Skip to main content
Log in

Investigation of impact of pH and rare earth metal dopant concentration on structural, optical and thermal properties of CuO nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A facile one-step co-precipitation method used to fabricate the nanocrystalline CuO nanoparticles and Ce-doped CuO nanoparticles at different pH, i.e. 10 and 12. Determination of structural and optical properties was done using X-Ray diffraction, FT-IR and UV–Visible spectroscopic methods. The sharp XRD pattern of CuO nanoparticles confirmed its crystalline nature and monoclinic structure. The crystalline size of pure CuO nanoparticles was around 21.04 nm at pH 10 which reduced to 15.14 nm on doing of 5% Ce. At pH 12, the crystalline size of pure CuO nanoparticles and Ce-doped CuO nanoparticles was less in comparison to pH 10 as estimated from Debye–Scherrer formula. FT-IR spectra further confirmed the formation of CuO nanoparticles and the absorption band at 852 and 650 cm−1 confirmed the presence of CeO2 in the monoclinic phase of CuO nanoparticles. From UV–Vis absorption measurement, the optical band gap and maximum absorption wavelength were determined, and it was observed that both these quantities depend on the pH value as well as Ce metal concentration. Band gap value increased on increasing the dopant concentration which might be due to the Burstein–Moss (BM) effect. The paper presents a study of pH and dopant concentration variation for Ce-doped CuO nanoparticles with tunable particle size and tunable bandgap along with improved structural, optical and thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. P.K. Sharma, S. Dorlikar, P. Rawat, V. Malik, N. Vats, M. Sharma, J.S. Rhyee, A.K. Kaushik, Nanotechnology and its application: a review. Nanotechnol. Cancer Manage. (2021). https://doi.org/10.1016/B978-0-12-818154-6.00010-X

    Article  Google Scholar 

  2. R. Ahmad, N. Tripathy, M.-S. Ahn, K.S. Bhat, T. Mahmoudi, Y. Wang et al., Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci. Rep. 7, 5715 (2017). https://doi.org/10.1038/s41598-017-06064-8

    Article  ADS  Google Scholar 

  3. P. Leangtanom, A. Wisitsoraat, K. Jaruwongrangsee, N. Chanlek, A. Tuantranont, S. Phanichphant, V. Kruefu, Highly sensitive and selective sensing of H2S gas using precipitation and impregnation-made CuO/SnO2 thick films. Nanoscale. Res. Lett. 16, 70 (2021). https://doi.org/10.1186/s11671-021-03530-1

    Article  ADS  Google Scholar 

  4. P. Cea, The high temperature superconductivity in cuprates: physics of the pseudogap region. Eur. Phys. J. B 89, 176 (2016). https://doi.org/10.1140/epjb/e2016-70259-3

    Article  ADS  Google Scholar 

  5. S. Tada, F. Watanabe, K. Kiyota, N. Shimoda, R. Hayashi, M. Takahashi et al., Ag addition to CuO–ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation. J. Catal. 351, 107–118 (2017). https://doi.org/10.1016/j.jcat.2017.04.021

    Article  Google Scholar 

  6. L. Hao, Y. Zhang, R. Kubomura, S. Ozeki, S. Liu, H. Yoshida, Y. Jin, Y. Lu, Preparation and thermoelectric properties of CuAlO2 compacts by tape casting followed by SPS. J. Alloys Compd. 853, 157086 (2021). https://doi.org/10.1016/j.jallcom.2020.157086

    Article  Google Scholar 

  7. A.K. Mishra, A.K. Nayak, A.K. Das, D. Pradhan, Microwave-assisted solvothermal synthesis of cupric oxide nanostructures for high-performance supercapacitor. J Phys Chem. C 122, 11249–11261 (2018). https://doi.org/10.1021/acs.jpcc.8b02210

    Article  Google Scholar 

  8. H. Siddiqui, M.R. Parra, P. Pandey, M.S. Qureshi, F.Z. Haque, Utility of copper oxide nanoparticles (CuO-NPs) as efficient electron donor material in bulk-heterojunction solar cells with enhanced power conversion efficiency. J. Sci. Adv. Mater. Dev. 5(1), 104–110 (2020). https://doi.org/10.1016/j.jsamd.2020.01.004

