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Abstract
Direct determination of mean diffusion times from the Laplace transform of the spatial average of the diffusing species for 
p = 0 offers the advantage of yielding closed-form expressions rather than sum-type ones obtained otherwise from the time-
dependent solution. This is made use of in the present work to determine the mean time of diffusion- and reaction-limited 
loading and unloading a species into or out of bodies of different shape (plate, cylinder, sphere) for the important type of 
boundary condition of fixed concentration in the surrounding. This approach particularly pays off for more complex cases 
when the calculation from the inverse of the Laplace transform becomes more and more laborious. As an example of such 
type, concomitant trapping and untrapping of the diffusing species within the object during unloading is considered. The 
obtained solutions are quantitatively discussed with examples from literature. The present concept of the mean time of load-
ing or unloading is compared with other time constants, e.g., mean action time or time lag.

Keywords Diffusion-reaction model · Hydrogen diffusion · Characteristic time constant · Laplace transform

1 Introduction

The kinetics of diffusion-controlled loading or unloading 
of a species into or out of an object, e.g., a solid, with the 
surface in equilibrium with the surrounding, represents a 
standard issue of diffusion theory. Solutions for a wide vari-
ety of boundary conditions can be found in textbooks (e.g., 
ref. [1]). An important research field, where this issue is of 
particular relevance, pertains to hydrogen in host materi-
als or more generally to ion-insertion electrodes. Diffusion 
theory of insertion (loading) and extraction (unloading) of 
hydrogen from electrodes has been elaborated in great detail, 
e.g., by Montella [2] and by Lee and Pyun [3] using the 
Laplace transform method.

An intriguing feature of this method is that it allows in a 
straightforward manner to derive mean values, e.g., a mean 
lifetime, by calculating the Laplace transform ñ(p) of an 
appropriate function n(t) for p = 0 , rather than to derive this 
mean value from the solution of the diffusion model. The 
latter is deduced from the inverse of the Laplace transform, 

a step which can be avoided for this purpose. A further par-
ticular advantage is that in this way closed-form expressions 
for the mean lifetime can be deduced.

Stimulated by Seeger [4], the author applied this concept 
in the past to positron annihilation studies of defects. Closed-
form expressions of the mean positron lifetime �  could be 
derived in this way for various scenarios of diffusion- and 
reaction-controlled trapping of positrons at extended defects, 
namely, at grain boundaries of spherical grains [4] with con-
comitant trapping at point defects [5] as well as at interfaces 
between matrix and cylindrical [6] or spherical precipitates 
[7], including spherical voids [7]. Dryzek made use of this 
concept for calculating the mean positron lifetime as well 
(e.g., ref. [8–10]).

Various approaches are used in literature to derive char-
acteristic time scales for diffusion processes, such as first 
moment relaxation time constant [11, 12] and mean action 
time [13, 14] (see also ref. [15] and references therein), both 
of which represent position-dependent time scales. Another 
time scale is the so-called time lag [1, 16] which charac-
terizes the long-time behavior approaching stationary flow. 
The mean time addressed in the present work represents a 
volume-averaged mean value for loading or unloading of an 
object. This mean value corresponds to the so-called mean 
residence time used to calculate drug absorption [17] (see 
Sect. 3).
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In the present work, closed-form expressions are 
derived for the mean time �  of diffusion- and reaction-
limited loading and unloading a species into or out of 
bodies of different shape (plate, cylinder, sphere) for the 
important type of boundary condition of fixed concentra-
tion in the surrounding. For comparison, mean values �  in 
the form of sums (Sect. 2.2.2) are deduced from the time-
dependent solution of the diffusion equation (Sect. 2.2.1), 
i.e., from the inverse of the Laplace transform (Sect. 2.1). 
As a more complex case, concomitant trapping and untrap-
ping of the diffusing species within the object during 
unloading is considered (Sect. 2.3).

