 (2022)

    Google Scholar 

  24. S. De Simone, A.L. Gallo, F. Paladini, A. Sannino, M. Pollini, J. Mater. Sci. Mater. Med. 25, 2205 (2014)

    Google Scholar 

  25. M.A. AlSarhan, J. Biomater. Tissue Eng. 9, 1467 (2020)

    Google Scholar 

  26. M.S. Markov, Environmentalist 27, 465 (2007)

    Google Scholar 

  27. E. Katz, O. Lioubashevski, I. Willner, J. Am. Chem. Soc. 127, 3979 (2005)

    Google Scholar 

  28. J. Hunckler, A. de Mel, J. Multidiscip. Healthc. 10, 179 (2017)

    Google Scholar 

  29. M.I. Tribelsky, A.E. Miroshnichenko, Y.S. Kivshar, B.S. Luk Yanchuk, A.R. Khokhlov, Phys. Rev. X (2011). https://doi.org/10.1103/PhysRevX.1.021024

    Article  Google Scholar 

  30. L. Peedikakkandy, O. Pavelka, M. Alsterová, A. Fučíková, J. Dostál, J. Dian, J. Pšenčík, Mater. Chem. Phys. 258, 123932 (2021)

    Google Scholar 

  31. W.R. Erwin, H.F. Zarick, E.M. Talbert, R. Bardhan, Energy Environ. Sci. 9, 1577 (2016)

    Google Scholar 

  32. P. Kaur, K. Gadhave, N. Garg, D. Deb, D. Choudhury, Mater. Today Commun. 26, 102137 (2021)

    Google Scholar 

  33. V. Nevruzoğlu, D. Bal Altuntaş, M. Tomakin, Appl. Phys. A Mater. Sci. Process. 126(4), 1–9 (2020)

    Google Scholar 

  34. J. Arce, A. Palacios, D. Alvítez-Temoche, G. Mendoza-Azpur, P. Romero-Tapia, F. Mayta-Tovalino, Int. J. Dent. 2019, 1–5 (2019)

    Google Scholar 

  35. J.A. Diaz-Elizondo, M. Guraieb-Trueba, A. Baca-Arzaga, J. Vazquez-Armendariz, V. Segura-Ibarra, C.A. Rodriguez, E. Flores-Villalba, J. Surg. Res. 245, 403 (2020)

    Google Scholar 

  36. S.P. Dhas, S. Anbarasan, A. Mukherjee, N. Chandrasekaran, Int. J. Nanomed. 10, 159 (2015)

    Google Scholar 

  37. Z. Yeşil Duymuş, V. Nevruzoğlu, S.M. Ateş, E. Yüzüak, M. Tomakin, J. Mater. Eng. Perform. 29(5), 2909 (2020)

    Google Scholar 

  38. M. Tomakin, M. Altunbaş, E. Bacaksiz, Ş Çelik, Thin Solid Films 520, 2532 (2012)

    ADS  Google Scholar 

  39. Y.S. Chen, B.K. Chao, T. Nagao, C.H. Hsueh, Mater. Chem. Phys. 240, 122216 (2020)

    Google Scholar 

  40. T. Akiyama, M. Nakada, N. Terasaki, S. Yamada, Chem. Commun. (2006). https://doi.org/10.1039/B511487J

    Article  Google Scholar 

  41. Y.C. Yen, J.A. Chen, S. Ou, Y.S. Chen, K.J. Lin, Sci. Rep. 7, 1 (2017)

    ADS  Google Scholar 

  42. S. Bhardwaj, A. Pal, K. Chatterjee, T.H. Rana, G. Bhattacharya, S.S. Roy, P. Chowdhury, G.D. Sharma, S. Biswas, J. Mater. Sci. Mater. Electron. 29, 18209 (2018)

    Google Scholar 

  43. W.J. Ho, S.K. Fen, J.J. Liu, Appl. Phys. A Mater. Sci. Process. 124, 1 (2018)

    Google Scholar 

  44. B.S. Reddy, K.H. In, B.B. Panigrahi, U.M.R. Paturi, K.K. Cho, N.S. Reddy, Mater. Today Commun. 26, 102115 (2021)

    Google Scholar 

  45. J.C. Kim, Y.K. Lee, B.S. Lim, S.H. Rhee, H.C. Yang, J. Mater. Sci. Mater. Med. 18, 2363 (2007)

    Google Scholar 

  46. D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. de Camargo, D.B. Barbosa, Int. J. Antimicrob. Agents 34, 103 (2009)

    Google Scholar 

  47. J.M. Schierholz, L.J. Lucas, A. Rump, G. Pulverer, J. Hosp. Infect. 40, 257 (1998)

    Google Scholar 

  48. T. Baygar, N. Sarac, A. Ugur, I.R. Karaca, Bioorg. Chem. 86, 254 (2019)

    Google Scholar 

  49. A.L. Gallo, M. Pollini, F. Paladini, J. Mater. Sci. Mater. Med. 29, 1 (2018)

    Google Scholar 

  50. A.L. Gallo, F. Paladini, A. Romano, T. Verri, A. Quattrini, A. Sannino, M. Pollini, Mater. Sci. Eng. C 69, 884 (2016)

    Google Scholar 

  51. S. C. Guadarrama-Reyes, R. J. Scougall-Vilchis, R. A. Morales-Luckie, V. Sánchez-Mendieta, and R. López- Castañares, in Silver Nanoparticles: Fabrication, Characterization and Applications ed. By M. Khan (IntechOpen, London, 2018), p.249. https://doi.org/10.5772/intechopen.75074.

  52. S. Anees Ahmad, S. Sachi Das, A. Khatoon, M. Tahir Ansari, M. Afzal, M. Saquib Hasnain, A. Kumar Nayak, Mater. Sci. Energy Technol. 3, 756 (2020)

    Google Scholar 

  53. D.M. Syukri, O.F. Nwabor, S. Singh, S.P. Voravuthikunchai, Surf. Coat. Technol. 413, 127090 (2021)

    Google Scholar 

  54. J. Dhom, D.A. Bloes, A. Peschel, U.K. Hofmann, J. Orthop. Res. 35, 925 (2017)

    Google Scholar 

  55. D.M. Yaman Deniz, P. Tuğçe, U. Gülbahar, J. Oral. Maxillofac. Surg. 80, 313 (2022)

    Google Scholar 

  56. M. Pollini, M. Russo, A. Licciulli, A. Sannino, A. Maffezzoli, J. Mater. Sci. Mater. Med. 20, 2361 (2009)

    Google Scholar 

Download references

Funding

This work was supported by the research fund of Recep Tayyip Erdogan University, Rize, Turkey, under Contract No. TOA-2018–920.

Author information

Authors and Affiliations

Authors

Contributions

MA—conceptualization, methodology, investigation, resources, writing—original draft, supervision. FSB—validation, formal analysis, investigation, resources, writing—review and editing, visualization. VN—conceptualization, methodology, investigation, resources, supervision. YK—validation, formal analysis, data curation, visualization. AK—formal analysis, investigation, writing—original draft. MT—conceptualization, methodology, validation, formal analysis, investigation, writing—review and editing, visualization, project administration.

Corresponding author

Correspondence to Murat Tomakin.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuntas, M., Beris, F.S., Nevruzoglu, V. et al. Deposition and characterization of the Ag nanoparticles on absorbable surgical sutures at the cryogenic temperatures. Appl. Phys. A 129, 128 (2023). https://doi.org/10.1007/s00339-023-06406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06406-6

Keywords

Navigation