    Article  Google Scholar 

  9. S. Jayakodi, V.K. Shanmugam, Green synthesis of CuO nanoparticles and its application on toxicology evaluation. Biointerface Res. Appl. Chem. 10(5), 6343–6353 (2020). https://doi.org/10.33263/BRIAC105.63436353

    Article  Google Scholar 

  10. A.A. Gvozdenko, S.A. Siddiqui, A.V. Blinov et al., Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications. Sci. Rep. 12, 12843 (2022). https://doi.org/10.1038/s41598-022-16878-w

    Article  ADS  Google Scholar 

  11. A.V. Blinov, A.A. Gvozdenko, M.A. Yasnaya, A.A. Blinova, A.A. Kravtsov, S.O. Krandievsky. Synthesing and studying the structure of nanoscale copper (II) oxide stabilized by polyethylene glycol. Phys. Technol. Nanostruct. Nuclear Mol. Phys. (2020) https://doi.org/10.18698/1812-3368-2020-3-56-70.

  12. S. Steinhauer, Gas sensors based on copper oxide nanomaterials: a review. Chemosensors 9, 51 (2021). https://doi.org/10.3390/chemosensors9030051

    Article  Google Scholar 

  13. I.M.A. Hasan, K.M. Abd-Elsabur, F.H. Assaf et al., Folic acid determination in food samples using green synthesized copper oxide nanoparticles and electro-poly(methyl orange) sensor. Electrocatalysis 13, 759–772 (2022). https://doi.org/10.1007/s12678-022-00756-0

    Article  Google Scholar 

  14. F. Pino, C.C.M. Mayorga, A. Merkoçi, High-performance sensor based on copper oxide nanoparticles for dual detection of phenolic compounds and a pesticide. Electrochem. Commun. (2016). https://doi.org/10.1016/j.elecom.2016.08.001

    Article  Google Scholar 

  15. A. Kumar, A. Choudhary, H. Kaur et al., Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. J. Nanobiotechnol. 19, 256 (2021). https://doi.org/10.1186/s12951-021-00996-0

    Article  Google Scholar 

  16. C. Thangamani, M. Ponnar, P. Priyadharshini, P. Monisha, S. Gomathi, K. Pushpanathan, Magnetic behavior of Ni-doped CuO nanoparticles synthesized by microwave irradiation method. Surf. Rev. Lett. (2018). https://doi.org/10.1142/s0218625x18501846

    Article  Google Scholar 

  17. M. Ponnar, C. Thangamani, P. Monisha, S.S. Gomathi, K. Pushpanathan, Influence of Ce doping on CuO nanoparticles synthesized by microwave irradiation method. Appl. Surf. Sci. 449, 132–143 (2018). https://doi.org/10.1016/j.apsusc.01.126

    Article  ADS  Google Scholar 

  18. T. Shahid, M. Arfan, W. Ahmad, T. BiBi, T. Khan, Synthesis and doping feasibility of composite-hydroxide-mediated approach for the Cu1-xZnxO nanomaterials. Adv. Mater. Lett. 7, 561–566 (2016). https://doi.org/10.5185/amlett.2016.6384

    Article  Google Scholar 

  19. M. Arfan, D.N. Siddiqui, T. Shahid, Z. Iqbal, Y. Majeed, I. Akram et al., Tailoring of nanostructures: Al doped CuO synthesized by composite-hydroxide-mediated approach. Results Phys. 13, 102187 (2019). https://doi.org/10.1016/j.rinp.2019.102187

    Article  Google Scholar 

  20. D. Renuga, J. Jeyasundari, A.S.S. Athithan, Y.B.A. Jacob, Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application. Mater. Res. Expr. 7, 045007 (2020). https://doi.org/10.1088/2053-1591/ab7b94

    Article  ADS  Google Scholar 

  21. A.E. Nogueira, A.S. Giroto, A.B.S. Neto, C. Ribeiro, CuO synthesized by solvothermal method as a high capacity adsorbent for hexavalent chromium. Colloids Surf A. 498, 161–167 (2016). https://doi.org/10.1016/j.colsurfa.2016.03.022

    Article  Google Scholar 

  22. A. Mahmood, A. Haseeb, S. Rozali, D. Brabazon, B.M.A. Rahman, K.T.V. Grattan, S. Naher, Synthesis of ZnO and cuo nanowires by thermal oxidation on metallic substrates. Key Eng. Mater. 926, 1703–1712 (2022). https://doi.org/10.4028/p-qvfxm2