2  The model

2.1  Solution of diffusion equation by Laplace 
transformation

We consider the diffusion of a species, such as for instance 
hydrogen, in a plate-, cylinder-, or sphere-shaped body that 
is in equilibrium with the surrounding, so-called surface 
evaporation condition according to the textbook of Crank 
[1] (Fig. 1). The species in the body is characterized by the 
density �(x, t) (plate) or �(r, t) (cylinder, sphere). Laplace 
transformation

yields the diffusion equations for the plate (a), cylinder (b), 
and sphere (c): 

 with

where D denotes the diffusion coefficient and �0 the constant 
initial concentration at time t = 0 . If in the surrounding a 
constant concentration �s is maintained in equilibrium, the 
Laplace transform of the boundary condition at the surface 
reads for the plate (a) 

(1)�̃�(x, p) = ∫
∞

0

exp(−pt)𝜌(x, t)dt.

(2a)d2�̃�

dx2
− 𝛾2�̃� = −

𝜌0

D
,

(2b)d2�̃�

dr2
+

1

r

d�̃�

dr
− 𝛾2�̃� = −

𝜌0

D
,

(2c)d2�̃�

dr2
+

2

r

d�̃�

dr
− 𝛾2�̃� = −

𝜌0

D

(3)�2 =
p

D

and for the cylinder and sphere

 where � denotes a specific rate constant, l the half-thickness 
of the plate ( −l ≤ x ≤ l ), and r0 the radius of the cylinder and 
sphere ( 0 ≤ r ≤ r0 ). For the plate, in addition, the boundary 
condition

at the midplane x = 0 has to be fullfilled. With the Ansatz 
�̃� = A cosh(𝛾x) + 𝜌0∕p (plate), �̃� = AI0(𝛾r) + 𝜌0∕p (cylinder, 
Ii(z) : modified Bessel function), �̃� = sinh(𝛾r)∕(𝛾r) + 𝜌0∕p 
(sphere), the diffusion equation above with the respective 
boundary condition can be solved. From the inverse of the 
Laplace transform, the solution for the plate (a), cylinder (b), 
and sphere (c) are obtained (see textbook [1]) 

(4a)D
d�̃�

dx
∣x=l +𝛼

(

�̃�(l) −
𝜌s

p

)

= 0

(4b)D
d�̃�

dr
∣r=r0 +𝛼

(

�̃�(r0) −
𝜌s

p

)

= 0

(5)
d�̃�

dx
∣x=0= 0

Fig. 1  Geometry of diffusion-reaction model: plate (half-thickness l), 
cylinder, sphere (radius r

0
 ) with initial density �

0
 of diffusing species 

embedded in a surrounding in which the density �
s
 is held constant. 

Temporal and spatial evolution of the concentration within the body 
is characterized by �(x, t) or �(r, t) . D: diffusion coefficient; � : specific 
rate constant at boundary (surface)
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with Bessel functions Ji(z) of order i,

 where �n denotes the roots of 

 with �2 = −�
2
 , � = �l (plate), � = �r0 (cylinder, sphere), 

and 

for the plate and

 for the cylinder and sphere.

2.2  Mean time of diffusion‑limited loading 
and unloading

2.2.1  Direct determination of mean time from Laplace 
transform

The above quoted solutions are derived from the respective 
Laplace transform �̃�(x, p) or �̃�(r, p) , which reads for the plate 
(a), cylinder (b), and sphere (c): 

(6a)

�(x, t) − �s

�s − �0
= −

∞
∑

n=1

2L cos(�x∕l)

cos �n
(

�
2

n
+ L2 + L

)

exp
(

−
D�

2

n

l2
t
)

,

(6b)
�(r, t) − �s

�s − �0
= −

∞
∑

n=1

2LJ0(�nr∕r0)

J0(�n)
(

�
2

n
+ L2

)

exp
(

−
D�

2

n

r2
0

t
)

,

(6c)

�(r, t) − �s

�s − �0
= −

∞
∑

n=1

2Lr0 sin(�nr∕r0)

r sin �n
(

�
2

n
+ L(L − 1)

)

exp
(

−
D�

2

n

r2
0

t
)

,

(7a)�n tan �n = L ,

(7b)− �nJ1(�n) + LJ0(�n) = 0 ,

(7c)�n cot �n + L − 1 = 0 .