    Article  Google Scholar 

  23. N. Silva, S. Ramírez, I. Díaz, A. Garcia, N. Hassan, Easy, quick, and reproducible sonochemical synthesis of CuO nanoparticles. Materials (Basel) 12, 804 (2019). https://doi.org/10.3390/ma12050804

    Article  ADS  Google Scholar 

  24. W.M. Rangel, R.A. Antunes Boca Santa, H.G. Riella, A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation. J. Mater. Res. Technol. 9, 994–1004 (2020). https://doi.org/10.1016/j.jmrt.2019.11.039

    Article  Google Scholar 

  25. P. Kankanit, S. Sineenart, M. Wanichaya, P. Wisanu, Synthesis of CuO Nanoparticles by precipitation method using different precursors. Energy Proc. 34, 740–745 (2013). https://doi.org/10.1016/j.egypro.2013.06.808

    Article  Google Scholar 

  26. S.H. Lafta, Effect of pH on structural, magnetic and FMR properties of hydrothermally prepared nano Ni ferrite. Open Chem. 15, 53–60 (2017). https://doi.org/10.1515/chem-2017-0007

    Article  Google Scholar 

  27. R. Rajamma, S. Gopalakrishnan, F. Abdul Khadar, B. Baskaran, Antibacterial and anticancer activity of biosynthesised CuO nanoparticles. IET Nanobiotechnol. 14, 833–838 (2020). https://doi.org/10.1049/iet-nbt.2020.0088

    Article  Google Scholar 

  28. M. Bayat, M. Zargar, E. Chudinova, T. Astarkhanova, E. Pakina, In vitro evaluation of antibacterial and antifungal activity of biogenic silver and copper nanoparticles: the first report of applying biogenic nanoparticles against pilidium concavum and Pestalotia sp. Fungi Mol. 26, 5402 (2021). https://doi.org/10.3390/molecules26175402

    Article  Google Scholar 

  29. S.J. Singh, P. Chinnamuthu, Highly efficient natural-sunlight-driven photodegradation of organic dyes with combustion derived Ce-doped CuO nanoparticles. Colloids Surf. A Physicochem. Eng. Aspects 625, 126864 (2021). https://doi.org/10.1016/j.colsurfa.2021.126864

    Article  Google Scholar 

  30. S. Velliyan, V. Rajendran, Study on the effect of Ce3+ doping on structural, morphological and optical properties of CuO nanoparticles synthesized via combustion technique. Phys. B Condensed Matter 613, 413015 (2021). https://doi.org/10.1016/j.physb.2021.413015

    Article  Google Scholar 

  31. C. Benjamine, M. Abdur Rahman, Structural, morphological and optical properties of Ce doped CuO nanoparticles prepared by co precipitation method. JETIR 5, 11 (2018)

    Google Scholar 

  32. M.R. Islam, M. Saiduzzaman, S.S. Nishat, A. Kabir, S.F.U. Farhad, Synthesis, characterization and visible light-responsive photocatalysis properties of Ce doped CuO nanoparticles: a combined experimental and DFT+U study. Colloids Surf. A Physicochem. Eng. Aspects. 617, 126386 (2021). https://doi.org/10.1016/j.colsurfa.2021.126386

    Article  Google Scholar 

  33. Z.J. Ren, A.K. Umble, Water treatment: recover wastewater resources locally. Nature 529, 316–325 (2016)

    Article  ADS  Google Scholar 

  34. A. Raees, M.A. Jamal, I. Ahmed, M. Silanpaa, Algarni, Synthesis and characterization of CeO2/CuO nanocomposites for photocatalytic degradation of methylene blue in visible light. Coating. 11, 305 (2021). https://doi.org/10.3390/coatings11030305

    Article  Google Scholar 

  35. J. Singh, V. Kumar, K.H. Kim, M. Rawat, Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ. Res. 177, 108569 (2019). https://doi.org/10.1016/j.envres.2019.108569

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully thankful to K R Mangalam University, Gurugram for the financial support and University of Delhi for technical support.

Funding

Authors have no funding from any source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Gautam.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhilasha, Kumari, N. & Gautam, R. Investigation of impact of pH and rare earth metal dopant concentration on structural, optical and thermal properties of CuO nanoparticles. Appl. Phys. A 129, 64 (2023). https://doi.org/10.1007/s00339-022-06355-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06355-6

Keywords

Navigation