(8a)L =
�l

D

(8b)L =
�r0

D

(9a)�̃�(x, p) =
𝛼(𝜌s − 𝜌0) cosh(𝛾x)

p
(

𝛼 cosh(𝛽) + D𝛾 sinh(𝛽)
) +

𝜌0

p

(9b)�̃�(r, p) =
𝛼
(

𝜌s − 𝜌0
)

r0

pD
(

𝛽I1(𝛽) + LI0(𝛽)
) I0

(

𝛾r
)

+
𝜌0

p
,

 with � = �l for the plate and � = �r0 for cylinder and sphere.
For calculation of the mean time of unloading, we con-

sider the spatial average by integration of �̃�(x, p) ( ̃𝜌(r, p) ), 
which yields for the plate (a), cylinder (b), and sphere (c): 

The spatial integral ñ(p) represents the Laplace transform

of the fraction n(t) of diffusion species which is still present 
at time t. The mean lifetime of the diffusing species, i.e., the 
mean time of unloading, is given by

Partial integration

shows that �  is given by the Laplace transform (Eq. 11) at 
p = 0 in the case of complete unloading ( �s = 0 ) [4].

Calculating the mean time of unloading for 𝜌s > 0 , one 
has to consider the fraction ñex(p) in excess to the concentra-
tion �s in the surrounding, which is obtained by replacing 
in the integral �̃�(r, p) by (�̃�(r, p) − 𝜌s∕p) . Correspondingly, 
in the prefactor for normalization �0 has to be replaced by 
�0 − �s . Integrating with this substitution yields for the plate 
(a), cylinder (b), and sphere(c): 

(9c)
�̃�(r, p) =

𝛼
(

𝜌s − 𝜌0
)

𝛽r0

pD sinh 𝛽
(

𝛽 coth 𝛽 + L − 1
)

sinh(𝛾r)

𝛾r

+
𝜌0

p

(10a)ñ(p) =
1

l𝜌0 ∫
l

0

�̃�(x, p)dx ,

(10b)ñ(p) =
1

𝜋r2
0
𝜌0

(

2𝜋 ∫
r0

0

�̃�(r, p)rdr
)

,

(10c)ñ(p) =
1

4∕3𝜋r3
0
𝜌0

(

4𝜋 ∫
r0

0

�̃�(r, p)r2dr
)

.

(11)ñ(p) =∫
∞

0

exp(−pt)n(t)dt

(12)� =∫
∞

0

(

−
dn

dt

)

tdt .

(13)𝜏 =∫
∞

0

n(t)dt = ñ(p = 0)

(14a)ñex(p) = −
𝛼l

D

sinh(𝛽)

p𝛽
(

L cosh(𝛽) + 𝛽 sinh(𝛽)
) +

1

p

(14b)ñex(p) = −
2𝛼r0

D

I1(𝛽)

p𝛽
(

𝛽I1(𝛽) + LI0(𝛽)
) +

1

p
,
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 The mean time �  of unloading from �0 down to �s is given 
by

Taylor expansion of the �-dependent functions in Eq. (14) 
and finally taking into account �2 = pl2∕D (plate) or 
�2 = pr2

0
∕D (cylinder, sphere) yields for the mean unload-

ing time of plate (a), cylinder (b), and sphere (c) after some 
algebra: 

 The calculation of the mean loading time from an initial 
value �0 = 0 up to the density �s in the surrounding is done 
in an analogous manner. The fraction of diffusing species 
reads in this case of loading for the plate

yielding in analogy to Eq. (14a):

After Taylor expansion, as mean loading time

the same expression as for unloading is obtained (see 
Eq. (16a).

2.2.2  Determination of mean unloading time from solution 
�(x , t) , �(r, t)

The mean unloading time can also be determined from the 
solutions �(x, t) , �(r, t) Eq. (6). The number of diffusing spe-
cies dNs∕dt leaving per time interval dt the plate per area (a), 
the cylinder per length (b), or the sphere (c) reads 

(14c)ñex(p) = −
3𝛼

r0

𝛽 coth 𝛽 − 1

p2
(

𝛽 coth 𝛽 + L − 1
) +

1

p
.

(15)𝜏 = ñex(p = 0) .

(16a)� =
l2

3D
+

l

�
,

(16b)� =
r2
0

8D
+

r0

2�
,

(16c)� =
r2
0

15D
+

r0

3�
.

(17)ñ(p) =
1

l𝜌s ∫
l

0

(𝜌s

p
− �̃�(x, p)

)

dx

(18)ñ(p) =
1

p
−

𝛼l

D

sinh(𝛽)

p𝛽
(

L cosh(𝛽) + 𝛽 sinh(𝛽)
) .

(19)𝜏 =ñ(p = 0) =
l2

3D
+

l

𝛼

(20a)
dNs

dt
=D

��

�x
∣x=l= �(�s − �(l)) ,

 The mean unloading time is obtained from

with N∞ = (�0 − �s)l (plate), N∞ = �r2
0
(�0 − �s) (cylinder), 

N∞ = 4�r3
0
∕3(�0 − �s) (sphere). Inserting the solutions 

Eq. (6) and integrating Eq. (21) yields the mean unloading 
time for the plate (a), cylinder (b), and the sphere (c): 

 with the respective roots according to Eq. (7).
The sums given by Eq. (22) yield identical values for 

the mean unloading time as the closed-form expressions 
(Eq. 16). This is verified for selected values of the param-
eter L making use of the tabulated roots for Eq. (7) given, 
e.g., in the textbook of Crank [1]. Equating �  according to 
Eq. (22) with the respective one according to Eq. (16) yields 
equations with L as single parameter, e.g., for the cylinder

2.3  Unloading taking into account trapping 
and detrapping

Next we consider in addition trapping of the diffusing spe-
cies with a rate � at homogeneously distributed traps within 
the sample and detrapping with a rate � from these traps, 
restricting to a plate-shaped sample. The fraction of trapped 
species is characterized by the density �t(t) for which the 
rate equation

with the corresponding Laplace transform

(20b)
dNs

dt
=2�r0D

��

�r
∣r=r0= 2�r0�(�s − �(r0)) ,

(20c)
dNs

dt
=4�r2

0
D
��

�r
∣r=r0= 4�r2

0
�(�s − �(r0)) .

(21)� =
1

N∞
∫

∞

0

(

−
dNs

dt
∣(r=r0)or(x=l)

)

tdt

(22a)� =

∞
∑

n=1

2L2l2

D

1

�
4

n
(�

2

n
+ L2 + L)

,

(22b)� =

∞
∑

n=1

4L2r2
0

D

1

�
4

n
(�

2

n
+ L2)

,

(22c)� =

∞
∑

n=1

6L2r2
0

D

1

�
4

n

(

�
2

n
+ L(L − 1)

)

.

(23)
1

8
+

1

2L
=

∞
∑

n=1

4L2

�
4

n
(�

2

n
+ L2)

.

(24)
d�t

dt
=�� − ��t
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holds with the initial density in traps �t,0 . The diffusion equa-
tion for this extended model reads

with the Laplace transform

where

We note that the ansatz according to Eqs. (24) and (26) 
implies that � is independent of �t , i.e., inexhaustible sink 
behavior is assumed, meaning that the trap concentration is 
high compared to �t or else that multiple trapping at a trap 
site may occur with constant rate.

With the boundary condition Eq. (4a) the following solu-
tion is obtained

(� = �l ) which reduces to Eq. (9a) for �t,0 = � = � = 0.
For calculating the mean unloading time, the limiting den-

sity in the plate �s(1 + �∕�) after unloading has to be taken 
into account, leading in extension to Eq. (10a) to

Insertion of �̃�(x, p) (Eq. 29) and �̃�t(x, p) Eq. (25) and integra-
tion leads to

Taylor expansion of sinh(�) and cosh(�) yields the mean time 
of unloading from �0 + �t,0 down to �s(1 + �∕�):

(25)�̃�t =
𝜎

p + 𝜂
�̃� + 𝜌t,0

1

p + 𝜂

(26)��

�t
=D

�2�

�x2
− �� + ��t

(27)
d2�̃�

dx2
− 𝛾2�̃� = −

1

D

(

𝜌0 + 𝜌t,0
𝜂

𝜂 + p

)

(28)�2 =
p(p + � + �)

D(p + �)
.

(29)

�̃(x, p) = 1
(p + � + �)

×
[

�
�s(p + � + �) − �0(p + �) − �t,0�

p(D� sinh(�) + � cosh(�))
cosh(�x)

+
�0(p + �) + �t,0�

p

]

(30)

ñex(p) =
1

l
(

𝜌0 + 𝜌t,0 − 𝜌s(1 +
𝜎

𝜂
)
)

∫
l

0

(

�̃�(x, p) + �̃�t(x, p) −
𝜌s

p
(1 +

𝜎

𝜂
)
)

dx .

(31)

ñex(p) =
1

(𝜌0 + 𝜌t,0 − 𝜌s(1 +
𝜎

𝜂
))(p + 𝜂)

×

[

𝛼
𝜌s(p + 𝜎 + 𝜂) − 𝜌0(p + 𝜂) − 𝜌t,0𝜂

p(D𝛾 sinh(𝛽) + 𝛼 cosh(𝛽))

sinh(𝛽)

𝛽
+

(𝜌0 + 𝜌t,0 − 𝜌s(1 +
𝜎

𝜂
))(p + 𝜂)

p

]

The special case of detrapping exclusively, i.e., � = 0 , reads

which includes as further special case for �t,0 = 0 the solu-
tion (Eq. 16a) quoted above. Another special case pertains to 
vanishing concentration in the surrounding ( �s = 0):

The determination of the mean unloading time from the 
solution �(x, t) as done in Sect. 2.2.2 is a bit more labori-
ous here. We restrict to the special case of exclusive detrap-
ping ( � = 0 ) and vanishing concentration in the surrounding 
( �s = 0 ) which leads to

with

L according to Eq.  (8a) and the roots �n according to 
Eq.  (7a). The derivation of Eq.  (35) is outlined in the 
appendix.

(32)
�̄ = ñex(p = 0) = (1

�
)

�t,0 − �s
�
�

�0 + �t,0 − �s(1 +
�
�
)
+ ( l

2

3D

+ l
�
)(1 + �

�
).

(33)𝜏 =

(

1

𝜂

)

𝜌
t,0

𝜌
0
+ 𝜌

t,0
− 𝜌

s

+

(

l
2

3D
+

l

𝛼

)

,

(34)� =
(

1

�

) �t,0

�0 + �t,0
+
(

l2

3D
+

l

�

)(

1 +
�

�

)

.

(35)

� =
1

1 + R

{

∞
∑

n=1

2L2l2
[D�

2

n

l2
− �(1 + R)

]

D�
4

n

(D�
2

n

l2
− �

)(

�
2

n
+ L2 + L

)

+

R�

l�2

[ 1

1 −
1

L
ql tan(ql)

− 1
]

}

(36)R =
�t,0

�0
,

(37)q =

√

�

D
,

The solution Eq. (35) reduces to Eq. (22a) for the special 
case of R = 0 , i.e., �t,0 = 0 . Again it can be verified for given 
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data sets that Eq. (35) yields identical values for the mean 
unloading time as the closed-form expression (Eq. 33).

3  Discussion and conclusion

The main objective of this work lays on the closed-form 
expressions for the mean time �  of unloading Eq. (16) and 
loading Eq. (19) for various geometries (plate, cylinder, 
sphere) and the extension to concomitant trapping and 
detrapping Eqs.  (32), (33) and (34). These closed-form 
expressions for �  are derived in a straight-forward manner 
from the Laplace transform ñ(p) Eq. (11) at p = 0 , avoiding 
their calculation by means of sums Eqs. (22) and (35) for 
which roots Eq. (7) have to be determined.

On the same concept used here to deduce a mean value 
(Eq. 12) from a Laplace transform for p → 0 (Eq. 13) also 
the mean action time [15], the mean residence time [17], or 
the mean-first-passage time [18] is based. In fact, it can be 
shown that the mean value according to Eq. (13) also follows 
by applying the relation for the first moment considered in 
references [17] and [18] [ ∫ ∞

0
−tf (t)dt = −limp→0(d∕dp)

̃f (p)].
The rate-limiting processes in the considered diffusion 

model is, on the one hand, the diffusion characterized by D 
Eq. (2), and, on the other hand, the rate constant � Eq. (4), 
describing the surface reaction. Both rate-limiting processes 
contribute to the mean times of unloading and loading 
Eqs. (16) and (19). A relation analogous to that of the mean 
time for the one-dimensional case Eq. (16a) is reported for 
the mean residence time of percutaneous drug absorption 
[17]. Also from a consideration of the mean action time, sum 
terms of type l2∕D and l∕� are found for the characteristic 
time constant [15].

For obvious reason, � increases both with decreasing dif-
fusivity and reactivity. The solutions contain the two limiting 
cases, namely,

• The entirely diffusion-controlled process where the sur-
face acts as ideal sink (i.e., � → ∞ ), and

• The entirely reaction-controlled process for D → ∞.

Since the reaction-limitation 1∕� of �  scales linearly with 
the size ( l, r0 ) of the object, whereas the diffusion-limita-
tion (1/D) with the square of the size ( l2, r2

0
 ), for decreasing 

object size reaction-limitation gets more relevant compared 
to diffusion-limitation and vice versa for increasing object 
size.

For a quantitative comparison of the contributions for 
�  arising from diffusion- ( l2∕D ) and rate-limitation ( l∕� ), 
we consider one example of materials science (i) and one 
of biology (ii): 

 (i) For electrochemically induced hydrogen trans-
port through an amorphous Pd-rich alloy, the val-
ues D = 1.6 × 10−8 cm2 /s and � = 2.3 × 10−4 cm/s 
are reported [19].1 For the one-dimensional case, 
reaction-limitation exceeds diffusion-limitation for 
a layer thickness l smaller than about 2 � m, and vice 
versa.

 (ii) For oxygen uptake in a spherical cell, the val-
ues D = 1.6 × 10−5  cm2 /s and � = 2 × 10−2  cm/s 
are quoted [20]. From Eq.  (16c), a cell radius 
r0 = 5 × 10−3 cm is obtained for which reaction- and 
diffusion-limitation contribute in equal amount.

For comparison of �  for plate, cylinder, and sphere, one 
may consider �l2∕D (plate), respectively �r2

0
∕D (cylinder, 

sphere), yielding from Eq. (16)

with L according to Eq. (8). The comparison Eq. (38) shows 
that the mean unloading time is highest for the plate and 
shortest for the sphere. This reflects the decreasing mean dif-
fusion length for reaching the surface when going from pla-
nar to cylindrical and further to spherical symmetry. Related 
to identical L-values, diffusion-limitation is stronger for a 
plate than for a sphere; this becomes also evident from the 
ratio of the diffusion-limited first summand and the reaction-
limited second summand of �  Eq. (16), which is L/3, L/4, 
and L/5 for plate, cylinder and sphere, respectively.

It is worthwhile to mention that the mean time for unload-
ing Eq. (16) does neither depend on the initial concentration 
�0 nor on the concentration �s in the surrounding. As evident 
from the solution Eq. (6), �0 and �s affect the magnitude of 
�(x, t) or �(r, t) , but not their temporal evolution.

For unloading with concomitant trapping and detrapping, 
the following conclusions can be drawn with respect to the 
mean unloading time:

• 𝜎 = 0, 𝜌s > 0, Eq. (33): Release of trapped species by 
detrapping with a rate � increases the time �  needed for 
unloading. The first summand in Eq. (33) describes the 
mean time 1∕� of release from traps weighted by the den-
sity of species �t being trapped initially related to the 
density ( �0 + �t,0 − �s ) being unloaded. The second term, 
which corresponds to the solution without detrapping 
Eq. (16a), describes the mean time for diffusion- and 
reaction-limited outdiffusion.

(38)

(

1

3
+

1

L

)

|

|

|

plate >

(

1

8
+

1

2L

)

|

|

|

cylinder >

(

1

15
+

1

3L

)

|

|

|

sphere

1 The rate constant � corresponds to k
1
∕c

max
 quoted in the cited refer-

ence.
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• 𝜎 > 0, 𝜌s = 0 , Eq. (34): Additional trapping with a rate � 
further increases the time for unloading. Intermediate 
trapping with subsequent detrapping slows down the out-
diffusion; this is the reason why the �-increase is deter-
mined by the ratio �∕� of trapping and detrapping rate.

• General case (𝜎 > 0, 𝜌
s
> 0) , Eq. (32): For non-vanishing 

concentration in the surrounding ( 𝜌s > 0 , Eq.  (32), the 
weighting factor of the first summand ( 1∕� ) is modified com-
pared to Eq.  (33). The factor (�t,0 − �s�∕�)
∕(�0 + �t,0 − �s(1 + �∕�)) takes into account that for 
𝜌s > 0 , the part of species released from the traps is reduced 
by �s�∕� and the part of species, which is unloaded by dif-
fusion to the surface, is reduced by �s(1 + �∕�).

For 𝜎 > 0 , the mean time �  is essentially determined by the 
ratio �∕� of trapping and detrapping rates Eqs. (32) and 
(34). For a quantitative assessment of this ratio, we con-
sider an example of hydrogen trapping at dislocations in 
steel [21, 22]. For a low occupancy of trap sites by hydrogen, 
as underlying the present model, the ratio �∕� can be writ-
ten as �∕� = Nt∕Nl exp(−ET∕kBT) , where Nt , Nl denotes the 
trap and lattice site density, respectively, and ET the binding 
energy of hydrogen at dislocations.2 For Nt = 2 × 1021 1/
m3 , corresponding to a dislocation density of 1012 1/m2 , 
Nl = 5.1 × 1029 1/m3 , and ET = −60 kJ/mol (values from 
[21]), a ratio �∕� = 195 follows for ambient temperature 
(293 K). This high value reflects the fact that due to ther-
mally activated process of detrapping, the detrapping rate 
may be much lower than the trapping rate. As evident from 
Eqs. (32) and (34), a sluggish detrapping may give rise to a 
strong increase of the mean unloading time (factor (1 + �∕�) 
in Eqs. (32) and (34). The slowing down of the diffusion 
process by trapping is in literature also described by means 
of a reduced effective diffusivity Deff  in comparison to D. It 
is worthwhile to mention that the ratio between Deff  and D 
in the above mentioned case is given by inverse of the same 
factor (1 + �∕�) (see [21]).

In conclusion, comparing the two approaches for calculat-
ing the mean unloading/loading time, i.e., by means of the 
Laplace transform Eq. (11) at p = 0 or via Eq. (21) by means 
of �(x, t) or �(r, t) , the advantage of the first one becomes evi-
dent, even for the simple model presented in this work, and 
most clearly for the complexer model including detrapping. 
When with increasing complexity the calculation of �(x, t) 
( �(r, t) ) from the inverse of the Laplace transform �̃�(x, p) 
( ̃𝜌(r, p) ) becomes more and more laborious, the determina-
tion of mean values from ñ(p) pays off as a most direct and 
simple way. Above all, in contrast to sum-type solutions the 
closed-form expressions enable in a straightforward man-
ner physical insight in the mean loading or unloading time 

and its relation to the various controlling parameters, such 
as D, � , or �s.

Appendix: Derivation of Eq. (35)

For exclusive detrapping (i.e., � = 0 ) the solution Eq. (29) 
reduces to

with

according to Eq. (28) and � = �l.
Determination of the solution, i.e., the inverse �(x, t) of 

the Laplace transform �̃�(x, p) requires the calculation of the 
numerator f(p) and the derivative dg(p)∕dp of the demoni-
nator g(p) of Eq. (A-1) at the roots of g(p) [1]. Roots of 
the denominator g(p) = p(p + �)

(

D� sinh(�) + � cosh(�)
)

 of 
Eq. (A-1) are (i) p = 0 , (ii) � cosh(ql) + Dq sinh(ql) = 0 , and 
(iii) p = −� , where the second one corresponds to Eq. (7a) 
( �n tan �n = L).

The derivative of dg(p)∕dp reads with d�∕dp = 1∕(2D�)

• For root (i) the demoninator derivative is 

 and the numerator f(p) of Eq. (A-1) 

• For root (ii) one obtains 

 for the derivative Eq. (A-3) with �2
n
= −�

2

n
 and 

 for the numerator.

(A-1)

�̃�(x, p) =
1

(p + 𝜂)

[

𝛼
(𝜌s − 𝜌0)(p + 𝜂) − 𝜌t,0𝜂

p
(

D𝛾 sinh(𝛽) + 𝛼 cosh(𝛽)
) cosh(𝛾x)

+
𝜌0(p + 𝜂) + 𝜌t,0𝜂

p

]

(A-2)�2 =
p

D

(A-3)
g�(p) = cosh(�)

[

�(2p + �) +
lp(p + �)

2

]

+ sinh(�)
[

D�(2p + �) +
p(p + �)

2�

(

L + 1
)

]

(A-4)g�(0) = ��

(A-5)f (0) = ���s .

(A-6)g�(�n) = cos �n

(D�
2

n

l2
− �

)

D

2l

(

�
2

n
+ L2 + L

)

(A-7)

f (�n) = �

[

(�s − �0 − �t,0)� − (�s − �0)
D�

2

n

l2

]

cos
(�nx

l

)

2 Follows from Eq. (20a) of [21].
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• For root (iii) the derivative reads 

 with q =
√

�∕D (Eq. 37) and the numerator 

The inverse �(x, t) of the Laplace transform �̃�(x, p) therefore 
reads

with q =
√

�∕D Eq. (37) and �n tan �n = L Eq. (7a). For 
� = 0 and �t,0 = 0 the solution without traps (Eq. 6a) is 
obtained.

The mean unloading time � is obtained from the solution 
Eq. (A-10) by means of Eq. (21) with

and with N∞ =
(

�0 + �t,0 − �s(1 + �∕�)
)

l . Restricting to the 
case of vanishing concentration in the surrounding ( �s = 0 ) 
leads to the result Eq. (35) given in Sect. 2.3.

The second denominator of Eq.  (35) gets 0 if 
(ql tan(ql) = L) holds for the values q =

√

�∕D . For this 
special ratio of � and D also the factor 

(

D� 2

n
∕l2 − �

)

 of the 
first denominator gets 0 taking into account the condition for 
the poles ( �n tan �n = L ) of the sum.
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(A-8)g�(−�) = �
(

−� cos(ql) + Dq sin(ql)
)

(A-9)
f (−�) =��t,0

(

−� cos(qx) + � cos(ql)

− Dq sin(ql)
)

.

(A-10)

�(x, t) = �s+

∞
∑

n=1

2L
[

(�s − �0 − �t,0)� − (�s − �0)
D�

2
n

l2
]

cos
( �nx

l

)

cos �n
(D�

2
n

l2
− �

)(

�
2
n + L2 + L

)

exp
(

−
D�

2
n

l2
t
)

+

�t,0
[ cos(qx)
cos(ql) − 1

L
ql sin(ql)

− 1
]

exp(−�t)

(A-11)
dNs

dt
= �(�s − �(l))
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